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Abstract

The Colebrooke Schist of the Pickett Peak terrane,
southwestern Oregon, 1is the easternmost, structurally
highest unit of the Late Mesozoic-Cenozoic Franciscan
Accretionary Complex. The Colebrooke Schist consists of
mostly transitional greenschist-blueschist-facies meta-
sedimentary rocks with common blocks of meta-volcanics and
serpentinites, rare talc-schists and meta-plutonic rocks.
The Colebrooke Schist meta-volcanic blocks are greenstones,
in many cases with visible relict pillow structures and
relict igneous textures.

Fifteen meta-volcanic samples and one meta-plutonic
sample were analyzed by XRF and ICP-MS and were plotted
with analyses from Plake (1989) and Coleman (1972). The
Colebrooke Schist meta-volcanic rocks plot in mid-ocean
ridge basalt (MORB), island arc tholeiite (IAT) and
transitional MORB/IAT fields on V-Ti, Th/Yb—Ta/Yb and Cr-Y
diagrams. The range of magma types suggests that the
Colebrooke Schist meta-volcanic blocks are derived from a
back-arc basin basalt source. The Colebrooke Schist
contains unusually high iron and titanium (Fe-Ti) MORB.
The Colebrooke Schist analyses were separated into five

individual large blocks. The Quosatana Butte, Skookumhouse
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Butte and Copper Canyon blocks have MORB affinities,
whereas blocks, in a serpentinite mélange underlying the
Colebrooke Schist, from Mineral Hill and Saddle Mountain
are transitional MORB/IAT. The geochemical similarity of
Colebrooke Schist samples with Coast Range ophiolite and
Josephine ophiolite, the similar age of a block in the
Colebrooke to the Josephine ophiolite, as well as
geochemical similarities and probable pebbly mudstone
matrix all suggest that some of the Colebrooke Schist meta-
igneous blocks may be sedimentary blocks derived from the
Josephine and possibly also Coast Range ophiolites,
deposited as olistostromes in the Early Cretaceous trench
off western North America. Very large, MORB affinity
blocks allows the possibility that at least some of the
Colebrooke Schist blocks are dismembered remains of the
ocean floor basement.

The Colebrooke Schist has undérgone three deformation
events. D1 consists of foliation first observed by Coleman
(1972) and later described by Plake (1989) as alignment of
platy minerals and the flattening of relict pillow
structures. D2 consists of crenulation cleavage, Sz, and
folds, F2 (Coleman, 1972 and Plake, 1989). Plake (1989)

described D3 features as an S3 crenulation cleavages and F3
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folds without axial planar cleavage. Foliations,
equivalent to Si from Plake (1989), measured throughout the
field area generally vary in strike from northwest to
northeast and dip to the east and define a broad girdle on
an equal area projection. The orientations of stretching
lineations (equivalent to Li of Plake, 1989) are scattered
with no clear average value, although most plunge gently to
moderately southeast or northwest. These shallow plunges
and variable trends are consistent with rotation about a
vertical axis, which supports Plake’s (1989) proposal that
the Colebrooke Schist has undergone rigid block rotation.
The variation in foliation and lineation measurements is
likely the result of one or a combination of three
possibilities: 1) post-metamorphic folding following D3, 2)
drag folding along the late north- to northeast-striking
strike-slip faults, or 3) extensive shearing associated

with veining throughout the Colebrooke Schist.
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Introduction

The Colebrooke Schist of the Pickett Peak terrane, in
the Franciscan accretionary complex, forms the boundary
between the Franciscan and the overlying Snow Camp terrane.
The Colebrooke Schist, covering ~150 km’ in southwestern
Oregon, probably correlates (Brown and Blake, 1987) with
the Shuksan Metamorphic Suite (Misch, 1966) in Washington,
and the Condrey Mountain Schist, South Fork Mountain Schist
and Redwood Creek Schist (Kelsey and Hagans, 1982) to the
south. Sparse outcrop exposure and the poorly constrained
age of the Colebrooke as well as the Shuksan, Condrey
Mountain, South Fork Mountain and Redwood Creek Schists
make reconstructing the tectonic history of the western
North American Coast difficult. It would be beneficial to
know in more detail the origins of these units.

The Colebrooke Schist contains numerous greenstone
blocks. Similar greenstone blocks have been studied
elsewhere in the Franciscan accretionary complex (Shervais
and Kimbrough, 1987; Huot and Maury, 2002; Macpherson et
al., 1990). These studies suggest a range of origins for
these blocks, derived perhaps from both the downgoing slab

and the hanging wall. The purpose of this study is to



constrain the origin for the greenstone blocks of the
Colebrooke Schist, and also to compare these to the
greenstones of the overlying ophiolitic Snow Camp terrane
and Josephine ophiolite to add insight to the accretion of
the western North American terranes. In addition, the
structural geology of the area was studied and is compared

to previous work by Plake (1989).



Regional Geology

The Colebrooke Schist and a serpentinite mélange are
part of the Pickett Peak terrane (Figure 1; Roure and
Blanchet, 1983; Blake et al., 1982; 1985a). The Pickett
Peak terrane is one of six fault-bounded, accreted
terranes in southwestern Oregon (Blake et al., 1985a).
From west to east, these six terranes are the following:
Gold Beach terrane, Yolla Bolly terrane, Sixes River
terrane, Pickett Peak terrane, Snow Camp terrane and
Western Klamath terrane (Figure 2; Blake et al., 1985a).

The Gold Beach terrane consists of an Upper Jurassic
sedimentary unit—the Otter Point Formation—with
sedimentary rocks derived from an island arc (Figure 2;
Blake et al., 1985a). The Otter Point Formation is
unconformably overlain by Cretaceous quartzofeldspathic
strata (Figure 2; Blake et al., 1985a).

The Yolla Bolly terrane (Blake and Jones, 1974;
.1977) is composed of the Upper Jurassic to Lower
Cretaceous Dothan Formation. Widmier (1962) divided the
sedimentary and igneous rocks of the Dothan into two
members: a predominately volcanic coastal member and a

predominately sandstone inland member. Based on these



Figure 1. Regional map from Roure and Blanchet (1983), Blake et al. (1982, 1985a),
and G. Harper and M. Giaramita (unpublished mapping). Mineral Hill and Saddle
Mountain greenstone blocks are blocks in the serpentinite melange underlying the
Colebrooke Schist.
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lithologic differences, as well as textural and
geochemical differences, Blake et al. (1985a) divided the
Yolla Bolly terrane into eastern and western subterranes
(Figure 2}.

The Sixes River terrane is the only one of these
terranes that contains abundant mélange, most of which
has a sheared graywacke and shale matrix (Coleman and
Lanphere, 1971). Blueschist and eclogite are common as
tectonic blocks (Coleman and Lanphere, 1971), and a few
limestone blocks have been found (Diller, 1898; Blake et
al., 1985a).

The Pickett Peak terrane is the structurally highest
and highest-grade unit of the Franciscan accretionary
complex in northern California and southwestern Oregon.
The Pickett Peak terrane in Oregon consists of the
Colebrooke Schist; in addition, Blake et al. (1985a)
include a serpentinite mélange, mapped by Roure and
Blanchet (1982), that underlies the Colebrooke Schist
V(Figure 2), although in the Snowcamp Mountain area a
serpentinite mélange overlies the Colebrooke (G. Harper
and M. Giaramita, unpublished mapping). The Colebrooke
Schist, as discussed below, is a transitional

greenschist- and blueschist-facies metapelite and



metagraywacke with common mafic metavolcanic units and
rare metachert (Coleman, 1972). The serpentinite mélange
mapped by Roure and Blanchet (1983) contains blueschist
(Roure and Blanchet, 1983) and greenstone knockers (Blake
et al., 1982). Coleman (1972) suggests that this mélange
was a slab of oceanic crust and mantle that was
serpentinized during accretion.

Two large greenstone blocks in this study are from a
serpentinite mélange between the Colebrooke Schist and
the Snow Camp terrane that is likely part of the Pickett
Peak terrane. These blocks are Saddle Mountain (samples
SM-10b, SM-10c, SM-10d; Figure 1) and Mineral Hill
(samples SM-13a, SM-13b, SM-13c¢c, SM-110, SM-116; Figure
1) . The Saddle Mountain block is located on the eastern
flank of Saddle Mountain, 540 m east of the peak (N 124
7' 21" latitude, W 42 24' 9" longitude). Blake et al.
(1985a) included this serpentinite mélange in the eastern
part of the Snow Camp terrane, but it is situated above
the Colebrooke Schist and beneath ophiolitic rocks of the
Snow Camp terrane (G. Harper and M. Giaramita,
unpublished mapping). There are slivers of Colebrooke
Schist in both the Saddle Mountain block and the Mineral

Hill block (G. Harper, unpublished field data), so the



serpentinite mélange could be part of the Colebrooke
Schist even though it is here at the top, rather than at
the base of the schist as reported by Roure and Blanchet
(1983). Alternatively, the serpentinite mélange beneath
the Snow Camp terrane might be younger than the
Colebrooke Schist, having formed during juxtaposition of
the Snow Camp terrane with the Colebrooke Schist along
the Coast Range fault. Such an origin is suggested by
the presence of blocks unlike those in the Colebrooke
Schist (e.g., undeformed ultramafic cumulates, hornblende
diorite, and peridotite; G. Harper, unpublished field
data). This is also suggested by the geochemistry of the
two pillow lava blocks analyzed for this study (presented
below), which is more like that of ophiolitic rocks of
the Snowcamp terrane and Josephine Ophiolite than that of
blocks that are clearly part of the Colebrooke Schist.

The Snow Camp terrane is a dismembered ophiolite
with overlying sedimentary rocks (Blake et al., 1985a).
The ophiolitic rocks of the Snow Camp terrane were
correlated with the Coast Range ophiolite of California
by Blake et al. (1985b), but it may instead be an outlier
of the Josephine Ophioclite (Schoonmaker et al., in

press). The Coast Range and Josephine Ophiolite are



similar in age, however, and may have formed in the same
suprasubduction zone spreading system (e.g., Saleeby,
1992; Dickinson et al. 1996). The Coast Range ophiolite
in California is variable and generally dismembered,
consisting of faulted serpentinized peridotite, gabbro,
rare sheeted dikes, pillow basalts, and/or (locally)
ophiolitic breccias (Gullixson et al., 1980; Blake et
al., 1985a; Dickinson et al., 1996; Shervais et al., in
press), as well as local overlying andesitic and dacitic
volcaniclastic rocks and rare later hypabyssal intrusions
(Dott, 1971; Dickinson et al., 1996). A U-Pb zircon age
for the sheeted dike complex in the Snow Camp terrane
included in the Snowcamp Mountain area is 169 + 1 Ma
(Saleeby, 1984), and several ages from the Wild Rogue
Wilderness ophiolitic rocks are 164 + 1 Ma, similar to
ages for the Coast Range and Josephine Ophiolites (Harper
et al., 1994; Dickinson et al., 1996; Shervais et al., in
press) .

The ophiolitic rocks in the Wild Rogue Wilderness
area of the Snow Camp Terrane are overlain by a thick
sequence of intermediate to felsic volcaniclastic rocks
that are locally interbedded with chert (Kosanke, 2000;

Harper, 2002). A dacite flow (or sill) within the upper



part of the volcaniclastic unit gave an Ar/Ar hornblende
age of 153 * 1 Ma, but otherwise the unit is undated
(Kosanke, 2000). Marine clastic sedimentary rocks of the
Myrtle Group overlie the volcaniclastic unit. The Myrtle
Group contains index fossils of the bivalve Buchia (Imlay
et al., 1959) that indicate an Upper Jurassic (Tithonian)
to Lower Cretaceous age (Dott, 1971; Blake et al.,
1985a). No volcaniclastic unit was found overlying the
ophiolitic rocks in the Snowcamp Mountain area; a basal
conglomerate-rich unit of the Myrtle Group overlies
pillow lavas of the ophiolite in a road cut on the south
flank of Saddle Mountain, although the contact itself is
covered and may be a fault (G. Harper and M. Giaramita,
unpublished data). A fault bounded outcrop in the upper
part of Lawson Creek consists of massive green chert,
some beds of which contains sand-size clasts of mafic
volcanic rock similar in texture to boninitic pillow
lavas at the top of the pillow lavas of the ophiolite (G.
Harper, unpublished field data); these rocks are likely
part of the pelagic sequence deposited on top of the
pillow lavas. The Snow Camp terrane is intruded by ~149
Ma small plutons and dikes in the Snowcamp area (Harper

et al., 2000).
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The Myrtle Group has been correlated to the Great
Valley Sequence that overlies the Coast Range ophiolite
and its volcanopelagic sequence in California (Jones,
1973; Blake et al., 1985b; Dickinson et al., 1996). The
Lower Cretaceous Myrtle Group unconformably {angular)
overlies the Josephine ophiolite and overlying Galice
Formation of the Western Klamath terrane (Harper et al.,
1994; Dott, 1966), whereas Blake et al. (1985b) reports
that the Upper Jurassic and Lower Cretaceous Myrtle Group
depositionally overlie the ophiolite in the Snow Camp
terrane (Blake et al., 1985b). Because of a lack of age
data for sedimentary and volcaniclastic rocks between the
ophiolite and the Myrtle Group, however, the contact
could be a disconformity (Kosanke, 2000). Kosanke (2000)
found that the bedding in the Myrtle Group and underlying
volcaniclastic unit were similar, but that some shearing
was present at the actual contact.

The Western Klamath terrane consists of the
Josephine ophiolite and the overlying Galice Formation
(Harper, 1984; Harper et al., 1994). It also includes
the Late Jurassic volcanic Rogue Formation and the Chetco
intrusive complex, a Late Jurassic island arc complex

(e.g. Harper and Wright, 1984; Harper et al. 1994; Yule,
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1996. Blake et al. (1985a) subdivided the Western
Klamath terrane in Oregon into four subterranes (Figure
2). The Upper Jurassic Galice Formation consists of
turbidites (flysch) that were metamorphosed to low grade
and deformed during the Late Jurassic Nevadan Orogeny
(Harper, 1984; MacDonald and Harper, in press). In the
“Smith River subterrane” (Figure 2) of Blake et al.
(1985a), the ~162 Ma Josephine Ophiolite, a complete
ophiolite, is overlain by a hemipelagic sequence which is
in turn overlain by flysch of the Galice Formation
(Harper et al., 1994; MacDonald and Harper, in press).
The Josephine Ophiolite is interpreted to have formed in
a suprasubduction zone setting (Harper, 1984; Harper and
Wright, 1984; Harper et al., 1994, Harper, 2003a, 2004).
Rare, late stage highly fractionated Fe-Ti basalts have
been found in the Josephine ophiolite (Harper, 2003a),
suggesting formation at a propagating spreading center.
The Rogue-Chetco island arc complex of the western
Klamath terrane consists of both the Rogue Formation and
the Chetco Intrusive Complex (Dick, 1976; 1977; Garcia,
1982; Harper and Wright, 1984; Harper et al., 1994; Yule,
1996). In what Blake et al. (1985a) called the Rogue

River subterrane (Figure 2), the Rogue Formation is

12



depositionally overlain by the Galice Formation (Harper
et al., 1994) and is comprised of submarine volcanic
breccias, tuffs and volcaniclastic rocks metamorphosed to
low grade. The ~157 to 153 Ma Rogue Formation is
deposited on a basement of Triassic disrupted ophiolitic
rocks (Yule, 1996), which may include amphibolite of the
Briggs Creek subterrane (Figure 2) of Blake et al.
(1985a) . The Dry Butte subterrane of Blake et al. (1985a)
consists of the 160 to 157 Ma Chetco Intrusive Complex,
also known as the Illinois River plutonic complex (Yule,
1996), and is interpreted as the core of the Rogue-Chetco
island arc complex (Dick, 1976; Garcia, 1982; Harper et

al., 1994; Yule, 1996).

Franciscan Accretionary Complex

In Oregon, the Gold Beach terrane, Yolla Bolly
terrane, Sixes River terrane and Pickett Peak terrane are
part of the Franciscan Accretionary Complex. The
VFranciscan accretionary complex extends from California
northward to Washington. The Franciscan accretionary
complex in California has been extensively studied.
Irwin (1960) divides the Franciscan into three belts—

(from west to east) the Coastal belt of Bailey and Irwin
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(1959), the Central belt and the Eastern belt (Figure 3).
Blake et al. (1985b) further subdivided these belts into
six terranes (Figure 3): the Yager, Coastal and King
Range terranes are part of the Coastal belt; the Central
terrane is now the Central belt, and the Yolla Bolly and
Pickett Peak terranes comprise the Eastern belt (Figure
3).

The Coastal Belt of the Franciscan Complex is the
most western, least metamorphosed of the Franciscan
(Blake and Jones, 1981). The Coastal terrane contains
Late Cretaceous to Late Eocene arkosic sediments and is
highly fractured and sheared (Blake et al., 1985b). The
Yager terrane is comprised of the Paleocene to Late
Eocene Yager Formation, which contains mudstone-rich
turbidites and interbedded sandstones and conglomerates
(Blake et al., 1985b). The King Range terrane of
McLaughlin et al. (1982) is composed of the Point Delgada
and King Peak subterranes. The Late Cretaceous Point
Delgada subterrane contains pillow lavas and diabase,
overlain by arkosic sandstone and argillite (Blake et
al., 1985b). The Paleogene to Middle Miocene King Peak

subterrane is comprised of calcareous argillite with

14



Figure 3. Terrane map of northwestern California, modified after Figures 2a and 2b in
Blake et al. (1985b).
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interbeds of quartzofeldspathic to volcaniclastic
sandstone (McLaughlin et al., 1983).

The Central Belt of the Franciscan is comprised of
the Central terrane of Blake et al. (1982; 1985b). The
Central terrane is a mud or graywacke matrix mélange with
blocks of metagraywacke, greenstone, chert and
serpentinite (Blake and Jones, 1981). Blueschist
knockers are abundant (Blake and Jones, 1981) in a matrix
of sheared argillite (Blake et al., 1985Db). Buchia
fossils in the mélange matrix suggest an age of Late
Jurassic to Early Cretaceous for the Central terrane
(Blake and Jones, 1974). The Sixes River terrane of
southwest Oregon is correlative with the Central terrane
(Blake et al., 1985b). In addition, Blake et al. (1985b)
suggest that the other terranes of the Franciscan
accreted into the Central terrane on the continental
margin, since the Central terrane is similar in protolith
to the basal rocks of the Great Valley sequence (Blake
and Jones, 1974).

The Eastern Belt is comprised of the Yolla Bolly and
Pickett Peak terranes (Blake et al., 1985b). The Late
Jurassic to Middle Cretaceous (Blake and Jayko, 1983)

Yolla Bolly terrane contains units of graywacke and chert
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with intrusions of basalt and gabbro (Blake et al.,
1985b). Lawsonite and sodic amphibole have been found in
the Yolla Bolly terrane (Blake et al., 1981; Blake and
Jayko, 1983). The Pickett Peak terrane is composed of
the South Fork Mountain Schist and Valentine Spring
Formation (Worrall, 1981). The South Fork Mountain
Schist is quartz-mica-lawsonite schist with greenschist-
and blueschist-facies metavolcanic rocks (Blake et al.,
1967). The Valentine Spring Formation is schistose to
gneissic metagraywacke (Worrall, 1981). 1In southwest
Oregon, the Pickett Peak terrane consists of the

Colebrooke Schist.

Colebrooke Schist

The Colebrooke Schist is part of the Pickett
Peak terrane in Oregon (Figure 1; Roure and Blanchet,
1983; Blake et al., 1982; 1985a) and crops out over an
~150 km? area. The Colebrooke Schist consists largely of
fine-grained metasedimentary rocks (phyllites and
semischists) of transitional greenschist-blueschist
facies. These metasedimentary rocks are strongly
foliated. 1In addition to metasedimentary rocks, the

Colebrooke Schist also contains minor tuff, metachert
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{Coleman, 1972) rare talc-schists and common meter- to
kilometers-scale meta-igneous blocks, nearly all of which
are metabasalt. The meta-igneous rocks are greenstones.
Many of the metabasalts have pillow structures. Most of
the metabasalts observed show no foliation; in the few
that do have foliation it appears to be similar in
orientation to the foliation of the surrounding
metasedimentary rocks. The Colebrooke Schist also
contains rare metaplutonic rocks. The general
metamorphic mineral assemblage for the metasedimentary
rocks is quartz + chlorite + phengitic mica + albite +
epidote + lawsonite (lawsonite observed by Coleman, 1972;
and Plake, 1989). The metamorphic assemblage for the
meta-igneous blocks is generally actinolite + epidote +
albite + chlorite + pumpellyite + crossite (crossite
observed by Coleman, 1972). Inferred protoliths for the
metasedimentary rocks are shale and sandstone (Coleman,
1972).

The age of the Colebrooke Schist is poorly
constrained. A Rb-Sr isochron age for metasedimentary
rocks of 128 + 18 Ma is possibly the age of metamorphism
(Coleman 1972). Walker et al. (1987) reported a

concordant U-Pb age of 162 + 1 Ma for a meta-quartz
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diorite block in the Colebrooke. This is perhaps the
maximum age of the Colebrooke Schist, if the meta-quartz
diorite block is sedimentary (Plake, 1989). If the meta-
quartz diorite originally intruded the Colebrooke as
suggested by Walker et al. (1987), this age would be a
minimum age of the Colebrooke metasedimentary protolith.

Coleman (1972) inferred the Colebrooke Schist was
deposited off a continental margin (the west coast of
North America) as deep ocean sediments. In addition,
Coleman (1972) suggests that the metabasalts in the
Colebrooke Schist are derived from ocean basement.

Brown and Blake (1987) correlated the Colebrooke
Schist with other units of western North America
containing blueschists, including the following: the
Shuksan metamorphic suite (Misch, 1966) in northwestern
Washington, the South Fork Mountain Schist and Redwood
Creek Schist (Kelsey and Hagans, 1982) of the Pickett
Peak terrane in northern California, and the Condrey
Mountain Schist of the central Klamath Mountains (Figure
4). These units are similar in lithology, were
metamorphosed under high P/T conditions, have similar
apparent ~125 to 135 Ma metamorphic ages, and are fault-

bounded. Furthermore, the Shuksan and Colebrooke Schist
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7 SH--Shuksan Metamorphic Suite] 4
i -, - CB--Colebrooke Schist N
/7 ./ CM--Condrey Mountain Schist -
"1 SF--South Fork Mountain Schist

- RG-Redwood Creek Sohist. .

120

Figure 4: Location of blueschist units correlative with
the Colebrooke Schist, from Figure 1 of Brown and Blake
(1987). Dotted pattern is pre-Tertiary rock.
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units contain ~163 Ma metaplutonic rocks (Walker et al.,
1987). These blueschist units were perhaps at one time a
continuous unit that was dismembered and dispersed
northward after metamorphism (Brown and Blake, 1987).
Another possibility is that each of these units formed
independently in similar settings (Brown and Blake,

1987) .

Coast Range fault

In Oregon, the eastward dipping Coast Range fault
places the structurally highest unit of the Franciscan
complex, the Pickett Peak terrane (Colebrooke Schist), in
fault contact with the structurally overlying dismembered
ophiolite of the Snow Camp terrane (Blake et al., 1985a).
In California, the Coast Range fault separates the
Pickett Peak terrane from either the Coast Range
ophiolite or, in northernmost California, the Western

Klamath terrane (Blake et al., 1984).
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Previous Work

Colebrooke Schist

Diller (1903) first mapped and named the Colebrooke
Schist. Coleman (1972) followed with a much more complete
study of the Colebrooke Schist. In addition to publishing
a comprehensive map of the Colebrooke Schist, Coleman
(1972) did semigquantitative geochemical analyses on the
Colebrooke Schist metasedimentary and metavolcanic rocks.
According to Coleman (1972), the Colebrooke Schist
metasedimentary rocks are geochemically similar to Galice
Formation metasedimentary rocks {(MacDonald and Harper, in
press), but not geochemically similar to metasedimentary
rocks in the Dothan or Otter Point Formations. Coleman
(1972) interpreted this to mean that the Galice Formation
and Colebrooke Schist formed in similar environments.
Conversely, Coleman (1972) interpreted that the Colebrooke
Schist and the Dothan and Otter Point either had different
éource areas or that their chemical differences resulted
from metasomatism during metamorphism.

Both Coleman (1972) and Plake (1989) studied the
geochemistry of the Colebrooke Schist meta-igneous rocks.

Coleman (1972) quantitatively analyzed major elements for
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11 metabasalts and semiquantitatively analyzed for trace
elements. These metabasalts plot as tholeiitic on the AFM
plot (Coleman, 1972), but Coleman did not consider the
possibility of element mobility during metamorphism. Plake
(1989) analyzed nine metavolcanic rocks and one
metaplutonic rock by XRF. These meta-igneous rocks plot as
mid-ocean ridge basalt (MORB) on discriminant diagrams,
except for the one metaplutonic rock sample (Plake, 1989).
Plake (1989) suggested that the Colebrooke Schist protolith

formed in a marginal basin behind a volcanic arc.

Structure of the Colebrooke Schist

Coleman (1972) describes foliation, Si, that is
parallel to bedding and interpreted to have formed during
regional metamorphism. This foliation is overprinted by
strain-slip cleavage (S2) and folds (F2) the axes of which
trend N-S and axial planes dip to the west at a low angle
(Coleman, 1972). Coleman (1972) interprets that Sz and F2
formed during east directed thrusting. Plake (1989)
further describes these same structures and interprets two
deformation events, D1 and D2, as well as identifying
crenulation cleavage (S3) and folding (F3) she ascribes to a

third deformation event, D3. Alignment of platy minerals
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and the flattening of relict pillow structures define Si
(Plake, 1989). S foliation is a crenulation cleavage
associated with F2 fold axes; these structures are the most
dominant in outcrop (Plake, 1989). Plake (1989) observed
the crenulation cleavage to be axial planar to F» folds.
Plake (1989) also identifies subtle D3 features as an S3
crenulation cleavages and F3 folds without axial planar

cleavage.

Coast Range Fault

Blake et al. (1967) described unusual “upside-down
metamorphic zonation,” where the metamorphic grade
increases upward toward the Coast Range fault, which he
interpreted as a thrust. This is based on data from rocks
in California, which are correlative with the Colebrooke
Schist. Bailey et al. (1970) originally named this fault
the Coast Range thrust. It was originally interpreted to
be a fossil subduction fault (Hamilton, 1969; Ernst, 1970).
Ernst (1970), however, interpreted normal fault motion of
Neogene age between the Great Valley Group and the
Franciscan Complex. Later, Platt (1986) and Jayko et al.
(1987) suggested that normal faulting was responsible for

the juxtaposition of the high P/T Pickett Peak rocks,
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formed at depths of > 25-30 km (Blake et al., 1988; Brown
and Ghent, 1983; Ernst, 1993), with the unmetamorphosed
rocks of the Coast Range ophiolite and Great Valley Group.
Jayko et al. (1987) then suggested that the name be changed

from Coast Range thrust to Coast Range fault.
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Field Observations

The Snowcamp Mountain area has extensive vegetation
cover. With the exception of the west\side of Snowcamp
Mountain, outcrop exposures are largely confined to road
cuts and stream channels, and are sparse elsewhere. The
heavy vegetation makes it very difficult to assess the
nature of contacts between different metasedimentary rocks

and blocks, as well as fault contacts.

Metasedimentary Rocks

The Colebrooke Schist metasedimentary rocks consist of
mostly phyllite and semischist (Figure 5). The phyllite is
black in color and very fine grained. It is extensively
foliated and folded, with abundant quartz veins and rare
prehnite veins both parallel and perpendicular to foliation
(Figure 6).

The Colebrooke semischist is light to medium gray in
color and ranges from very fine to coarse grained. It is
foliated, with folds and crenulation cleavage visible in
some outcrops. This foliation is wvisible in thin section

(Figure 7). Bedding is not well preserved, but graded
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Figure 5. Regional map from Roure and Blanchet (1983), Blake et al. (1982, 1985a),
and G. Harper and M. Giaramita (unpublished mapping), showing the locations of
Colebrooke Schist metasedimentary rock samples and other types of rock samples.
Mineral Hill and Saddle Mountain greenstone blocks are blocks in the serpentinite
melange underlying the Colebrooke Schist.
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Figure 6. Hand sample of JM-79c, a Colebrooke Schist phyllite. The Colebrooke
phyllites are black and very fine grained, with abundant veins.

Figure 7. Photomicrograph, under plane polarized light, of metagreywacke sample SM-
49 showing foliation. Quartz (qz) and plagioclase (pl) grains are flattened and chlorite
(chl) grains are aligned.
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bedding was observed at one outcrop, and rip-up clasts were

seen at another outcrop (Figure 8).

Meta-igneous Blocks

The smaller, meters-scale meta-igneous blocks in the
Colebrooke Schist are visible as bumps on the sides of
mountains and in valleys, since they are more resistant to
weathering than the surrounding metasedimentary rocks
(Figure 9). The largest blocks, such as Quosatana Butte
and Skookumhouse Butte (Figure 5), comprise entire mountain
peaks. The contacts between the meta-igneous blocks and
the metasediments are all obscured by vegetation. Relict
pillow structures are well-preserved and common within the
greenstone blocks (Figure 10).

Most of the meta-igneous rocks are not foliated, but
foliation was observed at one outcrop of metabasalt (Figure
11) . In addition, foliation is evident in thin section in
samples JM-29 and SM-116 (Mineral Hill), which is a block
within the serpentinite mélange underlying the Colebrooke

Schist (Figure 12).
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Figure 8. Outcrop of coarse-grained Colebrooke semischist with mud rip-up clast
(arrow). Depositional features such as this and bedding surfaces were rarely observed,
largely because of heavy vegetation and deformation.
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Figure 9. Outcrop photo of metabasalt block on Snowcamp Mountain, showing typical
appearance of small Colebrooke meta-igneous blocks.

Figure 10. Outcrop of metabasalt sample JM-67 showing preserved pillow structures.
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Figure 11. Photomicrograph, under crossed nicols, of metabasalt sample JM-29 showing
foliation. Foliation is evident by flattening of grains and by alignment of chlorite (chl)
grains. ti = titanite

Figure 12. Outcrop of metabasalt sample JM-86 showing foliation. White lines parallel
foliation. Photo from G. Harper (unpublished data).
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Other Rock Types
The Colebrooke Schist also contains minor blocks of
talc schist and serpentinite. Both the talc schist and the
serpentinite are foliated, and where visible appears to be
similar in orientation to the foliation in the surrounding

Colebrooke metasedimentary rocks.

Sedimentary Textures

A foliated serpentinite on the eastern side of
Snowcamp Mountain (Table 1; samples 01-JM-06 and 01-JM-6b;
Appendix I), in contact with phyllite (Figure 13), appears
to have a clastic sedimentary texture (Figure 14).

Figure 15 is a sample from a mélange outcrop in the
Colebrooke Schist. This mélange is adjacent to a
greenstone block and contains clasts of greenstone. The
mélange appears to have a sedimentary texture. It is
deformed, however, as evident from the broken and strung-
out clasts. Alternatively, the mélange might be entirely
tectonic in origin and “healed” during the regional
metamorphism so that it no longer has the scaly appearance
characteristic of mudstone-matrix mélange.

A large, extensively brecciated metatonalite block,

which locally contains clasts of rhyolite dikes (Figure
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Figure 13. Exposure of a fault on the north side of Snowcamp Mountain between
Colebrooke phyllite (black rock on right) and serpentinite (red weathering rock on left).
If the serpentinite is part of the Snow Camp terrane, this fault is the Coast Range Fault;
however, it is possible that the serpentinite is part of the Colebrooke. The serpentinite
appears to have a clastic texture (Figure 14). Foliation in both rock types dips to the east
(left side of photo), but is not evident in the phyllite in this photo.
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Figure 14. Sample JM-06b, a probably detrital serpentinite (see Figure 13) This sample
has sedimentary texture (note white and green clasts). This sample also has foliation and
flattened grains. The sample pictured on bottom was cut parallel to lineation and
perpendicular to foliation.
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Figure 15. Hand sample from Colebrooke melange outcrop. This sample has
sedimentary texture, as evidenced by the presence of clasts (green material). Clasts also
appear to be deformed.
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16), was observed on Snowcamp Mountain peak. Figure 17 is
a sample from the metatonalite unit that has what appears
to be a small amount of black pelitic matrix encompassing
several clasts. X-ray diffraction confirmed the presence
of quartz, albite, chlorite and muscovite, consistent with
a pelitic matrix (Appendix 2). It is unclear whether this
metatonalite unit is an intrusion that has undergone
cataclasis, or whether it is a deformed sedimentary block.
The presence of this pelitic matrix suggests that the

metatonalite is a sedimentary block.

Coast Range Fault

There are no previously known exposures of the Coast
Range fault in Oregon. However, outcrops of the Colebrooke
Schist in close proximity to outcrops of the Snow Camp
terrane help to constrain its location. In Figure 13,
phyllite (black rock) of the Colebrooke Schist is visible
on the right, with serpentinite (red rock) on the left. If
this serpentinite is part of the Coast Range ophiolite,
then this is indeed the only exposure of the Coast Range
fault. However, the presence of possibly sedimentary
serpentinite (JM-06 and JM-06b) close to the fault suggests

that the serpentinite in fault contact with the phyllite is
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Figure 16. Hand sample of the brecciated metatonalite block from the peak of
Snowcamp Mountain. Arrows point to metarhyolite dike clasts.
pum — pumpelleyite (blue-green color)
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Figure 17. Hand sample (A) and photomicrograph (B), under plane polarized light, of
metatonalite block showing pelitic matrix. Arrow points to pelitic matrix in hand sample
(A), and dark areas are pelitic matrix in photomicrograph (B).
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likely part of the Colebrooke. Since peridotite of the
Coast Range ophiolite is within 5 meters of this location,
this outcrop is useful since it is very close to the actual
fault. Exposures further north show a few meters of highly
sheared, gouge-like serpentine, which presumably post-dates

the foliated serpentinite (JM-06 and JM-06b).
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Petrography

The Colebrooke Schist is largely composed of phyllite
and semischist. Commonly mixed in with the metasedimentary
rocks are blocks ranging in size from several meters to
several kilometers. Most of these blocks are greenstones,

with some serpentinite blocks and rare talc schist blocks.

Metasedimentary Rocks

The petrography of the Colebrooke metasedimentary
rocks is summarized in Tables la and 1lb. Figure 5 shows
the locations of the metasedimentary rock samples. The
Colebrooke Schist metasedimentary rocks include phyllite
and semischist. Colebrooke phyllite typically contains
relict quartz, with the metamorphic minerals muscovite,
graphite, chlorite and epidote/clinozoisite. Coleman
(1972) and Plake (1989) identified lawsonite in the
Colebrooke phyllite, but it was not observed in these
samples. The metamorphic grade of the phyllite is
transitional greenschist/blueschist.

The representative relict mineral assemblage for

the Colebrooke semischist is quartz and plagioclase. The

semischist also contains various rock fragments.

41




A7

sjuswiBel; %20J-4 ‘suuedias-des ‘ajydest-16 ‘apncosnw-snul‘sjue)i-i ‘sepxo-xo ‘louids-ds ‘euaxolAdouljo-xdo ‘sserooibeld-id

‘ajjewsy-way ‘spuyaid-id ‘apfjpdwind-wnd ‘a)ioeo-ed ‘zuenb-zb ‘ajuoyo-{Yo ‘sxjoul

J0e-j08 ‘e)is1020uljo-20 ‘sjopide-de ‘siqre-qe

(erep paysiigndun) Jodse woy; seldwes,

paelio} =) 10> Zo'da‘joe'ce'snw xo'xdo'|d'zb  g9eGL ¥ZLM OVSLETYN jsiyosiwes 98-INr-10
psieloy zb 10> wey'l)'10e'20'de |ya'16'snw ge'zb LZSGLPZLM 025.LE TN aypiyd G8-Wr-10
pajeljo} zb £0> des‘zo'de’|yo'qe'snui ds'y'd'zb siyosiwes L068-NS

pelelio} zb € des‘zo'de'jyo‘qe’snwi ydzo Isiyosiwes JG8-NS
paelio} uo 10> wel'22'de’|yo'ge’snw ds'yd'zb 96191 'FZLM E9EBEZIN Isiyosies Ze-Nr-10

pajelio} umouxun‘zb L'o> zo'de‘jyob'snw ge'zb appiiyd 6L-WNS
peenos umouun‘id‘zb 10> 1d'zo'de’|yo’i6 snw gqe'zb auAyd D6.-NS
pajeto} ‘paleays b 10> wey'zo'de’'snw xo'xdo LLLOL ¥ZLM GYE8E TPN IsIyosiwes 6-Wr-10
suone|nuBIo‘pelello; L'0> de'|yo‘snw sae'zb 26891 ¥ZLM 0Z89€ ZVN jsiyosiwes SZ-Nr-1L0
pajelio) zb 10> wnd‘yd'snw qe'zb 09281 YZTIM L8ZLEZYN ISIyosSIWeS  90L-Wr-10
peieno) zb 10> do'jyo‘snw qe‘zb 09281 VZLM LBZLETYN Isiyosuues  BQL-Wr-LO
pejeljo} ‘pasesys 10> jyo‘ge'snw Hdzb PEPOL YZLM YBSTEZPN Isiyosiwes  909-WIr-10
pajelo) zb B> ['zo'de’|yo’qe'snw Hd'zb YEYOL VLM YBSZEZYN 1slyosiues 6V-Nr-1L0

psjeljo; ‘pesesys > Zo'de’|yo'ge’snuw ydzb Isiyosiwes HBrNS
pajelio} £0> snw xo'y'ae'zdd  9/0/LYZLM ZEELETYN Islyostes PS-Nr-10
papio} pajelio) 0> way'joe‘de'snuw ds‘qe‘zb 9/0/1'¥ZLM ZEELETYN Isiyosiwes £E-Wr-10
pajelo) ge‘zb 10> 1yo'i6'snwi qe‘zb GOGZL'PZLM ZL60S TYN ayfyd 0S-Nr-10
paEio) 'zb 20> adyotbsnw xdo'qe'’zb LSOl PZLM Z0SVEZYN emphuyd aiLNr-1o
palelo) umouNun'zb 10> da'wnd‘uo'16'snw ge'zb 61591 PZLM Z0SVE TYN ayphyd eLL-\r-i0
pelelio} ‘pasesys des 1-€0 xo'wind'jyo'zo'de'des xdo'ds'y  96VOLYTLM BISYEZYN  exoemieibelou  Go-WM-L0
pajelio) ‘pesesys des 1-20 wey xo‘wnd‘des xdo'ds'y  96VOLPZIM BISPECYN  eoemieiBersw  90-WM-10
paelo} zb A way ‘Joe'de’snul zb 1699} ¥ZLM 8PEFE TYN 1slyosies YO-Nr-10

Jydiowerw IRy
(ww)
SJUBWIWLIOYD SulBA sz15 URID ABojessuiy uoneo0] adA] ooy s|dwes

SHO0H AYYLINIWIAISY.LIN IHOOHETT0D 40 AHIVHOOM13d Bl T8Vl




37

sjuowibeyy xo0i-j ‘aunuadios-das ‘oyyde.b-1B6 ‘SIACOSNLU-SNLL'S)URIE) ‘SBPIXO-XO ‘jpuids-ds ‘auaxoikdoula-xdo ‘eseidoibejd-id
‘apewsy-way ‘epuyaid-1d ‘epAedwnd-wnd ‘eojea-ied ‘Zuenb-zb ‘s)uojyo-yo ‘spjouloR-joe ‘@lsIoZoul|o-20 ‘ejopide-ds ‘elge-ge

(erep paysiiandun) Jediel woyy sajdueg,

X X X X

X X X X

X X

x
XXX XXX XX

X X X
X X

X X

X X X

X
XX X X
X X X

X X

X XX X XXXXXXXXX

X

98-Ir-10
G8-NIr-10
#458-NS
JS8-NS
Z8-Nr-1o
<6L-NS
«I6L-NS
6/-Wr-10
G/-WNr-10
90/-Nr-10
B0LNIr-10
S09-Nr-i0
6¥-Nr-10
«B-NS
¥e-Nr-10
€e-Nr-10
0E-Nr-10
qLi-Ar-1o
BLL-AM-LO
q9-NIr-i0
90-NIr-10
X X P0-Nr-10

XXXXXX XXXXXX
XXXXXXXXXXX XXXXXXX
XXXXXKXKXXKXXXKXXXXXXXXX
XXX XXXXXXXX XXXXXXX

X X X X

X0

ds xdo d wsey Jd wnd e Jo 29

de

Yo ge snw zb sidwes

SHO0Y AYVYLINIWIQISY.LIN HOOHEIT0D 40 SFOVIEWISSY TVHIANIN "l I19vL




Metamorphic minerals include muscovite, albite, chlorite,
epidote/clinozoisite (Tables la and 1b), and lawsonite
(lawsonite observed by Coleman, 1972; and Plake, 1989).
Samples 01-JM-06 and 01-JM-06b are from a foliated
serpentinite on the east side of Snowcamp Mountain (Tables
la and 1b). This serpentinite has clastic sedimentary
texture (Figure 14). Serpentine was observed optically in
thin section and confirmed via X-Ray diffraction at Union
College (Appendix I). Relict detrital grains include
clinopyroxene, chromian spinel and rock fragments.
Metamorphic minerals in this sedimentary serpentinite
include serpentine, and possibly epidote/clinozoisite,

chlorite and pumpellyite.

Meta-igneous Rocks

The petrography of the Colebrooke meta-igneous samples
in this study is summarized in Tables 2a and 2b. Figure 18
shows the locations of the meta-igneous samples. All of
the Colebrooke meta-igneous samples are almost completely
recrystallized to metamorphic minerals, although relict
igneous textures are evident in many samples (Figure 19).
All but one sample contains relict clinopyroxene and albite

pseudomorphs after plagioclase. Some samples have relict
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Figure 18. Regional map from Roure and Blanchet (1983), Blake et al. (1982, 1985a),
and G. Harper and M. Giaramita (unpublished mapping), showing the locations of
Colebrooke Schist meta-igneous rock samples. Mineral Hill and Saddle Mountain
greenstone blocks are blocks in the serpentinite melange underlying the Colebrooke
Schist.
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Figure 19. Photomicrographs, under crossed nicols, showing relict igneous textures.
Sample JIM-68 (A) is typical of Colebrooke metabasalts. Subophitic texture and relict
clinopyroxene (cpx), plagioclase (pl) altered to albite and relict spinel (sp) are visible.

SM-13c (B) has trachytic texture, evident by aligned plagioclase (pl) grains.
chl - chlorite
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chromian spinel, and several contain olivine pseudomorphs,
identified by their euhedral shape. Most of the samples
are sparsely porphyritic (less than 5% phenocrysts), with
phenocrysts of clinopyroxene (relict), plagioclase
(pseudomorphs) and olivine (pseudomorphs). The groundmass
generally varies from subophitic to intersertal, with some
samples having spherulitic or variolitic groundmass as well
(Figure 20). One sample (JM-27) contains relict diabasic
texture. Sample JM-200 is a metarhyolite dike (Figure 21)
within the metatonalite unit on Snowcamp Mountain (Figure
16). JM-200 contains phenocrysts of quartz; other relict
igneous minerals, if any, in the groundmass are too small
to be identified.

The metamorphic mineral assemblage observed in these
meta-igneous rocks includes actinolite + epidote + albite +
chlorite + pumpellyite + crossite (crossite observed by
Coleman, 1972). In all meta-igneous samples, plagioclase,
if present, has been replaced by albite. Additional common
metamorphic minerals include epidote/clinozoisite,
titanite, chlorite, quartz and calcite.

The Mineral Hill and Saddle Mountain greenstone blocks
are blocks in the serpentinite mélange underlying the Snow

Camp terrane (Figure 18 and Tables 2a and 2b). The mineral
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Figure 20. Photomicrograph, under plane polarized light, of sample JM-66a showing
spherulitic texture.
pl - plagioclase (pl), chl - chlorite
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Figure 21. Outcrop of metatonalite block with metarhyolite sample JM-200 in place.
Arrow points to JM-200 (green).
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assemblages and textures in the Mineral Hill and Saddle
Mountain blocks are the same as the Colebrooke blocks,

except they do not contain diabase units.

Other Rock Types
The Colebrooke Schist also contains minor blocks of
talc schist and serpentinite. These rock types are

summarized in Tables 3a and 3b.
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TABLE 3b. MINERAL ASSEMBLAGE OF COLEBROOKE—OTHER TYPES OF ROCKS

Sample tac ep ¢z act chl hem sp ox sep
01-JM-20 X X X
01-JM-35a X X X X
01-JM-37 X X X X X
SM-88* X X X
SM-91* X
SM-35-98* - X X X
CB-167 X

* Samples from Harper (unpublished data)

1 Samples from T. Ashcroft (unpublished data)

ep-epidote, cz-clinozoisite, act-actinolite, chl-chiorite, gz-quartz,
hem-hematite, sp-spinel, ox-oxides, sep-serpentine
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Geochemistry

Whole rock analyses of Colebrooke meta-igneous blocks
include fourteen metabasalts, one metadiabase and one
metarhyolite from this study, nine metabasalts and one
meta-quartz diorite from Plake (1989) and ten metabasalts
from Coleman (1972). Tables 4a and 4b list major element
data and Tables 5a and 5b list trace and rare earth element
data for Colebrooke meta-igneous blocks from this study.
Figure 22 is a regional map showing the locations of the

meta-igneous samples analyzed.

Sample Preparation Procedures

Samples of at least 10 cm in diameter were collected
in the field. Care was taken to collect samples with
fresh, nonweathered surfaces. Additional weathered
surfaces were cut off in the laboratory with masonry saws.
After cutting off weathered surfaces, a lap wheel was used
to grind off saw marks. The sample was then cleaned to
remove the grit residue. Then the sample was crushed with
a jaw crusher into ~1 cm chips. The jaw crusher was
thoroughly cleaned between each sample. The chips were

then sorted to eliminate remaining weathered surfaces,
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Table 5a. TRACE (ppm) ELEMENT ANALYSES OF COLEBROOKE SCHIST GREENSTONES

Sample JM 27 JM 29 JM 66A JM 67 JM 68 JM69B JM70D UM 200

Magma MORB MORB MORB MORB MORB MORB MORB BON#

type

Ba 35 68 67 28 90 124 68 1
Rb 1.2 0.2 11 0.7 1.9 31.9 31 02
Sr 139 96 166 77 129 325 69 23
Y 30.76 37.32 37.10 28.28 39.79 70.94 38.57 19.43
Zr 76 90 114 49 104 128 89 76
Nb 1.80 238 7.39 1.19 263 3.62 2.54 0.77
Th 0.17 0.16 0.59 0.11 017 0.26 021 0.85
Ni 54 67 70 71 36 4 26 7.00
\Y 316 350 268 287 367 458 350 42.00
Cr 288 225 " 305 364 97 127 36 0.00
Hf" 218 2.57 293 1.54 3.01 3.77 2.70 237
Sc 424 449 386 39.6 444 48.5 42.8 87
Ta 0.13 0.18 0.51 0.09 0.20 0.27 0.19 0.06
La 276 3.62 9.46 214 3.67 7.73 3.83 3.35
Ce 8.16 9.90 18.51 577 10.76 17.09 10.71 8.49
Pr 1.36 164 279 0.99 1.77 3H 1.77 1.29
Nd 7.84 9.25 13.99 5.82 9.94 19.05 10.01 6.35
Sm 3N 3.62 4.57 245 4.02 7.53 3.95 210
Eu 1.13 1.36 1.97 097 1.58 274 1.37 0.52
Gd 423 4.96 5.61 3.53 533 10.37 519 237
Tb 0.83 0.95 1.02 0.71 1.06 1.89 1.00 0.48
Dy 5.45 6.26 6.54 4.78 6.99 12.19 6.89 3.25
Ho 1.17 1.36 1.35 1.06 1.50 249 147 0.71
Er 3.24 3.75 3.69 297 412 6.83 4.05 2.08
Tm 0.47 0.54 0.51 042 0.60 0.97 0.60 0.32
Yb 291 3.35 3.13 268 373 5.88 3.73 2.16
Lu 0.45 0.52 0.47 0.42 0.57 0.89 0.58 0.37

*Magma type determined using immobile trace element discrimination diagrams. MORB = mid-ocean
ridge basalt, IAT = island-arc tholeiite, IAT-MORB = transitional between IAT and MORB,
BON = boninitic

TAnalysis by ICP-MS at Washington State University

#Source magma type
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Table 5b. TRACE (ppm) ELEMENT ANALYSES OF GREENSTONES FROM THE
SERPENTINITE MELANGE BETWEEN THE COLEBROOKE SCHIST

AND SNOW CAMP TERRANE
Sample SM-10B SM-10C SM-10D SM110 SM116 SM-13A SM-13B  SM-13C
Magma IAT IAT- 1AT- MORB IAT- IAT- AT IAT-
type’ MORB  MORB MORB  MORB MORB
Ba 266 151 105 72 36 89 136 136
Rb 1 1 0 0.5 0.3 1 6 0
Sr 293 93 117 131 100 1 6 0
Y 24 31 36 2217 17.80 30 23 23
zr 66 84 110 60 36 78 63 70
Nb 1.9 25 33 1.37 1.03 2.1 1.8 2.0
Th 0.59 0.37 0.29 0.66 0.37 0.59 0.51 0.50
Ni 20 12 16 33 36 30 22 14
\% 434 354 366 286 199 312 375 327
cr 28 11 15 60 47 58 12 6
Hft 2.00 2.40 2.89 1.93 117 217 1.90 1.95
Sc 46 27 33 344 354 36 31 28
Ta 0.10 0.14 0.20 0.09 0.07 0.13 0.11 0.12
La 5.40 403 3.61 5.41 3.48 5.03 367 2.60
Ce 12.03 1.77 10.75 10.17 7.59 12.67 9.55 7.11
Pr 1.83 1.99 1.84 1.75 1.19 2.06 1.61 1.31
Nd 9.02 10.35 9.95 8.95 6.07 10.37 8.06 7.01
Sm 277 3.34 3.49 3.00 2.01 325 264 243
Eu 1.00 1.05 1.22 0.99 0.68 1.01 0.90 0.76
Gd 3.47 429 474 363 253 412 3.54 3.12
Tb 0.61 0.77 0.86 0.64 0.46 0.70 0.62 0.57
Dy 397 5.04 5.74 3.98 3.00 457 400 378
Ho 0.84 1.08 1.21 0.83 0.65 0.99 0.86 0.80
Er 253 3.25 361 224 1.83 2.89 258 2.33
Tm 0.40 0.51 0.57 0.31 0.25 0.45 0.41 0.37
Yb 2.50 3.11 3.54 1.88 157 276 2.47 2.26
Lu 0.37 0.44 0.50 0.29 0.24 0.41 0.38 0.32

*Magma type determined using immobile trace element discrimination diagrams. MORB = mid-
ocean ridge basalt, IAT = island-arc tholeiite, IAT-MORB = transitional between IAT and
MORB

tAnalysis by ICP-MS at Washington State University .

#Source magma type
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Figure 22. Regional map from Roure and Blanchet (1983), Blake et al. (1982, 1985a),
and G. Harper and M. Giaramita (unpublished mapping), showing the locations of
analysed Colebrooke Schist meta-igneous rock samples. Mineral Hill and Saddle
Mountain greenstone blocks are blocks in the serpentinite melange underlying the
Colebrooke Schist.
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veins, jaw crusher marks or porphyroclasts. Over 600 g of
each sample were then sent to the Washington State
University GeoAnalytical Laboratory for crushing and

analysis.

Analytical Methods

Major and trace elements of sixteen blocks in the
Colebrooke Schist were analyzed at the Washington State
University GeoAnalytical Laboratory. Abundances of the
oxides SiO2, TiO2, Al203, FeO (total), MnO, MgO, CaO, Na20,
K20, P20s5 were measured using x-ray fluorescence. All major
and trace element data are listed in Tables 4a and 4b. To
maintain precision in the XRF analysis, the WSU
GeoAnalytical Laboratory utilizes two beads as internal
standards (Johnson et al., 1999). These standard beads are
run after every 28 unknowns. To maintain accuracy, WSU
GeoAnalytical Laboratory continuously compares their
results to a suite of standard samples from different
laboratories (Johnson et al., 1999).

The Colebrooke samples were also analyzed at the
Washington State University GeoAnalytical Laboratory for
abundances of the elements Ba, Rb, Sr, Y, Zr, Nb, Th, Ni,

v, Cr, Hf, Sc, Ta, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho,
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Er, Tm, Yb, Lu by inductively coupled plasma mass
spectrometry (ICP-MS). Trace and rare earth element data
are listed in Tables 5a and 5b. The precision of ICP-MS
analysis at WSU GeoAnalytical Laporatory is maintained by
preparation of an internal standard 24 separate times,
analyzed in 12 separate runs (Knaack et al., 1994). For
accuracy, the scatter of the standards is calculated from a
best-fit calibration line of all the standards (Knaack et
al., 1994).

Major and trace element data from Plake (1989) were
also obtained by XRF at Washington State University.
Major element data from Coleman (1972) was analyzed by
rapid rock analysis at the United States Geological Survey,
and trace element data from Coleman (1972) are semi-

guantitative.

Magmatic Affinities of Colebrooke Meta-igneous Blocks
Three discrimination diagrams are used to determine
magmatic affinities of the 36 Colebrooke metavolcanic
blocks. These magmatic affinities are summarized in Table
6. To minimize the effects of hydrothermal alteration,
only diagrams utilizing generally immobile elements are

considered.
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Colebrooke\blocks consist of various magma types.
Figure 23 is a mid-ocean ridge basalt-normalized spider
diagram showing a representative suite of blocks from the
Colebrooke Schist and the underlying serpentinite mélange.
Quosatana Butte samples plot entirely in the mid-ocean
ridge basalt (MORB) field on both the TifV (Figure 24) and
Cr-Y (Figure 25a) discriminant diagrams. Copper Canyon and
Skookumhouse Butte samples also consistently plot as MORB
on both the Ti-V and Cr-Y diagrams. The smaller, unnamed
Colebrooke blocks from this study, and those of Plake
(1989) and Coleman (1972) also all plot in the MORB field
on the Ti-V and Cr-Y diagrams. Mineral Hill samples plot
in the island arc tholeiite (IAT) fields in the Ti-V and
Cr-~Y discriminant diagrams. One Mineral Hill sample plots
MORB on the Cr-Y diagram and plots on the border of IAT and
MORB on the Ti-V diagram, so it is transitional IAT/MORB.
One Saddle Mountain sample is IAT in both diagrams, and the
remaining two are transitional IAT/MORB since they plot as
IAT on one diagram and as MORB on the other.

The Th/Yb versus Ta/Yb discriminant diagram (Figure
26) is useful for determining mantle source, since
fractionation has little effect on these ratios (Pearce,

1982). For samples having arc affinities, the mantle
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Figure 23: Representative

samples of meta-igneous
blocks from the Colebrooke
Schist and the underlying
serpentinite melange.
Normalizing values are from
Sun and McDonough (1989).
MORB = mid-ocean ridge
basalt

65



650 p————1—
600
550
500
450
400
350
300
250
200
150
100

Fe-Ti
|AT 20 basa Its

2
T
W

lIIII Ill IIII lIIIII llllllllllllll IIIIlllI

Field

of 1 00_§
BABB 3
tholeiitic g " N
fractionation —
trends ]

for basalts wre 5

1 L I L [ 1 1 I L L L 1

Legend
Quosatana Butte
Skookumhouse Butte
Copper Canyon
Mineral Hill
East of Saddle Mountain
Snowcamp Mountain
Plake Miscellaneous
Coleman Miscellaneous

VOO A e oOoR)»>

10 15
Ti/1000

20

N
(4|

Figure 24: Ti versus V
discrimination diagram (Shervais,
1982) including all Colebrooke
basalts. CRO (from Snow Camp
terrane in Snowcamp Mountain area)
and JO fields from Harper (Harper,
unpublished data; and Harper
2003a,2003b; respectively). Fe-Ti
basalt field from Sinton et al.
(1983). CRO-Coast Range ophiolite,
JO-Josephine ophiolite, BABB-backarc
basin basalt, IAT-island arc
tholeiite, MORB-mid-ocean ridge
basalt, WPB-within plate basalt.

66



>

Reference diagram

boninites

1000 \

Cr _

100 ¥

10

(&)

[ ODP Hole 786

I‘ ‘ “
: \V[][iglzi' ES Fe-Ti

IAT s !

Crystallization vectors
A MORB
B IAT
C High-Ca boninites
D Low-Ca boninites

* MORB

basalts

.4 | D>
s,
L 2 &

.Q’B‘

' C).,-FeJTbasah

' "
- BABB

VOOOA®®G®R»

Legend
Quosatana Butte
Skookumhouse Butte
Copper Canyon
Mineral Hill
East of Saddle Mountain
Snowcamp Mountain
JM-200 (Metarhyolite)
Plake Miscellaneous
Coleman Miscellaneous

Figure 25a: Cr versus Y
discrimination diagram of
Pearce et al. (1984).
Reference diagram in Metzger
et al. (2002): field of BABB
from Pearce et al. (1984 and
references therein), Hawkins
and Melchoir (1985) and
Hawkins et al. (1990); field
for boninites from ODP Hole
786, Izu-bonin forearc, from
Murton et al. (1992). BABB-
backarc basin basalt, IAT-
island arc tholeiite, MORB-
mid-ocean ridge basalt.
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Figure 25b: Cr
versus Y
discrimination
diagram from Pearce
et al. (1984).
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(purple) are in
Metzger et al.
(2002), from Harper
(1988), Coulton et
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Figure 25c: Cr
versus Y
discrimination
diagram from Pearce
et al. (1984).

Fields for CRO (blue;
from Snow Camp
terrane in Snowcamp
Mountain area) are in
Metzger et al. (2002)
from Harper
(unpublished data)
and Kosanke (2000).
IAT-island arc
tholeiite, MORB-mid-
ocean ridge basalt.
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source prior to addition of a subduction component can be
inferred by projecting vertically downward to the
intersection with the mantle array. Ta/Yb ratios for all
Colebrooke blocks indicate an N-MORB mantle source, except
for one Copper Canyon sample which is an E-MORB. The
Mineral Hill and Saddle Mountain blocks, and one unnamed
block, also have a subduction component, denoted by
elevated Th/Yb ratios relative to Ta/Yb.

Any MORB having > 2 wt.% (~12000 ppm) TiO2 and > 12
wt.$% FeO' are called Fe-Ti basalt (Sinton et al., 1983).
Fe-Ti basalts form by extreme fractionation of MORB (Sinton
et al., 1983). All Quosatana Butte samples and six of the
undifferentiated Colebrooke samples are Fe-Ti MORB. This
is significant in that Fe-Ti MOR basalts are rare at mid-
ocean ridges except near propagating rift tips (Sinton et
al., 1983).

The Cr-Y diagram can also be used to single out rocks
having boninitic affinity, because of their very low Y
values. Two unnamed Colebrooke blocks from Plake (1989)
fall along boninitic fractionation trends (Figure 25a).
One of these (113b) is the meta-quartz diorite of Plake

(1989). In addition, the Colebrooke metarhyolite (JM-200)
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from this study plots along a boninite trend. Since the
Cr-Y diagram is better suited for basalts (Pearce, 1982),
Figure 27 shows that this metarhyolite ocean ridge granite
has the extreme depletion of high-field elements
characteristic of boninitic (e.g. dashed line in Figure 27)

felsic rocks.

Magmatic Affinities of Josephine and Coast Range Ophiolites

Fields for the Josephine ophiolite (Harper, 2003a;
2003b) pillow lavas and sheeted dikes of the Snow Camp
terrane (Coast Range ophiolite; Harper, unpublished data)
in the Snowcamp Mountain area are included in the three
discrimination diagrams (Figures 24-26) for comparison with
the Colebrooke meta-igneous blocks.

Most of the Josephine ophiolite samples plot as MORB
on the Ti-V diagram, although some samples plot in the IAT
field and along the IAT/MORB boundary (Figure 24). On the
Cr-Y diagram (Figure 25b) the Josephine ophiolite samples
plot in the fields for MORB, IAT and transitional IAT/MORB.
Most of the Josephine ophiolite shows a subduction
component on the Th/Yb versus Ta/Yb diagram, with deviation
from a mantle enriched relative to N-MORB mantle (Figure

26). In addition, many of the Josephine ophiolite samples
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Figure 27. Ocean Ridge Granite normalized spider diagram with modern reference suite
and Colebrooke metarhyolite sample JM-200 (yellow circle), modified from Pearce et
al. (1984). Low-Ca boninitic rhyolite from Izu-Bonin forearc (sample 61R-4, hole 786B)
(Murton et al. 1992), E-ORG (enriched ocean ridge granite) from Mid-Atlantic Ridge,
45N (Pearce et al. and references therein, 1984), backarc basin dacite from central Lau
Srpeading Center, Lau Basin (ODP Leg 135) (Hawkins, 1995), SSZ (suprasubduction
zone) ophiolite granite from Troodos Massif (Pearce et al. and references therein, 1984).
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plot in the Fe-Ti MORB field on the Ti-V diagram (Figure
24; Harper, 2003a). The Josephine ophiolite also contains
boninites (Harper, 2003b), as evident on the Cr-Y diagram
(Figures 25a, 25b; Harper, 2004).

Samples from the Coast Range ophiolite remnant in the
Snow Camp terrane near Snowcamp Mountain plot mostly in the
IAT field on the Ti-V discriminant diagram, with some
plotting along the IAT/MORB boundary and in the MORB field
(Figure 24). 1In the Cr-Y diagram (Figure 25c), most of the
Snow Camp terrane ophiolite samples plot as IAT, with some
plotting along the IAT/MORB boundary and in the MORB field.
On the Th/Yb versus Ta/Yb diagram (Figure 26), the mantle
source for the Coast Range ophiolite samples is similar to
N-MORB mantle, with most of the Coast Range ophiolite
samples having a subduction component. The Snow Camp
terrane ophiolite contains some boninitic rocks, which are
apparent on the Cr-Y diagram (Figures 25a, 25c). Thus the
Josephine ophiolite and Snow Camp terranes have broadly
similar geochemistry, although the latter shows a more

depleted mantle source and lacks Fe-Ti basalt.
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Comparison of Colebrooke Meta-igneous Blocks to the
Josephine and Coast Range Ophiolites

On the Ti-V and Th/Yb versus Ta/Yb diagrams (Figures
24 and 26) the Colebrooke Schist blocks, Josephine
ophiolite and Snow Camp terrane ophiolite have affinities
that range from MORB to IAT and plot within the field of
back-arc basin basalts. On the Ti-V diagram (Figure 24)
the Colebrooke Schist samples overlap much of the field
defined by samples from the Josephine ophiolite, and there
is some overlap of the IAT- and transitional-IAT/MORB-
affinity Colebrooke Schist blocks with the Snow Camp
terrane ophiolite samples. On the Cr-Y diagram (Figures
25a-c), the Colebrooke Schist blocks overlap fields defined
by samples from the Josephine ophiolite and Snow Camp
terrane ophiolite. The range of inferred mantle sources
prior to addition of any subduction component for the
Colebrooke Schist blocks is similar to that of modern N-
MORB, although one is E-MORB. The Josephine ophiolite
samples have similar sources, but some are similar to E-
MORB mantle. The Snow Camp terrane ophiolite, like most of
the Colebrooke Schist blocks, only has mantle sources
similar to that for N-MORB. As evident from the Th/Yb

versus Ta/Yb diagram (Figure 26), the Colebrooke Schist,
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Josephine ophiolite and Snow Camp terrane remnant of the
Coast Range ophiolite all contain samples having a
subduction component.

Both the Colebrooke Schist meta-igneous blocks and the
Josephine ophiolite contain unusual highly fractionated Fe-
Ti basalts having MORB affinities. Such rocks are
relatively rare at modern spreading centers, occurring
mostly at propagating rift tips [Sinton et al, 1983; Pearce
et al., 1994]. 1In addition, the Colebrooke Schist blocks,
Josephine ophiolite and Coast Range ophiolite all have
rocks of boninitic magmatic affinities (Figure 25a-c;
Harper, 2003b; Harper, unpublished data; Shervais, 1990
[Coast Range ophiolite]; Kosanke, 2000 (thesis); Kosanke et
al., 2004), although the boninitic Colebrooke Schist blocks
are metaplutonic rather than metavolcanic and are much more
fractionated. The Colebrooke meta-igneous blocks show
geochemical similarities to both the Josephine ophiolite
and the structurally overlying ophiolite of the Snow Camp
terrane, which has been correlated with the Coast Range
ophiclite of California (Blake et al., 1985a). This
ophiolite, however, may be an outlier of the Josephine
ophiolite (Harper, unpublished data; Schoonmaker and

Harper, in press), and the Coast Range ophiolite and
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Josephine ophiolite may have originally formed a single

ophiolite.
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Structure of the Snowcamp Mountain Area

Summary of Structure

Plake (1989) recorded Di and D2 features (Figure 28)
and observed that orientations of D2 features vary with
geographic location. This is shown in Figure 29 from Plake
(1989), whose study area is north of my study area. Plake
(1989) suggests a model involving rigid block rotations
about a vertical axis within the Colebrooke Schist to
explain both the geographic variance in orientation of D>
event structures and the subhorizontal girdle defined by F2
and L» (Figure 29).

The Colebrooke Schist is cut by late, N-S trending
normal faults first observed by Coleman (1972). 1In
addition, Plake (1989) identifies late, NW-SE trending
brittle shear zones containing sheared serpentinite.
Slickensides showing a strike-slip sense have been observed
on two of the late, NE-striking faults (G. Harper, personal
communication).

Metasedimentary rocks of the Colebrooke Schist in my
study area in the vicinity of Snowcamp Mountain are well
foliated (Figure 7), and some pillow structures were

observed to be flattened and foliated in several locations
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Figure 28: Equal-area stereonet projections of S;, L;, Sy,
F, axial planes, L, crenulation lineations and F, fold axes.
Figure from Plake (figure 33, 1989).

FA = fold axes, AP = axial planes
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Figure 29. Stereonet projections of F2 fold axes. Plots are divided geographically.
Figure from Plake (figure 34b, 1989). Red box indicates overlap with the field area from
this study.
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(Figure 10). This foliation and flattening of pillow
structures are likely to be the same Si1 foliation described
by Plake (1989). S2 crenulation cleavage and F2 fold axes
as described by Plake (1989) were observed but not measured
in my study. The Colebrooke Schist in this area is
extensively veined with quartz and albite, and it is
commonly sheared with polished slickensides on the shear
surfaces. This shearing of the foliation indicates post-

metamorphic faulting took place.

Field Data

Foliations, equivalent to Si from Plake (1989),
measured throughout the field area generally vary in strike
from northwest to northeast and dip to the east (Figures 30
and 31). Serpentinite foliations were measured throughout
the Snowcamp Mountain area. Two measurements were made on
coherent serpentinite (JM-06 and JM-06b) of possibly
detrital origin (Figure 14). Foliation in one of these
coherent serpentinites is parallel to that in pelitic
phyllite in an exposure on the northwest side of Snowcamp
Mountain (Figure 13), and were thus most likely formed in
the same deformation event (Di1). Other measurements of

serpentinite foliation were measured on incoherent sheared
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Equal area projection, lower hemisphere
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Snowcamp Mountain area,
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of the poles to foliation,
minus incoherent serpentinite.
Both stereonets generated with
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e
Value for the Coast Range fault { o /
was measured atop Snowcamp X A
Mountain. Red shaded area \\\\ ,//
represents area between “HHHE_TaHf///
measured Coast Range fault E3
Contour interval = 2
value and value calculated from M ofslen o o URBT)
the mapped fault trace 3.5 km 000, 200, 400, 600
i 8.00, 10.00,

north of Snowcamp Mountain. Contours at:

_ min, dens.=0.00
P = planar max. dens.=11.08 (at 340/ 72)

82



serpentinite; this foliation is probably younger than the S:
foliations of the Di event, although it might have formed
during the late stages of the D1 event since it has similar
orientation to foliations in the metasedimentary rock.

As evident in Figure 31A, poles to foliation define a
broad girdle consistent with folding about a moderately
plunging east-northeast trending axis. This distribution
of poles to S: foliation is broadly similar to those
measured by Plake (1989) to the north of the study area
(Figure 29).

The most dense cluster of foliation measurements
strikes northeast and dips southeast (Figure 31B), although
there is also a less dense concentration of foliations
striking northwest and dipping northeast (Figure 31A). The
northeast striking foliations more closely parallel the
Coast Range fault as measured on the northeast side of
Snowcamp Mountain (N16E, 45°SE; locality of Figure 13). The
northwest striking foliations more closely parallel the
strike of the Coast Range fault calculated from the map
pattern 3.5 km north of Snowcamp Mountain (N35W, 14°NE), but
this cluster of foliations dips more steeply. In general,
foliations near Snowcamp Mountain strike northeast and

foliations 3.5 km north of Snowcamp are divided
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approximately equally between northeast- and northwest-
striking.

When limited to measurements within 200 m to the Coast
Range fault, the most dense concentration of foliation
measurements strikes approximately north and dips east
(Figure 32). Overall, however, there is no significant
difference in orientation of foliations near or away from
the fault; that is, poles to foliations define a broad
girdle of similar orientation.

For ductile shear zones in general, foliation rotates
toward parallelism with the shear zone boundary with
increasing strain (Figure 33). Because of the wide
variation in foliation orientation, as well as the
similarity of the orientation of foliations both close to
and farther from the Coast Range fault, it is unclear
whether this geometry applies to the study area. If it
once did, it has been obscured by later folding that is
evident from the girdle defined by poles to foliation
(Figure 31).

Lineation is a stretching lineation. It is measured
on oriented hand samples, and is evident by the stretching
or lining-up of resistant grains. The orientation of

stretching lineations (equivalent to Li of Plake, 1989) is
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Figure 33. Illustrations from Davis and Reynolds (figures 9.37 and 9.38, 1996) showing
the orientation of foliation in a shear zone. (A) is a cross section of a shear zone and (B)
is a block diagram showing the surface trace of foliation as well as a cross section.
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scattered with no clear average value, although most plunge
gently to moderately southeast or northwest (Figure 34).
These orientations are similar to those found by Plake
(1989) north of the study area (Figure 29), who ascribed
the variation to folding during D2 and D3 events. Figure 35
is an equal-area stereonet plot showing foliation and
lineation of the oriented samples having clear shear sense
indicators. There does not appear to be a cluster of

lineations, with respect to foliation orientations.
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Figure 34. Stereonet projection of all stretching lineation measurements in the
Snowcamp Mountain area. Stereonet generated with the program Stereonett, written by
Johannes Duyster of Ruhr-Universitat-Bochum (2000). Value for the Coast Range fault
was measured atop Snowcamp Mountain. Red shaded area represents area between

measured Coast Range fault value and value calculated from the mapped fault trace 3.5
km north of Snowcamp Mountain.
L = linear, P = planar
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Equal area projection, lower hemisphere

Lineation
Num total: 16
an=1(L)
an=1()

e n=2(L)
an=12 (1)

Legend

Coast Range
fault (P,bold red line)

Foliation (P)
(greenstone)
Lineation (L)
(greenstone)

Foliation (P)

(incoherent

serpentinite)

a Lineation (L)
(incoherent
serpentinite)

. Foliation (P)

(JM-06, JM-06b)

Lineation (L)
© (JM-06, JM-06b)

Foliation (P)
(metasedimentary)

Figure 35. Stereonet projection of foliation and lineation measurements in the
Snowcamp Mountain area. Only samples with clear shear sense indicators are included.
Stereonet generated with the program Stereonett, written by Johannes Duyster of Ruhr-
Universitat-Bochum (2000). Value for the Coast Range fault (bold red) was measured
atop Snowcamp Mountain. Red shaded area represents area between measured Coast
Range fault value and value calculated from the mapped fault trace 3.5 km north of
Snowcamp Mountain.

L = linear, P = planar
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Discussion

Geochemistry
The occurrence of the meta-igneous rocks as blocks
suggests they represent either clasts in olistostromes or
tectonic blocks in the Colebrooke Schist of dismembered
ocean basement. Distinguishing between these hypotheses is
hampered by the lack of exposure of contacts with the

surrounding metasedimentary rocks due to heavy vegetation.

Summary of Geochemical Similarities

The largest blocks—Quosatana Butte, Skookumhouse Butte
and Copper Canyon—show MORB affinities on all discriminant
diagrams; the Th/Yb vs. Ta/Yb diagram shows they are N-MORB
except for one E-MORB. Most of the smaller blocks also
have N-MORB affinities. Many of these samples are unusual
Fe-Ti MORB. Three other blocks have boninitic affinities,
one of which is the latter is JM-200, a metarhyolite dike
in a tonalite block from Snowcamp Peak, and the other two
are meta-quartz diorites analyzed by Plake (1989).
However, samples from the large Mineral Hill block have
transitional IAT/MORB affinities (Figures 24 and 25a). The

Colebrooke Schist meta-igneous blocks and Josephine
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ophiolite both cover a wide range of magmatic affinities,
from Fe-Ti MORB to boninite.

In addition to geochemical similarities to the
Josephine ophiolite, a U-Pb zircon age of a Colebrooke
Schist meta-quartz diorite sampled by Plake (1989) and
having boninitic affinities is 162 + 1 Ma (Walker et al.,
1987). This is similar to the 162 + 1 and 164 + 1 Ma
zircon ages for the Josephine Ophiolite (Wyld and Wright,
1988; Harper et al., 1994). The Snowcamp remnant of the
Coast Range ophiolite has a U-Pb zircon age of 169 + 1 Ma
(Saleeby, 1984), but somewhat younger ages are known from
elsewhere in the Snow Camp terrane (Kosanke, 2000) and from
the Coast Range ophiolite in California (e.g., Dickinson et
al., 1996; Shervais et al., 2004).

If the Colebrooke Schist blocks are sedimentary, the
Colebrooke Schist could be an ocean basin or trench deposit
and the source of the meta-igneous blocks could be erosion
of either the Josephine ophiolite or Coast Range ophiolite.
Plake (1989) interprets the meta-quartz diorite as a
sedimentary block because clastic textures were visible in
one good outcrop (Plake, 1989). Brown and Blake (1987)
interpret the meta-quartz diorite as a pre-metamorphic

intrusion. If this latter interpretation is correct then
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the rest of the blocks, if sedimentary, are unlikely to
have been derived from the Josephine ophiolite in that the
minimum age of the Colebrooke Schist would be 162 Ma and
thus probably older than the Josephine ophiolite. Also,
Saleeby and Harper (1993) report ~170 Ma ages for an
intrusion into the Condrey Mountain Schist: if the
Colebrooke Schist indeed correlates with the Condrey
Mountain Schist (Brown and Blake, 1987), then the protolith
for the Colebrooke Schist is probably at least in part >170
Ma.

The Colebrooke Schist meta-igneous blocks could have
been derived from the basement of the metasedimentary
rocks, having been scraped off and incorporated into a
mélange. This is consistent with the lack of any arc
geochemical signature. For this possibility, there are
several hypotheses.

(1) The similarity in the geochemistry of the
Colebrooke Schist blocks to the Josephine ophiolite might
imply that the Colebrooke Schist metasedimentary rocks and
basement were originally part of the Josephine basin that
was partially subducted. 1In this case, the metasediments
are, at least in part, back-arc sediments and correlative

to the Galice Formation overlying the Josephine ophiolite.
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(2) All the blocks were derived from Colebrooke Schist
basement, but the basement was part of another plate. The
presence of MORB/IAT and BON implies that the basement was
most likely formed in a back-arc basin, or an incipient arc
that was built on true ocean crust. In this case, the
similar geochemistry, including presence of both Fe-Ti MORB
and boninitic rocks, and the ~162 Ma age of the quartz
diorite (Walker et al., 1987) to the Josephine ophiolite
would be coincidental. For this hypothesis, the Colebrooke
Schist metasediments would be back-arc basin and/or trench
deposits.

(3) The Colebrooke Schist greenstones formed at a mid-
ocean ridge on another plate, probably with propagating
rifts as evidenced by the presence of Fe-Ti basalt.
However, in this case, the transitional MORB/IAT Mineral
Hill, Saddle Mountain block and Snowcamp boninitic
metatonalite might have been plucked from the Coast Range
ophiolite/Josephine ophiolite and transported to their
current setting during thrusting or low-angle normal
faulting. This is consistent with their occurrence within
serpentinite mélange near the fault with the overlying Snow
Camp terrane, with the exception of the meta-quartz diorite

of Plake (1989). The presence of this boninitic quartz
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diorite of Plake (1989) suggests that these particular
blocks are olistostromal. Testing of these models is
dependent on constraining the depositional age of the

Colebrooke Schist metasedimentary rocks.

Structure

The variation in foliation and lineation measurements
of the Colebrooke Schist in the Snowcamp Mountain area is
likely the result of post-metamorphic folding during Dz and
D; events of Plake (1989). Foliation and lineation formed
during regional metamorphism generally have uniform
orientations originally (Davis and Reynolds, 1996), and
thus variation in these orientations most likely occurred
post-metamorphism. Another possibility is that drag
folding along the late northeast-striking faults affected
the strike of the foliation, since some subhorizontal
slickensides have been seen along these faults (G. Harper,
personal communication). However, drag folding is unlikely
to have caused D2 folding or crenulation lineation, as
observed by Plake (1989), to form, but it could be related
to D3. It is also possible that the extensive shearing and
veining throughout the Colebrooke Schist changed the

orientation of foliation and lineation.
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Stereonet projections of Plake (1989) also show
variation in foliation and lineation (Figure 28). One
apparent difference in the stereonet projections from the
Snowcamp area and in Plake’s (1989) area is that foliation
in the Snow Camp Mountain area is mostly east dipping,
whereas foliation in Plake (1989) varies in dip from east
to west (Figures 28 and 31). This could be an effect of
proximity to the east dipping Coast Range fault. Plake
(1989) suggests that, since there is less variation in
foliation and lineation orientations when separated into
geographic domains (Figure 29), later rigid block rotation
about vertical axes could explain the wide variations seen
(Figure 28). Lineations in the Snowcamp Mountain area do
appear to have mostly shallow plunges but variable trends,
which is consistent with rotation about a vertical axis

(Figures 28 and 34; Plake, 1989).
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Conclusions

The Colebrooke meta-igneous blocks range in magmatic
affinity from N- and E-MORB to boninitic. Fe-Ti MORB are
also present. The largest three blocks, Quosatana Butte,
Skookumhouse Butte and Copper Canyon, are consistently
MORB. The smaller blocks are mostly MORB, but three are
boninitic. Two of the blocks with the serpentinite mélange
unit between the Colebrooke Schist and Snow Camp ophiolite,
Mineral Hill and Saddle Mountain, have transitional
IAT/MORB affinities. Because of this diversity in magmatic
affinity, the Colebrooke blocks may have a variety of
origins, although all observed magma types can form in a
back-arc basin setting (e.g., Harper, 2003Db).

The Colebrooke blocks may be meta-igneous olistoliths
in a metasedimentary matrix. Some evidence of clastic
texture can be seen in the field and in cut slabs (Figures
11, 12, 14 and 17), although at least some of the texture
is cataclastic in samples such as those in Figures 16 and
17. Similarities in magmatic affinity of the Colebrooke
blocks to the Josephine ophiolite and/or Coast Range
ophiolite suggest that these blocks may be derived from

erosion of either one or both of these ophiolites.

96




Alternatively, the basement of the Colebrooke Schist may
have been part of the Josephine basin or another back-arc
basin. In addition, the diversity of magma types of the
Colebrooke blocks is similar to the diversity of the
Josephine ophiolite, such as the presence of boninitic
rocks and Fe-Ti basalts. Also, the age of one boninitic
Colebrooke blocks—162 + 1 Ma (Walker et al., 1987)-matches
the age of the Josephine ophiolite (Harper et al., 1994).

Since the largest of the blocks (>1 km across)—
Quosatana Butte, Skookumhouse Butte and Copper Canyon—are
MORB, it is possible they originated as ocean basement for
the Colebrooke Schist. The ocean basement could have been
disrupted during subduction and pieces of it incorporated
into the accretionary complex.

In summary, the smaller Colebrooke meta-igneous blocks
are likely clasts in olistostromes and may have been
derived either from the Josephine ophiolite, Coast Range
ophiolite or both. The largest MORB affinity blocks may be
tectonic blocks derived from the ocean basement underlying
the Colebrooke metasediments or from the roof of the thrust
zone (forearc oceanic basement), although Moore et al.
(1995) observed modern submarine landslide blocks that are

as large as 10 km long and 500 m high.
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Foliation and lineation measurements taken on the
Colebrooke Schist in the Snowcamp Mountain area vary widely
in orientation. Poles to foliation define a broad girdle
consistent with folding about a moderately plunging east-
northeast trending axis (Figure 31). Foliations near
Snowcamp Mountain strike mostly northeast, and foliations
3.5 km north of Snowcamp strike between northeast and
northwest. The variation in foliation and lineation in the
Snowcamp area is likely a result of either D3 overprinting
or rigid block rotations about a vertical axis, as

suggested by Plake (1989).
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