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ABSTRACT 

 
 
This study presents a 271-year (1726-1997) subseasonal oxygen and carbon isotopes 

(δ18O and δ13C) records from a coral colony of porites lobata at Rarotonga (21.5°S, 

159.5°W) in the southwest subtropical Pacific. A new method is introduced whereby the 

effects of sea surface temperature (SST) can be separated from those of seawater δ18O 

composition (δ18Osw) on coral δ18O by using the coupled coral Sr/Ca and δ18O. Different 

from the previous methods that treat coral δ18O as the sum of two separate single-variable 

functions (δ18O vs. SST; and δ18O vs. δ18Osw), this method separates the effects of δ18Osw 

from SST by breaking the instantaneous changes of coral δ18O into separate contributions 

by instantaneous SST and δ18Osw changes, respectively. It was found that reconstructed 

δ18Osw contributes significantly to the annual changes of coral δ18O at Rarotonga for the 

period 1726-1997. Changes of δ18Osw account for ~39% of the total coral δ18O variation, 

while changes of SST account for ~61%. The reconstructed δ18Osw also shows a positive 

linear correlation with a satellite-based estimated salinity for the period 1980-1997 

(r=0.72). This linear correlation between reconstructed δ18Osw and salinity makes it 

possible to use the reconstructed δ18Osw to estimate the past interannual and decadal 

salinity changes in this region.  

Applying a similar method to coral δ13C, the effects of kinetic and metabolic activity on 

coral δ13C were also quantitatively estimated. The results show that the variation of coral 

δ13C appears to be mainly caused by variation of metabolic activity rather than that of 

kinetic activity in both tropical and subtropical regions. For the tropical regions, changes 

of metabolic activity account for ~90% of the total δ13C variation in corals, while for 
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subtropical regions, metabolic activity still accounts for approximately 70-75% of the 

total variation of coral δ13C despite a larger range of SST changes in the subtropics. One 

implication of this study is that kinetic effects may be negligible especially in the tropical 

regions and thus future work should be concentrated on the processes of metabolic 

fractionation in order to gain a better understanding of the relationships between δ13C and 

various climatic variables and to utilize coral δ13C for reconstructing the paleoclimate 

variations.  

This study also examined the interannual and interdecadal variability in coral δ18O at 

Rarotonga for the period 1726-1997. The results suggest that although Rarotonga is 

located outside of the center of action of ENSO, it is generally sensitive to ENSO 

variability in this region. The decadal-scale variability (~12 yr) was further differentiated 

from the interdecadal-scale variability (~32 yr) for the period 1726-1997 at Rarotonga. 

Based on the analysis of both tropical and subtropical coral data and comparisons with 

the instrumental data (Nino3.4 SST index and PDO index), it was hypothesized that the 

decadal and interdecadal-scale variability might result from separate forcing mechanisms. 

The decadal variability appears to be primarily a response to the tropical Pacific forcings 

while the interdecadal variability is more related to a mid-latitude oscillation. As the 

ocean is simultaneously affected by many climate forcings, multiple forcings may 

contribute to the change of the oceans in differing amounts.  

The reliability of both coral δ18O and δ13C records from Rarotonga was also examined in 

this study. It is revealed that coral δ18O is a good indicator of environmental variables 

such as SST and precipitation while coral δ13C fails to document common characteristics 

of interannual and interdecadal signals at Rarotonga.   
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1.1 Introduction 

The tropical ocean-atmosphere is an active component of the Earth’s climate 

system and it exerts a strong influence on climate variability worldwide (Troup, 1965; 

Bjerknes, 1966, 1972; Rasmusson and Carpenter, 1982; Cane, 1986; Glantz, 1996 to cite 

a few). Over interannual to decadal periods, tropical climate variability has global 

consequences, as seen in extratropical manifestations of El Niño Southern Oscillation 

(ENSO) and the Asian Monsoon. In addition to ENSO events, recently there has been 

considerable interest in documenting climate variations on decadal and longer time 

scales, motivated in part by a need to distinguish natural modes in the ocean-atmosphere 

system from those caused by anthropogenic impacts on global climate. However, because 

high quality instrumental records from low latitudes are generally limited to the past 

several decades and to isolated sites, our current understanding of natural variability in 

tropical climate does not yet provide the necessary baseline data required for detection of 

anthropogenic change. Nor does it provide insight into the potential role of tropical heat 

and moisture pumps as feedbacks on past or future climate change. As a result, the 

development of proxy records of past climate variability in these under-sampled regions 

is highly desirable, as it will enable the instrumental climate record to be extended and 

thus improve our understanding of climate variability over a wide spectrum of timescales. 

 Long-lived hermatypic corals are uniquely suited for high resolution studies of 

sea surface conditions. Corals can live for centuries, extending at rates of millimeters to 

centimeters per year, with most species producing annual growth bands. The high growth 

rate of hermatypic corals enables subannual sampling of skeletal aragonite, with a 

demonstrated resolution on the order of weeks to months. Many studies have shown that 



 3 

chemical tracers within coral skeletal aragonite can accurately record seasonal and 

interannual changes in environmental parameters, such as sea surface temperature (SST), 

salinity, rainfall, etc. (Swart, 1983; McConnaughey, 1989; Cole et al., 1993; Beck et al., 

1992; Linsley et al., 1994; Dunbar et al., 1994; and many others). Among the present 

array of available tracers, oxygen isotopes (δ18O) and Sr/Ca have become mainstays in 

coral-based climate reconstruction. In the past decade, the oxygen isotopic signature in 

coral skeletons has been widely used to reconstruct SST and salinity in the oceans. In 

regions where the oxygen isotopic composition of seawater is relatively constant, coral 

skeletal δ18O may be converted into an estimate of past SST variability (Dunbar et al., 

1994; Wellington and Dunbar, 1995).  Alternatively, in some other regions where there is 

little variation in SST, the skeletal δ18O may be used to estimate changes in seawater 

oxygen isotope composition through time due to variations in the input of isotopically 

light precipitation or river discharge (Cole and Fairbanks, 1990; Cole et al., 1993; Linsley 

et al., 1994). The carbon isotopic composition (δ13C) of coral skeleton is another 

important isotopic signature which has more potential forcing variables than δ18O and its 

interpretation is currently a source of controversy (Land et al., 1975; Fairbanks and 

Dodge, 1979; McConnaughey, 1989a). As opposed to δ18O, coral δ13C is affected by both 

kinetic and metabolic fractionation (McConnaughey, 1989a). Therefore, physiological 

processes, such as photosynthesis (a light driven metabolic reaction), respiration, and 

heterotrophy, can also affect the skeletal carbon isotopic composition in addition to SST 

and δ13C of dissolved inorganic carbon (DIC) in seawater. It is generally believed that as 

the rate of photosynthesis in zooxanthellae increases with increasing solar radiation, the 

carbon pool becomes relatively depleted in 12C relative to 13C, resulting in an increase in 
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skeletal δ13C (Swart, 1983; McConnaughey, 1989). In certain environments coral δ13C 

highly correlates to climatic variables, such as solar radiation or ocean productivity. 

Current interpretations of coral δ13C variability are driven by observed correlations to 

specific processes or conditions, rather than by a thorough understanding of all relevant 

processes. It is clear that only when the processes controlling carbon isotope fractionation 

in the coral skeleton are better understood, can the utility of δ13C be extended. 

During the past 10 years, interest in the use of corals for examining past 

oceanographic variability has rapidly increased, especially at interannual timescales. On 

interannual timescales, the ENSO phenomenon generates much of the variability 

observed in global climate. Therefore, reconstructing past variations of ENSO is essential 

for documenting and understanding the past behavior of the tropical climate system, 

assessing future changes, and also providing a more accurate baseline for current climatic 

models (Cane, 1986; Enfield, 1989; Glantz, 1996). ENSO induces temperature and 

precipitation anomalies throughout the tropical Pacific and Indian Oceans. Past ENSO 

events have been identified using δ18O composition of coral skeletons located in ENSO 

sensitive settings (Druffel et al., 1990; Cole and Fairbanks, 1990; Cole et al., 1993; 

Charles et al., 1997). In many cases the δ18O composition of coral skeletons has been 

shown to be a good indicator of seasonal and interannual changes in SST and/or 

precipitation which are both associated with changes in ENSO (Dunbar and Wellington, 

1981; Swart, 1983; Wellington et al., 1996; and others). Records of this type can be used 

to examine past variations in frequency or pacing of the ENSO system. 

In addition to ENSO events, there is increasing interest in climatic variability that 

occurs on decadal to century time-scales. In the Pacific, a persistent decadal/interdecadal 
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oscillation has been termed the Pacific Decadal Oscillation (PDO) in the North Pacific 

(Mantua et al., 1997; Zhang et al., 1997) and Interdecadal Pacific Oscillation (IPO) over 

the entire Pacific (Power et al., 1999; Salinger et al., in press). Based on instrumental 

data, the PDO and IPO appear to be a robust, recurring pattern of ocean-atmosphere 

climate variability on decadal-scales. Some studies suggest that the decadal-scale 

variability may originate in the subtropics of the North and/or South Pacific Ocean 

through unstable ocean-atmosphere interactions (Ghil and Vautard, 1991; Latif and 

Barnett, 1994; Gu and Philander, 1997), while others argue that tropical ENSO forcing 

plays a key role (Jacobs et al., 1994; Trenberth and Hurrell, 1994; Zhang et al., 1997; 

Garreaud and Battisti, 1999). White et al. (1997) and White and Cayan (1998) examined 

the historical upper ocean temperature record for the period 1900-1990 from 40°S to 

60°N in the Pacific and revealed two dominant sub-ENSO cycles: decadal (9-13 years) 

and interdecadal (18-23 years). They suggested that evolution of decadal signals is 

different from that of interdecadal signals. The evolution of the interdecadal signal 

appears to be dominated by equatorward propagation of SST anomalies from the 

extratropics to tropics, while the decadal signal seems to involve the advection of SST 

anomalies by Rossby waves physics which is also responsible for ENSO frequencies near 

15°-30° latitude in both hemispheres. Lau and Weng (1995) and Mann and Park (1996) 

have also isolated the decadal from the interdecadal variance in near-century long SST 

and Sea Level Pressure (SLP) data.  

In order to evaluate decadal/interdecadal climate variability over time, climate 

records have to be long enough to capture multiple decadal periods. Since corals may 
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grow for several hundred years, they are uniquely suited for providing some information 

related to correct interpretation on decadal/ interdecadal variability.   

  

1.2 Main Problems 

Although it is now recognized that coral δ18O can be used to reconstruct past 

environmental variables such as SST and salinity, and that this tracer has greatly 

improved our understanding of the past behavior of the oceans, there are still some 

important questions regarding the use of corals in reconstructing climate. Some of the 

main problems are outlined as follows: 

(1) Because coral skeletal δ18O reflects a combination of local SST and the δ18O 

of ambient sea water, it is often difficult to clearly distinguish their separate effects based 

on coral δ18O alone. Several studies have attempted to use paired Sr/Ca and δ18O in corals 

to separate the effects of SST and δ18Osw variations since the skeletal Sr/Ca ratio appears 

to be mainly influenced by SST (Smith et al., 1979; Beck et al., 1992). McCulloch et al. 

(1994) made the first attempt to quantitatively separate the effects of SST from those of 

δ18Osw on skeletal δ18O by using paired coral δ18O and Sr/Ca analysis on the same 

samples. Gagan et al. (1998; 2000) used a similar method by which the effects of SST 

(estimated from Sr/Ca) are directly subtracted from the observed skeletal coral δ18O to 

obtain the residual effects of δ18Osw. To do so, these authors first convert the δ18O data 

into units of temperature (Tδ18O) by using an empirical SST-δ18O equation and then 

subtract this from the Sr/Ca-reconstructed SST (TSr/Ca). The residual δ18O is then 

interpreted as reflecting the effects of the seawater δ18O composition. However, the 

empirical equation they used to convert coral δ18O into SST is obtained by linear 
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regression of the δ18O data against SST in their study area. This equation can be used 

only if the other variable that affects δ18O, i.e. δ18Osw is assumed to be a constant. It is 

clear that this assumption is not valid for the regions where the δ18Osw has a significant 

influence on coral δ18O each year. Also it may not be justified to assume that a variable is 

constant while at the same time attempting to reconstruct its variations. To better separate 

the effects of δ18Osw from SST, other methods should be sought.  

(2) The δ13C signal in corals is complicated by the interaction with physiological 

processes that involve strong isotopic fractionation. It is often difficult to decipher the 

different processes in environmental terms. At present, there is not a consensus about the 

relative importance of physiological vs. environmental factors on the variation of coral 

δ13C. Some authors believe that coral δ13C is predominantly influenced by metabolic 

(photosynthesis) fractionation (Muscatine et al., 1989; Grottoli and Wellington, 1999). 

They observe that skeletal δ13C varies seasonally in accordance with light levels and 

decrease with water depth (Fairbanks and Dodge, 1979; Land et al., 1975; Leder et al., 

1991; Shen et al., 1992b). However, some other authors argue that kinetic fractionation 

can be more important than metabolic fractionation and kinetic depletion of 13C can 

sometimes overpower the metabolic 13C increase (McConnaughey, 1989a, b). Observed 

correlations to factors such as insolation and ocean productivity suggest that coral δ13C 

may also provide paleo-environmental information. However, the separate effects of 

different climatic variables have never been quantified. It is clear that only when these 

fundamental questions are solved, can δ13C be possibly used in reconstructing basic 

environmental parameters.  
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 (3) The possible influence of biological processes such as the growth rate on the 

skeletal δ18O and δ13C composition is not clear. Aragonite deposited by scleractinian 

corals is usually depleted in 13C and 18O, relative to equilibrium with ambient seawater 

(McConnaughey, 1989a). The usefulness of corals as recorders of environmental 

variables depends on the assumption that this departure from equilibrium remains 

constant. However, there are several reports of a relationship between skeletal growth 

rate and isotopic values (Land et al., 1975; Allison et al., 1996; Cohen and Hart, 1997). 

Allison et al. (1996) observed that skeletal growth rate and δ18O are inversely related in 

several Porites lutea coral skeleton from Phuket, South Thailand. McConnaughey 

(1989a) also reported an inverse relationship between linear extension and δ13C and δ18O 

in Pavona clavus heads from Galapagos, but that only occurred in those parts of the coral 

growing at less than 5mm/yr. For more rapidly growing parts of the coral, calcification 

rate did not appear to have a significant effect. At present, whether isotopic signatures 

have any potential dependence on coral growth processes still remains poorly 

constrained. Clearly, such questions must be answered satisfactorily before we can 

reliably use coral δ18O and δ13C for the reconstruction of past environmental variables.  

 (4) Other related questions concern developing δ13C and δ18O in corals to 

document patterns of interannual and interdecadal climatic variability in selected areas of 

the subtropical Pacific. While many studies have documented past variability of the 

ENSO system in the equatorial regions (e.g. Dunbar and Cole, 1993), the spatial and 

temporal evolution of ENSO events across the subtropical south Pacific is not well 

established. Based on their studies in New Caledonia (166°E, 22.5°S), Quinn et al. (1998) 

suggest that the subtropical regions may not correlate strongly with ENSO indices. But 
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studies from Moorea lagoon (149.5°W, 17.3°S) (Boiseau et al., 1998) indicate that 

climatic variability is strongly affected by ENSO events in the subtropical Pacific. In 

order to ascertain the relatively subtle interannual variability in the subtropical Pacific, it 

is necessary to have more records of key climatic variables such as SST and precipitation 

around these areas. 

(5) Although interdecadal scale variability has been commonly recognized in 

most long coral δ18O records, interpretations about this variability are diverse (Druffel 

and Griffin, 1993; Charles et al., 1997; Lough and Barnes, 1997; Cole et al., 2000; 

Linsley et al., 2000b; Urbans et al., 2000). In addition, the spatial pattern of the 

decadal/interdecadal variability is poorly constrained. Quinn et al. (1998) report the 

correlation between the PDO variation and the decadal/interdecadal variability observed 

in coral δ18O, and they imply that it may relate to the processes influencing the PDO. 

Cole et al. (2000) propose that the tropical Pacific is probably more important in 

amplifying and propagating the decadal signal due to the lack of the coherency between 

δ18O records and the PDO in the western Indian Ocean. At present, due to the paucity of 

meteorologic and oceanographic data which generally extend back only about 50 years, 

the decadal/interdecadal variability in surface ocean properties in the Pacific gyres 

remains poorly understood.  

 

1.3 Present Objectives 

In view of the above problems, this study involved two major parts. The first part 

is concerned with evaluating the paleoclimate utility of δ18O and δ13C in corals based on 

comparison of coral and instrumental records in order to improve the precision of 
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reconstructions of paleo-climate from proxy coral data. For this purpose, a long coral 

record spanning 271 years from Rarotonga in the subtropical South Pacific is used for 

analysis and comparison with available instrumental records.  

The island of Rarotonga is located at 21.5°S, 159.5°W in the Cook Islands of the 

western subtropical South Pacific (WSSP). It has been recognized that WSSP is a 

dominant source region for water transport to the equatorial thermocline (Wyrtki and 

Kilonsky, 1984; Tsuchiya et al., 1989). In addition, this region is also recognized as an 

important source region for interannual SST anomalies propagating into higher latitudes 

of the Southern Hemisphere and the Antarctic Circumpolar Current (White and Peterson, 

1996; Peterson and White, 1998). 

 Specifically, this part of the study is concerned with the following major 

objectives: 

 1. Developing a new method to separate the effects of SST from those of δ18Osw 

on coral δ18O (Ren et al., in review). Based on the paired analysis of δ18O and Sr/Ca in 

corals, a revised method of separating the effects of δ18Osw from that of SST is developed, 

and then a multi-century reconstruction of the paleo-temperature and paleo-salinity is 

retrieved for this region. 

 2. Quantitatively separating the effects of kinetic and metabolic fractionation on 

coral δ13C in order to evaluate the effects of their corresponding environmental factors 

such as SST and radiation on coral δ13C. The similar method developed for coral δ18O 

(Ren et al., in review) is used to separate the effects of kinetic and metabolic 

fractionation. This method is also applied to several other published coral δ13C time-
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series in order to obtain a better understanding of the role of the separate effects of kinetic 

and metabolic fractionation.  

 3. In order to test the reliability of δ18O and δ13C as environmental tracers, this 

study also involves a detailed examination of the reproducibility of skeletal δ18O and δ13C 

at Rarotonga. Another coral core collected from Rarotonga is used to examine the 

potential growth rate effect on both δ18O and δ13C. 

 The second part of the study involves the reconstruction of the interannual 

(ENSO) and decadal/interdecadal variability at Rarotonga based on the analysis of δ18O 

for the whole period of 1726-1997. For this part of the study, questions addressed 

include: (1) how is the record of ENSO different in this off-equatorial axis region 

compared to other coral-climate record of ENSO, and (2) Is decadal-interdecal scale 

variability at Rarotonga in the southwest Pacific correlated with North Pacific or tropical 

Pacific?  

 

1.4 Chapter Overview 

Chapter 2 describes a revised method for the separation of the effects of variation 

of δ18Osw from that of SST using the paired coral δ18O and Sr/Ca for the period 1726-

1997, and attempts to use this method to retrieve the paleo-salinity at Rarotonga. A paper 

describing this method is also in review at Geochimica et Cosmochimica Acta. 

Chapter 3 describes a quantitative method similar to that used on coral δ18O to 

separate the effects of kinetic from metabolic fractionation on δ13C in corals. This method 
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is also applied to several other areas in order to obtain a better understanding of the role 

of these two  separate effects on coral δ13C. 

Chapter 4 presents the general characteristics of coral δ18O at Rarotonga for the 

total period of 1726-1997 and focuses on reconstructing the interannual and decadal/ 

interdecadal variability from δ18O in corals in this region in order to examine the 

differences between the response of subtropical and tropical areas in interannual and 

decadal/interdecadal time scales.  

Chapter 5 discusses the colony reproducibility of coral δ13C and δ18O by using 

another core collected at Rarotonga.  

Chapter 6 is the conclusions and problems for future work. 
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Abstract. To reconstruct oceanographic variations in the subtropical South Pacific, 271-

year long subseasonal time series of Sr/Ca and δ18O were generated from a coral growing 

at Rarotonga (21.5°S, 159.5°W). In this case coral Sr/Ca appears to be an excellent proxy 

for sea surface temperature (SST) (Linsley et al., 2000a) and coral δ18O is a function of 

both sea surface temperature (SST) and sea water δ18O composition (δ18Osw). Here I 

focus on extracting the δ18Osw signal from these proxy records. A method is presented 

assuming that coral Sr/Ca is solely a function of SST and that coral δ18O is a function of 

both SST and δ18Osw. This method separates the effects of δ18Osw from SST by breaking 

the instantaneous changes of coral δ18O into separate contributions by instantaneous SST 

and δ18Osw changes respectively. The results show that on average δ18Osw at Rarotonga 

explains ~39% of the variance in δ18O and that variations in SST explains the remaining 

~61% of δ18O variance. Reconstructed δ18Osw shows systematic increases in summer 

months (Dec-Feb) consistent with the regional pattern of variations in precipitation and 

evaporation. The δ18Osw also shows a positive linear correlation with satellite-derived 

estimated salinity for the period 1980-1997 (r=0.72). This linear correlation between 

reconstructed δ18Osw and salinity makes it possible to use the reconstructed δ18Osw to 

estimate the past interannual and decadal salinity changes in this region. Comparisons of 

coral δ18O and δ18Osw at Rarotonga with the Pacific Decadal Oscillation (PDO) index 

suggest that the decadal and interdecadal salinity and SST variability at Rarotonga 

appears to be related to basin-scale decadal variability in the Pacific.  

 

 

 



 15 

2.1 Introduction 

It has now been recognized that the western subtropical South Pacific (WSSP) is a 

dominant source region for water transport to the equatorial thermocline in part due to its 

relatively high salinity (Tsuchiya, 1968; Wyrtki and Kilonsky, 1984; Tsuchiya, 1989; 

Knuass, 1996). In addition, this region is also identified as an important source region for 

interannual SST anomalies propagating into higher latitudes of the Southern Hemisphere 

and the Antarctic Circumpolar Current (White and Peterson, 1996; Peterson and White, 

1998). The South Pacific Convergence Zone (SPCZ) also extends northwest to southeast 

across this region and SPCZ rainfall plays a potentially important role in the hydrologic 

balance and on the seawater oxygen isotopic composition (δ18Osw) in this region. 

However, the historical record of past climate variations in this region remains limited 

necessitating the development of techniques to extract a paleoclimatic record from 

natural archives of past climate variability. Here I focus on utilizing coral records from 

Rarotonga (21.5°S, 159.5°W) in the WSSP.  

Massive hermatypic corals have proven in many cases to contain geochemical 

records of past climate variability on interannual and interdecadal timescales (Dunbar et 

al., 1994; Wellington et al., 1996; Linsley et al., 2000b among others). Many of these 

studies have focused on examining past sea surface temperature (SST) variations. Besides 

SST, δ18O of seawater (δ18Osw) is another important parameter that can potentially be 

reconstructed using corals. δ18Osw is of climatic importance because it is closely related 

to the balance between precipitation and evaporation, and so its reconstruction could 

yield important information about past changes in hydrologic balance and oceanographic 

circulation. However, since the δ18O composition of coral skeletons is at least a function 
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of both SST and δ18Osw (Weber and Woodhead, 1972), it is generally difficult to separate 

the effects of SST and δ18Osw using coral δ18O alone. One great advantage of corals for 

paleoclimatic studies is that they possess a remarkable array of chemical tracers which 

contain information on past environmental variations. While coral δ18O reflects the 

effects of both SST and δ18Osw, the skeletal Sr/Ca ratio in many corals appears to be 

mainly influenced by SST and it appears that coral Sr/Ca is linearly related to SST (Smith 

et al., 1979; Beck et al., 1992; Gagan et al., 1998; Linsley et al., 2000a). Using both δ18O 

and Sr/Ca it is therefore potentially possible to separate the different effects of δ18Osw and 

SST in a coral δ18O time series (McCulloch et al., 1994; Gagan et al., 1998; 2000).   

McCulloch et al. (1994) made the first attempt to quantitatively separate the effects 

of SST from those of δ18Osw on skeletal δ18O by using paired coral δ18O and Sr/Ca 

analysis on the same samples. Gagan et al. (1998; 2000) used a similar method by which 

the effects of SST are directly subtracted from the observed skeletal δ18O to obtain the 

residual effects of δ18Osw. To do so, they first converted coral δ18O into units of 

temperature (Tδ

18
O) by using an empirical SST-δ18O equation and then subtracted this 

from the reconstructed SST (TSr/Ca) obtained from the Sr/Ca record. The residual δ18O 

they argued reflects the effects of seawater δ18O composition. The idea underlying both 

McCulloch et al.’s and Gagan et al.’s methods is to use a linear δ18O-SST equation (i.e. 

δ18O = k*SST + b) as the reference to obtain the discrepancies of coral δ18O due to 

variations of δ18Osw. However, the equation they used was obtained by linear regression 

of the δ18O data against the instrumental SST data from McConnaughey (1989a) and 

Gagan et al. (1994), respectively. The equation obtained in this way may not represent the 

true δ18O-SST relationship in areas with significant effects of δ18Osw, which could alter 
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the relationship. Such empirical equations therefore do not appear to be applicable unless 

δ18Osw is known or assumed to be constant in the study area in question. Furthermore, 

even if the SST calibration equation used is correct (i.e. δ18Osw is roughly constant so that 

k and b values are correct), the magnitude of δ18Osw at the calibration site will still 

influence the value of the constant b in the equation above, which will directly affect the 

result of the δ18Osw reconstruction.  

To minimize these potential problems, in this chapter I present a revised method 

of retrieving δ18Osw using instantaneous changes in paired measurements of δ18O and 

Sr/Ca in corals. I apply this technique to the Rarotonga coral Sr/Ca and δ18O records 

spanning 1726-1997. The derived δ18Osw time-series is then examined and discussed in 

terms of how paleo-salinity and rainfall varied in this region during the past three 

centuries. 

 

2.2 Study Area  

 The island of Rarotonga is located at 21.5°S and 159.5°W in the Cook Islands of 

the WSSP (Fig. 2.1). Over the last two decades SST in the grids measuring 2° by 2° 

(CAC SST) and 1° by 1° (IGOSS SST) (Reynolds and Smith, 1994) surrounding 

Rarotonga has ranged between 23°C to 27°C with an average annual variation of ~4°C 

(Fig. 2.2). On average, the highest SST occurs in February and lowest in August-

September. Precipitation is also generally highest in February-March of each year, when 

SSTs peak near ~27°C (NOAA NCDC GCPS monthly station precipitation) (Baker et al., 

1994).  
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In this region, instrumental salinity measurements are very limited and a satellite- 

derived salinity record is available only after 1980 (NOAA NCEP EMC CMB Pacific 

monthly salinity) (Behringer et al., 1998; Ji et al., 1995; Ji and Smith, 1995). This salinity 

record is derived from a model-based ocean analysis that assimilated the observed surface 

and subsurface ocean temperatures as well as satellite altimetry sea-level data from 

TOPEX/POSEIDON into a Pacific basin ocean general circulation model. The model is 

configured for the Pacific Ocean from 45°S to 55°N and 120°E to 70°W (Ji et al., 1995). 

The horizontal resolution in the zonal direction is 1.5°. The resolution in the meridional 

direction is 1/3° within 10° of the equator, which is continuously changed to 1° poleward 

of 20° latitude. The resultant error estimates are in the range of 0.5-1.5p.s.u. (Ji et al., 

1995). The annual salinity maxima (at 20m depth) occur in February of each year at the 

time of the highest SST and rainfall at Rarotonga. This apparent contradiction may be 

related to dynamics in the South Pacific subtropical gyre. During the summer months, the 

core of high salinity in the center of the South Pacific subtropical gyre appears to shift to 

a position further to the west near Rarotonga resulting in higher salinity in summer 

months (Levitus et al., 1982).  

 

2.3 Methods and Results 

In April 1997 several coral cores were collected from a large colony of Porites 

lutea in 18.3m (60 feet) of water on the southwest side of the Island of Rarotonga. This 

coral colony was not influenced by shading or other micro-environmental factors. Slabs 

of coral (7mm thick) cut along the major axis of growth were cleaned with deionized 

water to remove saw-cutting and were then oven dried at 40°C. Samples were 
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continuously drilled at 1mm intervals using a low-speed micro-drill along tracks parallel 

to corallite traces as identified in x-ray positives (Fig. 2.3). Splits from the same sample 

powder were used for both δ18O and Sr/Ca analyses. The total usable length of core B is 

1.4m, while core C is 3.6m. Because of a growth hiatus in core C, cores B and C were 

spliced together to make a continuous record. I sampled core B from the top to 1316mm 

depth, while core C was sampled from 1104mm depth to the very bottom. This sampling 

scheme resulted in an overlap of about 212mm (13 years) between core B and core C. 

This ensured that there was enough repetition between cores B and core C to accurately 

splice them together and a clear match point was found in 1926 A.D.  

 High precision determination of Sr/Ca ratios at 1mm resolution was undertaken 

by inductively coupled plasma atomic emission spectrophotometer (ICP-AES) at Harvard 

University using a method described in detail by Schrag (1999). This record has 

previously been discussed in Linsley et al., 2000a. The total number of subannual 

samples analyzed for Sr/Ca was 3817. External precision is better than 0.15% (relative 

standard deviation, 1σ) based on analysis of replicate samples. These data are available at 

www.ngdc.noaa.gov/paleo/paleo.html. 

 δ18O analyses were performed by Micromass Optima triple-collecting mass 

spectrometers at the University at Albany, State University of New York and at the 

Harvard University stable isotope facility. The total number of samples analyzed was 

2358. The first 889 samples were analyzed every 1 mm, while the other down-core 

samples were analyzed every other 1 mm. At Harvard University ~1mg samples are 

reacted in vacuo in a modified autocarbonate device at 90°C and the purified CO2 

analyzed. At the University at Albany ~150µg samples are dissolved in 100% H3PO4 at 
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90°C in a Multiprep carbonate inlet system and the resulting CO2 gas analyzed. These 

two different sampling densities (1mm and every other 1 mm) show equal annual δ18O 

amplitudes which suggests that analysis of discrete every other 1 mm samples still 

captures the full range of the annual cycle. 10% of all samples were analyzed in 

duplicate. External precision at the University at Albany is better than 0.04‰ for δ18O 

based on analysis of replicate samples. The standard deviation of 468 samples of 

international NBS-19 analyzed was 0.038‰ for δ18O.  

The chronology was developed based on both the density banding observed in X-

radiograph positive prints and annual periodicity of δ18O and Sr/Ca and it is the same as 

published in Linsley et al. (2000a). Both δ18O and Sr/Ca document a total of 271 years of 

growth spanning 1997-1726. This includes the first 71 years (1997-1926) recorded in 

core B and the remaining 200 years (1925-1726) recorded in core C. Based on the 

chronology, the top 61 years were analyzed for both Sr/Ca and δ18O at an average of 15 

samples/year, while below 1936, Sr/Ca was analyzed at 15 samples/year and δ18O at 7~8 

samples/year. After determining that sampling at 7~8 samples/year for δ18O did not 

attenuate the amplitude of the annual cycle, I linearly interpolated both Sr/Ca and δ18O 

time series to 8 points per year for the analysis discussed below (Fig. 2.4). 

 

2.4 Separating the Contributions of SST and δ18Osw from δ18O in Corals 

2.4.1 Method 

If we assume that coral Sr/Ca is solely a function of SST and that δ18O is a 

function of both SST and δ18Osw, the differences between time series of the two tracers 

measured on the same samples should reflect the effects of δ18Osw variations. However, 
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quantitatively retrieving the effects of δ18Osw may not be as straightforward as it appears. 

Since measured coral δ18O is a multivariable-function of SST and δ18Osw varying at the 

same time, it may not always be applicable to separate SST and δ18Osw effects by simply 

subtracting one from the other through the use of a single-variable equation between 

δ18O and SST. For the coral δ18O-SST relationship the value of b in the δ18O-SST 

equation (δ18O = kSST + b) must be different under different δ18Osw conditions (even if k 

does not change). If this equation is used as the reference to obtain the component of 

coral δ18O that is due to variations of δ18Osw, then this component should represent the 

variations of coral δ18O due to changes of δ18Osw relative to the constant level of δ18Osw 

under which the above equation applies. Since b is different under different levels of 

δ18Osw, we have the problem of what b value we should use. Depending on different 

values of b used, the discrepancies or residue obtained will clearly be different. This 

means that simple subtraction may not give the true contribution of δ18Osw changes to 

coral δ18O variations, which should be a unique quantity. For this reason, I use a method 

in which I look at instantaneous changes of the function caused by instantaneous changes 

of the variables instead of looking at the absolute values. According to derivative 

principles, these instantaneous changes of the function can always be thought of as the 

simple sum of the separate effects brought about by instantaneous changes of its 

variables. Thus the instantaneous change of δ18O in corals at a given time can be 

expressed as the sum of two components: one component represents the contribution 

brought about by the instantaneous change in SST alone, while the other is the 

contribution brought about by the instantaneous change in δ18Osw. In mathematical terms: 
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Δδ18O(coral) = Δδ18O(SST contri) + Δδ18O(sw contri) 

       = (∂δ18O(coral)/∂SST)*ΔSST + (∂δ18O(coral)/∂δ18Osw)*Δδ18Osw (1) 

  

where ∂δ18O(coral)/∂SST, and ∂δ18O(coral)/∂δ18Osw are the partial derivatives of δ18O(coral) 

with respect to SST and δ18Osw, respectively. They represent the rate of change of 

δ18O(coral) with the change of one variable while the other variable is constant. Given the 

above linear δ18O(coral)-SST relationship when the seawater δ18O composition does not 

change (Epstein et al., 1953; Weber and Woodhead, 1972), the first partial derivative is a 

constant that exactly equals k and its generally accepted value in biological carbonate is -

0.18 to -0.24‰/°C (Epstein et al., 1953; Weber and Woodhead, 1972; Fairbanks and 

Dodge, 1979; McConnaughey, 1989a; Shen et al., 1992b; Wellington et al., 1996). For 

this study the average value of -0.21‰/°C is adopted.  

Similarly, we have the following equation that relates changes of Sr/Ca in corals 

to changes of SST assuming Sr/Ca is only a function of SST: 

 

Δ(Sr/Ca(coral))={ ∂(Sr/Ca(coral))/∂SST) }*ΔSST    (2)  

   

where ∂(Sr/Ca(coral))/ ∂SST is the rate of change of Sr/Ca in corals with respect to SST. It 

is also a constant which has a range of -0.054 to -0.070mmol/mol/°C in biological 

carbonates (Smith et al., 1979; Beck et al., 1992; de Villiers et al., 1995; Shen et al., 

1996; Gagan et al., 1998). For this study the average value of -0.062mmol/mol/°C is 

adopted. Rearranging (2) we can then reconstruct instantaneous SST changes from the 

observed Sr/Ca changes in corals as follows, 
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       ΔSST =Δ(Sr/Ca(coral))/{ ∂(Sr/Ca(coral))/∂SST } (3) 

   

Given the value of ∂δ18O(coral)/∂SST, and the above-calculated ΔSST, it is thus easy to 

find the first term of equation (1) (Δδ18O(SST contri)) for any given interval of time (Fig. 

2.5a). We can also convert the δ18O in corals into instantaneous changes (Δδ18O(coral)) for 

successive time intervals (Fig. 2.5b). Then using equation (1) the contribution of δ18Osw 

changes to changes of coral δ18O (Δδ18O(sw contri)) (Fig. 2.5c) can be calculated by 

subtracting Δδ18O(SST contri) from the series of Δδ18O(coral). 

Note that the above method only needs the values of ∂δ18O(coral)/∂SST and 

∂(Sr/Ca(coral))/∂SST to do the reconstruction. Since we utilize instantaneous changes 

instead of absolute values, we do not need to worry about the values of b in the δ18O(coral)-

SST and Sr/Ca(coral)-SST equations. As noted above, the value of b in the δ18O(coral)-SST 

equation may be different under different δ18Osw conditions. The same may be true with b 

in the linear Sr/Ca(coral)-SST equation. Some authors have pointed out that there are 

offsets (different b’s) among the regression lines of Sr/Ca(coral)-SST relation amounting to 

3.5°C (e.g. Fig. 4 in Gagan et al., 2000). These different possible values of b in both the 

δ18O(coral)-SST and Sr/Ca(coral)-SST equations will certainly affect the result of the 

reconstruction of δ18Osw in the subtraction method. But this problem does not exist in the 

current method since it only involves the values of k in its calculations. 

It should be noted that what are shown in Figs. 2.5a-c only represent 

instantaneous contributions by SST and δ18Osw changes to changes of coral δ18O. 
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According to equation (1) if we assume that the partial derivative of δ18O(coral) with 

respect to δ18Osw (∂δ18O(coral)/∂δ18Osw) is also a constant, we could further estimate the 

real δ18Osw changes. However, there is very limited data available in the literature on this 

topic. Since the above assumption appears to be reasonable, we can simply view the 

shape of Δδ18O(sw contri) curve as also representing the actual variation of δ18Osw to obtain 

other useful features, for example, the past variation of salinity, because a factor of a 

constant will not change the shape of the curve.   

The cumulative contributions of δ18Osw can be obtained by integrating the series 

in Fig. 2.5c by adding up all the instantaneous contributions to an arbitrary reference. 

Although the choice of the reference would not affect the shape of the curve, it is ideal to 

select the present δ18Osw value in this region as the reference. Unfortunately, there is no 

currently available site-specific δ18Osw data at Rarotonga. Schmidt (1999) indicates that 

at present most regional surface water δ18O and salinity relationships tend to converge 

near δ18Osw=0.8‰ when S=36‰ and δ18Osw=0‰ when S=34.7‰ and the δ18Osw and 

salinity are roughly linearly related. At Rarotonga the average salinity is 35.5‰ which 

would result in δ18Osw=0.57‰. This value is close to a δ18Osw of 0.52‰ (Beck et al., 

1992; J. Recy, unpublished data, 1995) measured in New Caledonia which is west of 

Rarotonga, but at a similar latitude as Rarotonga. To determine the cumulative seawater 

contribution I choose 0.57‰ as the reference for 1997 and summed the instantaneous 

changes back to 1726 (Fig. 2.6a). For the period 1726-1997 the reconstructed cumulative 

δ18O(sw contri) shows clear seasonal, decadal, and secular variations.  

 

2.4.2 Error Estimate 
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As noted above, the current method only needs values of k without involving 

uncertainties of b. This will reduce the magnitude of errors. The relative errors incurred 

in the above calculation of the seawater δ18O composition contribution are now 

estimated. Let σ1 be the absolute error of the partial derivative of coral δ18O with respect 

to SST (±0.03), σ2 be the absolute error of the partial derivative of Sr/Ca with respect to 

SST (±0.008), and σ be the relative error of the calculated instantaneous contribution by 

δ18O changes. According to equation (1) and (2) we have: 

 

Δδ18O(SST contri) (1±σ) ={(∂δ18O(coral)/∂SST ± σ1)/(∂(Sr/Ca(coral))/∂SST ± σ2)}∗Δ(Sr/Ca(coral)) 

           ={ (-0.21± 0.03)/(-0.062 ± 0.008) }∗Δ(Sr/Ca(coral)) 

 

Since the absolute error of (∂δ18O(coral)/∂SST±σ1)/(∂(Sr/Ca(coral))/∂SST± σ2) is (0.062*0.03 

+ 0.21*0.008)/0.0622 = 0.92, we have, 

 

   Δδ18O(SST contri) (1± σ) = (3.39± 0.92) ∗ Δ(Sr/Ca) 

or   σ = 0.92/3.39 = 0.27 

 

This means a relative error of up to ±27% on the reconstructed Δδ18O(SST contri) due to 

uncertainties of the values of the two k’s in the calculations. The effects of this error on 

the reconstructed Δδ18O(sw contri) can be tested by tentatively increasing or decreasing the 

reconstructed Δδ18O(SST contri) by 27% and then examining the recalculated δ18O(sw 

contri) (Fig. 2.6b). From Fig. 2.6b it can be seen that although there are some differences in 
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the magnitude of the annual variability in the two curves, the overall interannual and 

decadal scale patterns are consistent.  

 

2.5 Discussion  

2.5.1 The Reconstruction of Precipitation and Salinity from δ18Osw 

I argue that δ18Osw at Rarotonga generally reflects regional changes in the 

hydrological budget of the air-sea system since rainfall is depleted in 18O relative to 

seawater, while evaporation tends to enrich the surface ocean in 18O (Epstein and 

Mayeda, 1953; Friedman et al., 1961; Redfield and Feridman, 1965). At Rarotonga the 

comparison of δ18O(sw contri) with the monthly precipitation data from the Island of 

Rarotonga does show a general negative correlation for the most of the period 1900-1997, 

which further supports the validity of this method (Fig. 2.7). For the same time intervals 

when precipitation increases, δ18O(sw contri) is generally lower, while when precipitation 

decreases, δ18O(sw contri) is higher. However, there are some discrepancies between the two 

curves, for instance, for the three periods marked (1) to (3) in Fig. 2.7. δ18O(sw contri) is also 

characterized by stronger decadal variability than rainfall which may be due to the fact 

that δ18Osw reflects the regional hydrological balance between precipitation and 

evaporation, rather than only precipitation changes. On interannual time scales, however, 

the reconstructed δ18O(sw contri) appears to be more related to the past precipitation 

variation. 

As salinity is also mainly controlled by the precipitation-evaporation balance, 

δ18Osw should also reflect the changes of salinity. At Rarotonga, although salinity data (at 

20m depth) are only available after 1980, the comparison of the cumulative δ18O(sw contri) 
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with the monthly salinity (NOAA NCEP EMC CMB Pacific monthly salinity) (Behringer 

et al., 1998; Ji et al., 1995; Ji and Smith, 1995) for 1980-1997 does show a positive 

correlation (Fig. 2.8). The correlation is better in some years, for example 1989 and 1996, 

when salinity exhibits a large decrease, and δ18O(sw contri) shows a similar magnitude 

decrease. Furthermore, they also display similar decadal changes with synchronous shifts 

in 1988. It should be noticed that there exists a 1-2 month offset in several years with 

salinity leading reconstructed δ18Osw. The reason for this is not clear. One possibility may 

be related to the fact that coral growth rates change throughout the year while our age 

model does not take this into account. As the salinity data is not in situ data, but is model-

based data, another possibility may be related to some unknown errors in the salinity 

data. In addition, a roughly linear positive correlation (r=0.72) between reconstructed 

δ18O(sw contri) and salinity is identified which agrees with some instrumental data 

observations and model studies (Craig and Gordon, 1965; Ostlund et al., 1987; Fairbanks 

et al., 1992; Bauch et al., 1995; Schmidt, 1998; Schmidt, 1999). It suggests that if we 

extend this correlation to the whole period of the record, this reconstructed δ18O(sw contri) 

technique might be used to evaluate past interannual and decadal salinity changes at 

Rarotonga back to 1726. 

 

2.5.2 The Separate Influences of δ18Osw and SST on δ18O in Corals 

Comparison of the instantaneous contribution by SST changes (see Fig. 2.5a) with 

instantaneous changes of coral δ18O (see Fig. 2.5b) indicates that the average annual 

range in coral δ18O is less than that of the expected contribution based on actual SST 

variation. Our preferred explanation is that the effect of δ18Osw must have counteracted 
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that of SST provided that the coral δ18O is mainly a function of δ18Osw and SST. Detailed 

comparison of the time series in Fig. 2.5a with that in Fig. 2.5c indicates that the 

contributions from the changes of δ18Osw and that from the changes of δ18OSST are 

generally negatively correlated (Fig. 2.9). That is, whenever SST increases and causes the 

decrease of coral δ18O, δ18Osw often decreases and causes the increase of coral δ18O. 

Although I only show a 15-year interval here (1980-1995), this relationship is prevalent 

through the core. The climatology of the Rarotonga region supports this relationship. 

Rarotonga is located in the trade wind belt (18°-26° latitude) which is a region with the 

highest evaporation and lowest humidity in the summer (Prixoto and Kettani, 1973; 

Levitus, 1982). At Rarotonga, in summer (January-February) when the SST increases, 

coral δ18O decreases. At the same time, higher SST causes an increase in evaporation rate 

with the help of strong trade winds, and thus the local net atmospheric water balance 

(precipitation minus evaporation) decreases and salinity increases (see Fig. 2.2). This 

causes an increase of δ18Osw thus counter-acting the effect of SST on coral δ18O. My 

derived δ18O(sw contri) in the South Pacific gyre region therefore agrees with this regional 

precipitation and evaporation balance. A similar pattern is also observed along the coast 

of northwestern Australia at the same latitude as Rarotonga (Gagan et al., 2000). As 

observed by Gagan et al. (2000), in northwestern Australia δ18Osw becomes more positive 

in summer as evaporation from the ocean surface increases due to increasing air 

temperature and solar radiation.  

Given the separate contributions by SST and δ18Osw to coral δ18O we can estimate 

their relative contributions. At Rarotonga on average, changes in SST account for 

approximately 61% of the total δ18O coral signal while changes in δ18Osw account for 



37



 38 

about 39%. From this analysis it is clear that the influence of evaporation in the SPCZ on 

δ18Osw and/or salinity is non-negligible and plays a large role in the δ18O composition of 

corals at Rarotonga. 

  

2.5.3 The Decadal Variability in Rarotonga Coral δ18O and δ18Osw 

Although decadal-interdecadal variability in the South Pacific remains weakly 

constrained, decadal variability in the North Pacific has been extensively documented in 

recent years (Trenberth and Hurrell, 1994; Graham, 1994; Mann and Park, 1996; Latif et 

al., 1997; Nakamura and Yamagata, 1999) and can be represented by the Pacific Decadal 

Oscillation (PDO) index which was first defined by Mantua et al. (1997) partly based on 

the work of Zhang et al. (1997). Mantua et al. (1997) developed the PDO index such that 

when it is cooler than average in the central North Pacific and warmer than average in the 

Gulf of Alaska and along the Pacific Coast of North America, the index is positive.  

Both coral δ18O and δ18Osw at Rarotonga show clear decadal-scale variations over 

the period 1726-1997. During some years the two series are consistent, for example 

between 1820-30 and between 1920-40, which implies a common forcing mechanism. To 

remove the potential interference of any long-term trend, the Rarotonga δ18O and δ18Osw 

records were detrended of long-term secular variability and compared to a detrended 

PDO index. For comparison, the three time series are also normalized by their own 

standard deviations. The comparison of the PDO index with Rarotonga δ18O (Fig. 2.10a) 

shows relatively good correlation between decadal-scale variability in coral δ18O and the 

PDO Index. The correlation is reduced due to discrepancies in the range of the variations 

between the two curves during several time intervals (see Fig. 2.10a). In the first (#1) and 
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last three time intervals (#5-7) the coral δ18O is ~1-1.5 units lower than the PDO index, 

while in the other three time intervals (#2-4) the coral δ18O is ~1-1.5 units higher than the 

PDO index. However, almost all these discrepancies between the coral δ18O and the PDO 

index are correspondingly reflected in the reconstructed δ18Osw as shown in Fig. 2.10b. 

While the first (#1) and the last three intervals (#5-7) are characterized by 

correspondingly lower δ18Osw, the other three intervals (#2-4) are periods of higher 

δ18Osw, showing exactly the opposite to changes of #1 and #5-7 intervals. This indicates 

that although coral δ18O cannot be directly correlated with the PDO index (due to the fact 

that it reflects both SST and δ18Osw while the PDO index is based entirely on SST 

variations), it can still be combined with the reconstructed δ18Osw to make inferences 

about the association of the decadal variability at Rarotonga with the Pacific Decadal 

Oscillation. From Figs 2.10a-2.10b the combined coral δ18O and δ18Osw appear to be 

consistent with the PDO index, which supports the observations of Linsley et al. (2000a) 

that the decadal-scale variability near Rarotonga is related to the processes associated 

with the PDO. This coral-based result from Rarotonga also agrees with some other 

studies from instrumental data or model analysis, which suggest that North Pacific 

interdecadal changes appear to be linked through ocean-atmosphere teleconnections to 

the southern hemisphere and are characterized by global reflection and translation 

symmetries between the northern and southern hemisphere (e.g., Trenberth and Hurrel, 

1994; Garreaud and Battisti, 1999). However, due to the short section of overlap in 

relationship to the long period of the decadal-scale changes, longer records from both the 

North and South Pacific would allow a more rigorous evaluation of the extent of 

coherence of decadal variability in the Pacific.   
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2.5.4 The Long-term Trend in δ18Osw 

 The long-term trend in δ18Osw shows a progressive depletion towards the top of 

the record, implying a gradual trend towards lower salinity in this region (see Fig. 2.6a). 

The total decrease in δ18Osw at Rarotonga is 0.75‰ from 1726-1997. Urban et al. (2000) 

suggest that the trend towards warming and freshening of seawater observed in coral 

δ18O from Maiana (1°N, 173°E) may represent an expansion of western Pacific warm 

pool over the past 155 years, since Maiana lies at the eastern edge of the existing warm 

pool. The long-term trend towards freshening in reconstructed δ18Osw at Rarotonga 

appears to support this observation as Rarotonga lies at the southeastern edge of the pool 

(see Fig. 2.1).  

Unlike δ18Osw, Sr/Ca at Rarotonga shows a gradual decrease in SST from 1726 to 

1900 and a gradual increase after 1900 (Linsley et al., 2000a). The increase in SST since 

1900 agrees with several other studies which have demonstrated the existence of Pacific 

warming in the 20th century (Roemmich and McGowan, 1995; McGowan et al., 1998; 

Cane et al., 1997, Linsley et al., 2000b). Although there have been no direct 

measurements of long term variations of δ18Osw in the South Pacific gyre to demonstrate 

if the trend in coral δ18O reflects a secular salinity variation, my results suggest that 

variations of δ18Osw may contribute more to the long-term trend in coral δ18O than SST at 

Rarotonga. However, other possible nonclimate contributing factors to this trend includes 

the potential biologically mediated shift in the vital effect over time, or other unknown 

coral growth effects. Non-biological causes of long-term variability in coral δ18O (such as 

coral growing at shallower water depth as the coral grows upwards) also need to be 

considered (Glynn and Wellington, 1983; Dunbar et al., 1994; Gagan et al., 2000). To 
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determine the climate significance of this trend, it needs to be replicated using other 

corals in the region.  

 

2.6 Summary 

(1) Assuming that coral δ18O is a function of SST and δ18Osw, and that Sr/Ca is a function 

of only SST, the effects of δ18Osw on coral δ18O can be separated from those of SST 

by breaking the instantaneous changes of coral δ18O into separate contributions by 

instantaneous SST and δ18Osw changes, respectively. By finding the contribution of 

SST from the reconstructed SST using Sr/Ca, the contribution by δ18Osw can then be 

found.  

(2) The above method was applied to a coral δ18O record from Rarotonga (21.5°S, 

159.5°W) spanning 1726-1997. It was found that changes in SST account for 

approximately 61% of the total coral δ18O variations while changes in δ18Osw account 

for about 39%. This suggests that the SPCZ and/or evaporation rate have a significant 

effect on δ18Osw and coral δ18O at this site. The interannual variations of reconstructed 

δ18Osw contribution show generally negative correlation with instrumental 

precipitation for the most of the period 1900-1997. But there also exist some 

discrepancies between them, which may be related to the fact that δ18Osw reflects the 

regional hydrological balance between precipitation and evaporation, rather than only 

precipitation. The δ18Osw also shows a relatively good correlation with satellite 

derived salinity for the period 1980-1997. The roughly linear correlation between the 

reconstructed δ18Osw and salinity (r=0.72) for the period 1981-1997 implies that we 
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can use δ18Osw to estimate the past changes of interannual salinity for the whole 

period at Rarotonga.  

(3) Decadal variability and a long-term trend are observed in the reconstructed δ18Osw.  

Comparison with the PDO index suggests that the decadal-scale variability near 

Rarotonga may be at least partially related to the processes associated with the PDO 

and reflect the combined effects of SST and salinity. It agrees with some other studies 

which suggest that North Pacific interdecadal changes appear to be linked through 

ocean-atmosphere teleconnections to the southern hemisphere.  
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SEPARATING THE EFFECTS OF KINETIC AND METABOLIC  
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Abstract. This chapter presents a 271-year (1726-1997) subseasonal carbon isotope 

(δ13C) record from a Rarotonga coral (Porites lutea) in the southwest subtropical Pacific. 

A quantitative method similar to that used for separating the effects of SST from those of 

δ18Osw on coral δ18O (see chapter 2) is applied to part of this δ13C record in order to 

separate the effects of kinetic and metabolic fractionation on δ13C over the period from 

1983-1991. Assuming that δ13C in Dissolved Inorganic Carbon (DIC) was constant for 

the period 1983-1991, the instantaneous changes of δ13C in corals can be expressed as the 

sum of two separate instantaneous contributions brought about by instantaneous changes 

of kinetic and metabolic fractionation, respectively. Based on experimental data, the 

relative proportions of these two effects are estimated. The results show that δ13C at 

Rarotonga appears to be mainly affected by metabolic activity (72%) rather than kinetic 

activity (28%). The method is also applied to several δ13C records from other areas 

(Nauru, Kiritimati, Clipperton, and New Caledonia) from both the tropical and 

subtropical Pacific. The results show that for tropical areas, δ13C variation in corals is 

predominantly influenced by changes of metabolic activity. The contributions by changes 

of metabolic fractionation are almost identical to the total coral δ13C changes, while those 

attributed to kinetic fractionation are very small. For subtropical areas, despite the 

apparent strong effects of kinetic activity due to larger annual range of SST, coral δ13C is 

also primarily controlled by metabolic activity rather than kinetic activity.  
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3.1 Introduction 

Studies during the past several decades have demonstrated the utility of a diverse 

array of chemical and physical tracers in corals as climate proxies. While the stable 

oxygen isotopic signature (δ18O) in reef corals has proven to be a reliable recorder of sea 

surface temperature (SST) and salinity, the application of the carbon isotope (δ13C) 

record is still problematic because of the complicated interactions of physiological 

processes that involve strong isotopic fractionation. Unlike δ18O, δ13C in corals is 

affected by both kinetic and metabolic fractionation. Kinetic fractionation results from 

discrimination against the heavy isotopes of both C and O during the hydration and 

hydroxylation of CO2 (McConnaughey 1989a, b). Slow exchange of oxygen and carbon 

isotopes between dissolved CO3
2- and seawater relative to the fast rate of calcification 

appears to be the main effect preventing δ18O and δ13C equilibrium during CaCO3 

precipitation (Land et al., 1975; McConnaughey, 1989a, 1997). Although some authors 

report an inverse correlation between skeletal growth rate and coral δ18O and δ13C (Land, 

et al., 1975; Allison et al., 1996; Cohen and Hart, 1997), many researchers suggest that 

the departure from the equilibrium appears to remain constant above linear extension 

rates of 5mm/yr (e.g. McConnaughey, 1989a). Therefore, it is generally assumed that 

along the axis of maximum growth in massive hermatypic corals the effects of growth 

rate on coral isotopes are constant, and the kinetic fractionation mainly varies with the 

change of SST. With an increase of SST, kinetic fractionation will become stronger 

which causes coral δ13C to be more depleted (Grossman and Ku, 1986; Bemis et al., 

2000).  
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Metabolic fractionation produces additional changes in skeletal δ13C, apparently 

arising from changes in the δ13C of the dissolved inorganic carbon (DIC) reservoir from 

which the skeleton precipitates (McConnaughey, 1989a; McConnaughey et al., 1997). 

There are two main sources and two processes that may potentially alter the carbon 

reservoir. The two main sources of carbon for corals are DIC in the surrounding sea 

water, which has a mean δ13CPDB value of 0‰, and zooplankton with δ13CPDB values 

ranging from –14 to –25‰ and lower (Rau et al., 1989, 1990). The two processes that 

may change the internal carbon pool are autotrophy (photosynthesis and respiration) and 

heterotrophy. It is generally believed that as the rate of photosynthesis in zooxanthellae 

increases, the carbon pool becomes relatively depleted in 12C relative to 13C. This results 

in an enrichment in skeletal 13C. On the contrary, respiration lowers the δ13C of the DIC 

reservoir. Several studies have suggested that the respiratory effect is apparently small in 

corals (Land et al., 1975; McConnaughey, 1989a). The intensity of photosynthesis 

depends on several environmental factors such as radiation (solar irradiance levels), cloud 

cover, water transparency, upwelling events, as well as SST (Land et al., 1975; Fairbanks 

and Dodge, 1979; Jacques et al., 1983; McConnaughty, 1989a; Leder et al., 1991). As 

radiation levels increase and/or cloud cover decreases, photosynthesis will generally 

increase. Increased water transparency and decreased upwelling will also increase light 

levels, thus increasing photosynthesis (Lelekin and Zvalinsky, 1981). Experiments also 

show that the rate of photosynthesis increases at higher temperatures in corals (Coles and 

Jokiel, 1977; Jacques et al., 1983). Although rising temperature increases both the rates 

of photosynthesis and respiration, generally corals show a growth optimum around 24°-
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28°C which coincides with the maximum rate of photosynthesis rather than that of 

respiration (Swart, 1983).  

In addition to processes of photosynthesis and respiration, the process of 

heterotrophy can also alter the carbon pool available to corals (Rau et al., 1989; 1990). 

The role of heterotrophic nutrition has been investigated by several authors, e.g. Porter 

(1976), Edmunds and Davies (1986), Sorokin (1993), and Grottoli and Wellington 

(1999), and the prevalent conclusion drawn from these studies is that the majority of 

hermatypic coral species are largely autotrophic.  

Therefore, the main processes that affect the skeletal δ13C in corals include kinetic 

and metabolic fractionation (Weber and Woodhead, 1970; McConnaughey, 1989a). 

While the former is mainly controlled by SST, the latter is a complex function of several 

climatic variables including solar radiation and SST. At present there are mainly two 

different opinions about the relative importance of the effects of these two processes on 

temporal variations of coral δ13C. Some authors believe that coral δ13C is predominantly 

influenced by metabolic fractionation (Fairbanks and Dodge, 1979; Land et al., 1975; 

Leder et al., 1991; Shen et al., 1992b). Because photosynthesis is a light driven metabolic 

reaction, these studies observed that: (1) skeletal δ13C varies seasonally in accordance 

with light levels (Fairbanks and Dodge, 1979; Shen et al., 1992; Gagan et al., 1994; 

Wellington and Dunbar, 1995), and that (2) skeletal δ13C levels decrease with water 

depth (Land et al., 1975; Fairbanks and Dodge, 1979; Leder et al., 1991). Fairbanks and 

Dodge (1979) also observed that individuals from shallower depths have higher δ13C and 

those from deeper depths have a lower δ13C as a consequence of the exponential 

reduction of light with depth. Thus they suggested that δ13C in corals can be used to 
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retrieve past variations of solar radiation and/or cloud cover. However, other authors 

argue that kinetic fractionation can be more important than metabolic fractionation 

(McConnaughey, 1989a). They observed that the kinetic depletion of 13C sometimes 

overpowers the photosynthetic 13C increase (McConnaughey, 1989a; Muscatine et al., 

1989; McConnaughey et al., 1997).  

Current interpretations of coral δ13C variability are generally driven by observed 

correlations to specific processes or conditions, rather than by a thorough understanding 

of all relevant processes. Although some studies have shown that in certain environments 

coral δ13C shows a strong correlation with specific climatic variables such as solar 

radiation (e.g. Fairbanks and Dodge, 1979), the separate effects of kinetic and metabolic 

fractionation have never been quantified. In this chapter I propose a method for 

quantitatively separating the effects of kinetic and metabolic fractionation similar to the 

method I used for separating SST from δ18Osw in coral δ18O at Rarotonga (see chapter 2). 

I also apply this method to several other published coral δ13C records in order to obtain a 

better understanding of the role of kinetic and metabolic fractionation on coral δ13C. 

After the separation of these two effects, the questions as to whether δ13C is mainly 

affected by kinetic or metabolic fractionation or both and to what extent δ13C is related to 

them is examined.     

 

3.2 Study Area  

 In April 1997 coral cores were collected from a large colony of Porites lutea in 

18.3 m (60 feet) of water on the southwest side of the Island of Rarotonga in the western 

subtropical South Pacific. Over the last two decades in the region of Rarotonga, SST in 
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the grid measuring 2° by 2° (CAC SST) and 1° by 1° (IGOSS SST) (Reynolds and Smith, 

1994) has ranged between 23° to 27° with an average annual variation of ~4°C (Fig. 3.1). 

Highest SST occurs in February-March and lowest in August-September of the year. 

Radiation data was obtained from the ISCCP MONTHLY solar radiation database for the 

period of 1983-1991 which is a monthly averaged result of the shortwave Surface 

Radiation Budget (SRB) and Atmospheric Radiation Budget (ARB) (the shortwave 

radiative fluxes absorbed at the surface and in the atmosphere) (Bishop and Rossow, 

1991). The data are given on a 2° × 2° latitude/longitude grid (Fig. 3.1). The average 

annual solar radiation is about 230w/m2 with the maximum of 320w/m2 in December-

January and the minimum of 130w/m2 in June. The monthly averaged solar radiation near 

Rarotonga is relatively uniform during 1983-1991 with an exception in 1988-89 when 

anomously low radiation levels were recorded. It is interesting to note that in this region 

minimum and maximum radiation precede those of SST by 2-3 months each year. 

 The processes of sample preparation and mass spectrometer analysis of δ13C are 

the same as those of δ18O and are described in chapter 2. The standard deviation of 468 

samples of international NBS-19 analyzed was 0.016‰ for δ13C.  

 

3.3 General Characteristics of Coral δ13C 

The coral record of δ13C for Rarotonga for the period 1726-1997 is shown in Fig. 

3.2. Clear seasonal and interannual variations are apparent, as well as a long-term secular 

trend. Coral δ13C has decreased by about 1.25‰ over the period 1726-1997. It is 

interesting to note that most of this decrease occurred after 1900 (about 1‰) while from 

1726-1900, the total depletion of δ13C is only about 0.25‰. Similar patterns of long-term 
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variation have also been observed in corals from Clipperton Atoll (Linsley et al., 2000b) 

and New Caledonia (Quinn et al. 1998). Based on direct measurements made during three 

National Oceanographic and Atmospheric Administration (NOAA) research cruises in 

the period of 1970-1990, Quay et al. (1992) estimated that the average δ13C value of DIC 

in the surface waters of the Pacific decreased by about 0.9‰ between 1900-1990 which 

appears close to the change of coral δ13C at Rarotonga for the same period. This suggests 

that the long-term depletion of coral δ13C may reflect the anthropogenic perturbation of 

the 13C reservoir. However, other factors such as long-term salinity effects on coral δ13C 

(Moberg et al., 1997), and growth rate effect may complicate the interpretation of the 

long-term trend of coral δ13C record.  

In addition to the pronounced long-term trend, coral δ13C at Rarotonga also shows 

significant fluctuations on the interannual and interdecadal time scales (see Fig. 3.2). 

Three distinct stages of variation can be recognized. Before 1825, fluctuations mainly 

occurred on decadal time scales while between 1825-1900, they are mainly shown on 

interannual time scales. After 1900, there is a shift back to decadal variation again. The 

20th century portion of the coral δ13C record contains three minor pronounced decadal 

transitions between 1924-25, 1946-47 and 1976-77, respectively. As will be discussed in 

chapter 5, over the interval 1926-1997 these 20th century decadal transitions do not 

replicate in a second coral δ13C record from Rarotonga. Another abrupt enrichment in 

δ13C occurs over the period of 1815-25 which is also observed in the δ18O and Sr/Ca 

record from Rarotonga (see chapter 2) and it is interpreted as due to the influence of the 

volcanic eruption in Tambora, Indonesia in 1815 (Linsley et al., 2000a).  
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The δ13C record also shows clear seasonal variations. Although solar radiation 

data is only available after 1983, the comparison of coral δ13C with instrumental SST and 

radiation at Rarotonga for the period 1983-1991 shows that coral δ13C varies consistently 

with the variation of radiation while it has a consistent ~3 month offset with SST (Fig. 

3.3). This offset is real because coral δ18O measured on the same sample is used to set the 

chronology based on assumed correlation with the annual SST cycle. To show their 

relationship more clearly, the monthly data of δ13C, SST and radiation is averaged for the 

period 1983-1991 and replotted in Fig. 3.4. From Jan to Dec, it clearly shows that δ13C 

changes in phase with radiation while there is about a ~3 month offset between δ13C and 

SST. If we assume that δ13C of DIC in the seawater for the period 1983-1991 was 

relatively constant and photosynthesis is the main driving force to metabolic 

fractionation, this offset suggests that variations of δ13C are more related to the variation 

of radiation than SST at Rarotonga.  

 

3.4 Method 

 Since the δ13C composition of coral skeleton is a function of several different 

variables including SST, radiation, heterotrophy activity, and the δ13C of DIC in the 

ambient seawater, it is generally difficult to separate their effects by simply comparing 

the δ13C record with the instrumental SST and radiation records, respectively. In order to 

examine in more detail of their separate effects on δ13C, a quantitative method is used on 

δ13C at Rarotonga which is similar to the method I used on coral δ18O (see chapter 2). If 

we assume that the δ13C of DIC in the ambient seawater was relatively constant for the 
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period 1983-1991, we can think of coral δ13C as a complex function of two variables K 

and M that represent the intensities of the kinetic and metabolic processes, respectively. 

These in turn are also functions of the climatic variables SST and/or radiation. With these 

assumptions and according to derivative principles, the instantaneous changes of δ13C can 

be expressed as the sum of two separate instantaneous contributions brought by 

instantaneous changes of kinetic (K) and metabolic (M) activity, respectively:  

 

Δδ13C(coral) = Δδ13C(kinetic_contri)  + Δδ13C(metabolic_contri)  (1) 

 

where Δδ13C(kinetic_contri) is the part of the total instantaneous change in δ13C caused by 

instantaneous change of kinetic activity, and Δδ13C(metabolic_contri) is the part of the 

instantaneous change in δ13C caused by instantaneous change of metabolic activity. Since 

the kinetic intensity can be regarded as a simple function of SST, we have:  

 

Δδ13C(kinetic_contri)  = (∂δ13C(coral)/∂Κ)ΔΚ 

    = (∂δ13C(coral)/∂Κ)(∂Κ/∂SST)*ΔSST               

    = (∂δ13C(coral)/∂SST)*ΔSST    (2) 
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where ∂δ13C(coral)/∂K is the partial derivative of δ13C(coral) with respect to the kinetic  

factor, ∂Κ/∂SST is the partial derivative of the kinetic intensity with respect to SST, and 

∂δ13C(coral)/∂SST is the partial derivative of δ13C(coral) with respect to SST. Note that the 

partial derivative ∂δ13C(coral)/∂SST represents the rate of change of δ13C per degree C 

change of SST when the metabolic intensity is constant.  

So the instantaneous contribution by kinetic activity (Δδ13C(kinetic_contri)) can be 

found by multiplying the partial derivative of δ13C with respect to SST (∂δ13C(coral)/∂SST) 

by the instantaneous change of SST (ΔSST). While ΔSST can be directly found from 

instrumental SST data, the partial derivative ∂δ13C(coral)/∂SST is a parameter that can only 

be constrained by experimental data. According to experimental studies of Grossman and 

Ku (1986), and Bemis et al. (2000), the rate of change of δ13C with SST is a constant that 

does not change with SST when metabolic activity is absent. Based on experiments with 

the benthic deep-sea foraminifera Hoeglundina elegans and symbiont-free molluscs, 

Grossman and Ku (1986) obtained the following linear equations for δ13C(coral)−SST 

relationship:  

 

δ13C – δ13C (DIC) = 2.40 – 0.108 × SST (°C)     

δ13C – δ13C (DIC) = 2.66 – 0.131 × SST (°C)     

 

As shown in the above equations, the rate of change of δ13C with SST ranges 

between –0.108‰/°C ~ –0.131‰/°C. Bemis et al. (2000) also examined the effects of 

temperature on calcitic shell δ13C values based on laboratory experiments with planktonic 

foraminifera Globigerina bulloides (nonsymbiotic) in which no photosynthetic activity 



 59 

was involved. They showed that G. bulloides shells have lower δ13C values at higher 

temperatures with a slope of –0.10 ~ –0.13‰/°C.  

 

δ13C – δ13C (DIC) = -0.47(±0.15) – 0.13(±0.01) × SST (°C) 11-chambered shell 

δ13C – δ13C (DIC) = -0.77(±0.08) – 0.11(±0.00) × SST (°C) 12-chambered shell 

δ13C – δ13C (DIC) = -0.78(±0.22) – 0.10(±0.01) × SST (°C) 13-chambered shell  

 

From these data, an average value of –0.11‰/°C is therefore adopted as the 

∂δ13C(coral)/∂SST factor in the calculations of equation (2), where ΔSST for each time 

interval is directly calculated from the instrumental SST. The instantaneous contribution 

by changes of kinetic fractionation for any given time for the Rarotonga coral is shown in 

Fig. 3.5a. Next I convert the coral δ13C into instantaneous changes of δ13C for any given 

interval of time (Fig. 3.5b). Knowing the total changes of δ13C (Δδ13C(coral)) and the 

kinetic contributions (Δδ13C(kinetic_contri)), the instantaneous contributions due to changes of 

metabolic fractionation (Δδ13C(metabolic_contri)) can then be calculated by subtracting 

Δδ13C(kinetic_contri) of Fig. 3.5a from Δδ13C(coral) of Fig. 3.5b as follows (Fig. 3.5c): 

 
  

 Δδ13C(metabolic_contri) = Δδ13C(coral) – Δδ13C(kinetic_contri)    (3) 

 

Thus, the separate contributions to instantaneous δ13C changes by kinetic and 

metabolic processes are obtained for the period 1983-1991 for the study area. The 

positive values shown in Fig. 3.5a and 3.5c represent positive contributions, which enrich 
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the coral skeleton in 13C, while negative values represent negative contributions, whose 

effect is to deplete coral in 13C. It clearly shows that the instantaneous contributions of 

changes of metabolic activity (see Fig. 3.5c) to the total coral δ13C are larger than those 

of kinetic activity changes (see Fig. 3.5a) for the period 1983-1991. To show how the two 

contributions are correlated with the actual δ13C changes, both are normalized by the 

corresponding δ13C changes and replotted in Fig. 3.6. Note that the positive values now 

indicate that the instantaneous contributions are positively correlated with δ13C changes 

while negative values represent a negative correlation. Since the sum of the two is equal 

to 1, both curves show a mirror symmetry. It can be seen that for the Rarotonga region 

the instantaneous contribution by metabolic effect is almost always positively correlated 

with δ13C except for brief intervals, and it fluctuates around a magnitude of about 1. On 

the other hand, the instantaneous contribution of kinetic effects is often negatively 

correlated with δ13C and fluctuates around a magnitude of about 0. It suggests that the 

variation of δ13C in corals at Rarotonga is mainly caused by metabolic fractionation 

rather than kinetic fractionation.  

 The accumulative effects of kinetic and metabolic activity can be obtained by 

integrating the two series in Fig. a and c by adding up all the instantaneous contributions 

to an arbitrary reference, respectively (Fig. 3.7). We can see that the δ13C and 

accumulative metabolic contribution are almost identical in shape at Rarotonga. But the 

derived kinetic contribution does not show similar characteristics with coral δ13C and the 

magnitude of its contribution is small compared to that of accumulative metabolic 

contribution. This is further illustrated in Fig. 3.8 where δ13C is plotted against the 
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accumulative kinetic contribution and the accumulative metabolic contribution, 

respectively for the period 1983-1991. It can be seen that the variation of coral δ13C is 

more related to that of metabolic effect than that of kinetic effect. There is no apparent 

correlation between derived kinetic contribution and coral δ13C in this region for the 

period 1983-1991.  

 

3.5 Application to Other Coral δ13C Records 

 One of the important questions regarding the above analysis on coral δ13C at 

Rarotonga, is whether this relationship between kinetic and metabolic contributions to 

coral δ13C are applicable to coral δ13C in other regions. To answer this question, the 

above method is applied to several other published coral δ13C records. These records are 

from different regions of the Pacific showing various relationships between coral δ13C 

and instrumental radiation and SST. Some of the corals in the available database 

(www.ngdc. noaa.gov/paleo/paleo.html) either only have δ18O data or did not grow in an 

open environment, so they are not chosen for this study. Coral δ13C data from four other  

sites in the western and eastern Pacific were selected for analysis (Table 3.1) and for 

comparison to my results from Rarotonga. Two are from the western Pacific (Nauru; 

Guilderson and Schrag, 1999; and New Caledonia; Quinn et al., 1998), one is from the 

central Pacific (Kiritimati, Evans et al., 1998), and one from the eastern Pacific 

(Clipperton; Linsley, et al., 2000b). Of the five sites analyzed, Nauru (166°E, 0.5°S), 

Kiritimati (157°W, 2°N), and Clipperton (109°W, 10°N) are in the tropical Pacific while 

Rarotonga (159°W, 21°S), New Caledonia (166°E, 22°S) are in the subtropical Pacific. 
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Site Location Time period Species Annual 
SST 

Reference 

Nauru 166°E, 0.5°S 1952-1995 Porites 
australiensis 

~0.5-1°C Guilderson & 
Schrag (1999) 

Kiritimati 157°W, 2°N 1938-1993 Porites sp. ~1°C Evans et al. 
(1998) 

Clipperton 109°W, 
10°N 

1893-1994 Porites lobata ~1.5-2°C Linsley et al. 
(2000b) 

Rarotonga 159°W, 21°S 1726-1997 Porites lutea ~4°C This  
study 

New 
Caledonia 

166°E, 22°S 1952-1992 Porites lutea ~4°C Quinn et al. 
(1998) 

 
 
 Table 3.1 Coral δ13C records used in this work. 
 
 

 These five areas show different average annual ranges of SST (from about 0.5° up 

to 4°C). More importantly, the sites display a range of phasing relationship between coral 

δ13C and instrumental radiation and SST. As previously discussed, at Rarotonga coral 

δ13C varies in phase with variation of radiation but shows a 2-3 month offset with that of 

SST (see Fig. 3.3). At New Caledonia, coral δ13C does not show a clear correlation with 

either SST or radiation (Fig. 3.9). At Clipperton, coral δ13C changes in phase with annual 

variations of SST but shows 2-3 month offset with seasonal changes in radiation (Fig. 

3.10). Coral δ13C and radiation, and δ13C and SST both show similar trends for the period 

1983-1991 at Nauru (Fig. 3.11). Guilderson and Schrag (1999) have suggested that coral 

δ18O mainly reflects the variation of SST at Nauru. The similarity between δ13C and δ18O 

at this site provides a good opportunity to test whether δ13C can be mainly affected by 

SST. Finally at Kiritimati, the instrumental radiation and SST show a very similar trend 

while δ13C is different from both radiation and SST for the period 1983-1991 (Fig. 3.12). 
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The same analytical steps used for Rarotonga coral δ13C were applied to coral 

δ13C from all the other four sites. First, the separate instantaneous contributions by 

kinetic and metabolic fractionation to the total coral δ13C changes are obtained in all the 

four regions (Fig. 3.13) (Rarotonga is also shown in Fig. 3.13 for comparison). Again 

positive values represent contributions that cause enrichment in 13C, while negative 

values represent depletion in 13C. At all sites instantaneous contributions of changes in 

metabolic activity to the total instantaneous changes of coral δ13C are larger than those of 

changes of kinetic activity for the period 1983-1991. The dominance of metabolic 

activity is more pronounced for tropical regions (Nauru and Kiritimati) where the 

contributions caused by variations of metabolic activity are predominantly larger than 

those of kinetic activity. At subtropical regions (Rarotonga and New Caledonia), 

although the effect of kinetic fractionation is larger than that at tropical regions due to the 

larger range of annual SST, the contributions by changes of the metabolic effect are still 

larger than those of kinetic effect. To show how the signs of the separate contributions of 

kinetic and metabolic activity are correlated with the actual coral δ13C changes, each was 

normalized by the corresponding δ13C changes and replotted in Fig. 3.14 for all five 

regions. It can be seen that the contributions by changes of metabolic fractionation are 

almost always positively correlated with δ13C, while those of kinetic fractionation are 

often negatively correlated with δ13C for all the five regions. This analysis suggests that 

regardless of the phasing between the original δ13C and the instrumental radiation and 

SST, and regardless of whether the corals grew under tropical or subtropical conditions, 

the variation of coral δ13C appears to be mainly caused by the variation of metabolic 

activity rather than by variations of kinetic fractionation 
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To summarize the results I have calculated the relative contributions of metabolic 

and kinetic effects after the separation of the instantaneous contributions by metabolic 

and  kinetic  activity  on  δ13C  for  each  these  five  sites  (Table 3.2).  At equatorial sites 

 (Nauru and Kiritimati), the effect of kinetic activity is very small which is about 5-10% 

of the total changes of δ13C. At the higher latitude sites (Rarotonga and Clipperton), the 

effect of kinetic fractionation accounts for 20-30% (Rarotonga and Clipperton) and 40% 

(New Caledonia) of total δ13C signals.  

 

Site Annual SST range  
(°C) 

Δδ13C 
(metabolic_contri)  

             (%) 

Δδ13C(kinetic_contri)  

(%) 

Nauru ~0.5-1 91 9 
Kiritimati ~1-2 95 5 
Clipperton ~2 77 23 
Rarotonga ~4 72 28 

New Caledonia ~4 59 41 
 

Table 3.2 Quantitative analysis of the contributions of metabolic and kinetic effects on coral δ13C 
from the selected areas. The % represents the percentage of the contributions of the effects of 
metabolic and kinetic fractionation to the total changes of coral δ13C, respectively. 
 

The accumulative effects of changes in kinetic and metabolic fractionation can be 

obtained by adding up all the instantaneous contributions to an arbitrary reference. The 

results for these five sites are shown in Fig 3.15. In the tropical regions (Nauru and 

Kiritimati) δ13C and the accumulative metabolic contribution are almost identical for the 

period 1983-1991 while the accumulative kinetic contribution is very small. For 

subtropical regions, the cumulative contributions of changing metabolic activity is also 

more related to the total δ13C than kinetic activity. The only exception is New Caledonia, 

where the magnitude of the contribution of metabolic activity appears to be
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approximately equal to that of kinetic activity. Therefore, statistically, variations of 

metabolic activity appear to dominant coral δ13C variation rather than kinetic activity.  

 

3.6 Discussion    

The above analysis has yielded results suggesting that metabolic activity plays a 

more important role in causing variations in δ13C in corals than kinetic fractionation. The 

validity of this conclusion is largely determined by the validity of the method developed. 

Therefore it is necessary to discuss any underlying problems in this new method. As 

shown in equation (2), the magnitude of the instantaneous contribution by changes of 

kinetic activity is determined by two factors: the partial derivative of coral δ13C with 

respect to SST and the annual range of SST variation. While ΔSST is what is actually 

observed in a particular region, the partial derivative is a parameter that has to be chosen 

somewhat arbitrarily from experimental data.  

Although it has been suggested that the partial derivative ∂δ13C(coral)/∂SST is a 

constant that does not change with SST, it is still possible that it may vary with the 

metabolic activity, when it is fixed at a different level. This is indeed shown in some 

experiments (Grossman, 1984; Bemis et al., 2000) which found slightly different δ13C-

temperature relationships with different radiation levels. Bemis et al. (2000) explained 

that the small positive coefficients of change of δ13C with SST are probably due to the 

simultaneous influence of symbiont photosynthesis on δ13C. Since the symbiont 

photosynthetic rate increases at higher temperature, this effect may counteract the kinetic 

related temperature influence on δ13C. However, it must be pointed out that these rates of 

change of δ13C with respect to SST (which are different from those I used in the previous 
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two sections) do not represent the partial derivative that we need. Note that 

∂δ13C(coral)/∂SST is the rate of change of δ13C with respect to SST when the metabolic 

activity (rather than radiation) is constant. This hypothetical situation is difficult to 

realize in experiments. When SST varies, it will also affect metabolic processes. 

Although we could adjust the other environmental factor (such as radiation) to keep the 

metabolic intensity constant, this would be very difficult to do in actual experiments. 

Instead, experiments are relatively easy to design by keeping radiation at a constant level. 

Under this situation, metabolic activity will generally increase when SST increases, 

counteracting the kinetic effect, and causing δ13C to decrease slowly with SST or even 

slightly increase with SST. This appears to explain why Bemis et al. (2000) found small 

negative or even positive values of ∂δ13C(coral)/∂SST when radiation was constant in their 

experiments. So whether ∂δ13C(coral)/∂SST does vary with metabolic activity is a question 

difficult to answer using experimental studies. However, considering that kinetic 

fractionation is a process that has apparently little to do with photosynthesis and 

respiration rate (McConnaughey, 1989a), we can reasonably assume that ∂δ13C(coral)/∂SST 

does not vary with metabolic activity as long as the latter is hypothetically kept at a fixed 

level. In this case, the average value of –0.11‰/°C which Grossman and Ku (1986) and 

Bemis et al. (2000) obtained when no metabolic activity was present has been used in my 

calculations.  

In order to evaluate the potential influence of the use of different partial 

derivatives on the final results, I also reran the analysis of Rarotonga coral δ13C using 

0.05‰/°C as proposed by Bemis et al. (2000). The results are shown in Fig. 3.16. It can 

be seen that in this case the instantaneous contributions of changes in metabolic activity 



78



 79 

on coral δ13C are also larger than those of kinetic activity at Rarotonga. In this analysis 

kinetic fractionation accounts for about 19% of the total δ13C coral signal, compared to 

81% from metabolic fractionation. When the value of  –0.11‰/°C was used previously, 

the instantaneous contribution by kinetic activity accounted for about 28%. Thus, even if 

the ∂δ13C(coral)/∂SST may vary with different levels of metabolic activity, the contribution 

by changes of metabolic fractionation still appears to be larger than that of kinetic 

fractionation. Small variations of ∂δ13C(coral)/∂SST with metabolic fractionation may not 

cause much change in the final analysis. 

 

3.7 Concluding Remarks 

To my knowledge, although some experiments have been made to quantify the 

effect of metabolic fractionation on coral δ13C (e.g. Juillet-Leclerc, 1997), this is the first 

attempt to quantitatively separate the effects of kinetic and metabolic fractionation on 

δ13C in corals. The results of this study support the opinion that metabolic fractionation 

plays a dominant role in producing variations in coral δ13C. Several authors have 

previously arrived at the same conclusions (e.g. Fairbanks and Dodge, 1979; Grottoli and 

Wellington, 1999). But the new method proposed here gives actual estimates of different 

magnitudes of contributions by the two competing processes. One implication of this 

study is that kinetic effects may be negligible especially in the tropical regions and thus 

understanding the metabolic fractionation in terms of the various environmental factors 

remains to be a challenging part of our studies. A better understanding of the process of 

metabolic fractionation will be the key to understanding the relationships between δ13C 
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and the various climatic variables and utilizing coral δ13C for reconstructing the 

paleoclimate variations.   
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CHAPTER 4 
 
INTERANNUAL TO INTERDECADAL VARIABILITY IN THE SUBTROPICAL 

PACIFIC: A RECONSTRUCTION FROM THE MULTI-CENTURY OXYGEN 
ISOTOPE RECORD FROM A RAROTONGA CORAL 
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Abstract. In this chapter I have concentrated on a 271 year (1726-1997) subseasonal 

oxygen isotope (δ18O) record from a coral colony of Porites lobata at Rarotonga (21.5°S, 

159.5°W) in the southwest subtropical Pacific. Coral δ18O in this region appears to be 

influenced by the effects of both sea surface temperature (SST) and precipitation-

evaporation balance. Nearly all strong and very strong ENSO events listed in Quinn et al. 

(1987) and Quinn (1992) can be identified in the Rarotonga δ18O record. Interannual 

ENSO-band δ18O variability in the coral is also inversely correlated to the tropical 

Niño3.4 region. It suggests that although Rarotonga is located outside of the center of 

action of ENSO, there is a consistent response in this South Pacific region to ENSO 

forcing and δ18O in corals faithfully records past El Niño events in this region. 

Interdecadal variability (~30yr) accounts for about 5% of the variance in the δ18O record 

and appears to be related to processes associated with the Interdecadal Pacific Oscillation 

(IPO) and the Pacific Decadal Oscillation (PDO). Using band-pass filtering I have 

separated decadal coral δ18O variability (~12yr period) from interdecadal variability 

(~30yr period). Comparison of the Rarotonga δ18O record with other coral data from both 

the tropical and subtropical Pacific (New Caledonia (20.7°S, 166.2°E), Nauru (0.5°S, 

166°E), and Maiana (1°N, 173°E)) with the Niño3.4 and PDO index suggests that the 

decadal and interdecadal variability may have separate forcing mechanisms. The decadal 

variability appears primarily a response to the tropical Pacific while the interdecadal 

variability is more related to the midlatitude oscillation which is in agreement with 

studies that have examined the instrumental SST record.  
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4.1 Introduction 

It is well known that the climate exhibits significant variability on interannual 

time scales due to the effects of El Niño-Southern Oscillation (ENSO). El Niño events 

are associated with anomalous patterns of SST in the tropical Pacific Ocean including the 

eastward shift of the warm pool coupled with dramatic changes in global climate and 

ocean circulation. However, while many coral-based paleoclimatic studies have 

documented past variability of the ENSO system in the tropics before the instrumental 

record (e.g. Cole et al., 1993; Urban et al., 2000), the spatial and temporal evolution of 

ENSO events across the subtropical south Pacific is not well established. Based on their 

studies in New Caledonia (166°E, 22.5°S), Quinn et al. (1998) conclude that the western 

subtropical South Pacific may not correlate strongly with ENSO indices. But a study  

from Moorea lagoon (149.5°W, 17.3°S) (Boiseau et al., 1998) indicates that climatic 

variability is strongly affected by ENSO events in the central gyre region of the 

subtropical South Pacific. In the tropics, some studies suggest that El Niño events appear 

to have become more severe and more frequent in recent decades, possibly due to human-

induced greenhouse forcing (Hughen et al., 1999). In order to ascertain the relatively 

subtle interannual variability in the subtropical Pacific, it is necessary to develop 

additional records of sufficient length to allow accurate characterization of key climatic 

variables such as SST and precipitation in this region.  

On decadal time-scales, recent studies have demonstrated the existence of a 

persistent decadal/interdecadal oscillation in the Pacific, commonly referred to as the 

PDO (Pacific Decadal Oscillation) in the North Pacific (Trenberth and Hurrel, 1994; 

Mantua et al., 1997; Zhang et al., 1997) and IPO (Interdecadal Pacific Oscillation) over 
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the entire Pacific (Power et al., 1999; Salinger et al., in press). Based on instrumental 

data, the IPO and PDO appear to be robust, recurring patterns of Pacific-wide ocean-

atmosphere climate variability (Mantua et al., 1997; Zhang et al., 1997; Salinger et al., in 

press) which is spatially similar to ENSO, but which is weaker in amplitude and lasts for 

a much longer period of time. Although there is a paucity of meteorologic and 

oceanographic data in the South Pacific before 1950, similar SST variations have been 

documented in a coral Sr/Ca record from Rarotonga (Linsley, et al., 2000a). This coral-

based result agrees with other studies which have suggested that the North and South 

Pacific gyres may respond to similar forcing mechanisms (Mantua et al., 1997; Zhang et 

al., 1997; White and Cayan, 1998).  

Despite the identification of the decadal mode in the Pacific, the origin of this 

decadal-interdecadal scale oscillation remains poorly understood. Some authors suggest 

that unstable atmosphere-ocean interactions over the mid-latitude North Pacific coupled 

with changes in the large-scale ocean circulation might force the decadal/interdecadal 

climate variability (Ghil and Vautard, 1991; Latif and Barnett, 1994; Gu and Philander, 

1997), while others argue that tropical forcing is a stronger influence (that is, ENSO may 

contribute to the decadal-scale variability) (Jacobs et al., 1994; Trenberth and Hurrell, 

1994; Zhang et al., 1997). White et al. (1997) and White and Cayan (1998) examined the 

historical upper ocean temperature record for the period 1900-1990 from 40°S to 60°N in 

the Pacific and revealed two dominant sub-ENSO cycles: decadal (9 to 13 year) and 

interdecadal (18 to 23 year). They suggested that the origin of decadal signals is different 

from that of interdecadal signals. The evolution of the interdecadal signal appears to be 

dominated by equatorward propagation of SST anomalies from the extratropics to tropics, 
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while the decadal signal seems to involve the advection of SST anomalies by Rossby 

waves physics which is also responsible for ENSO frequencies near 15°-30° latitude in 

both hemispheres. This idea was supported by Lau and Weng (1995) and Mann and Park 

(1996) who also isolated the decadal and interdecadal signals from one to another by 

analyzing the surface temperature record from 1854 to 1993, and near-century long SST 

and sea level pressure (SLP) data.  

Since massive scleractinian hermatypic corals can live up to several hundred 

years, they are potentially an ideal source of information on interannual and interdecadal 

variations in surface ocean conditions over the past several centuries. Geochemical time 

series derived from coral skeletons has been recognized as promising monitors of past 

climate change in the oceans (for review see Dunbar and Cole, 1993). In this chapter I 

discuss a coral-based subseasonal oxygen isotopic (δ18O) record (which was also used in 

Chapter 2) spanning the period 1726-1997 (271 years) from Rarotonga (159°W, 21°S) in 

the southwest subtropical Pacific. This δ18O record provides new evidence of interannual 

to interdecadal Pacific climate variability over the last three centuries. In addition to 

developing a multi-century reconstruction of environmental history in this region, in this 

chapter I compare the Rarotonga record with other Pacific Ocean coral δ18O and 

instrumental records to examine the temporal features and spatial patterns of interannual 

and decadal/ interdecadal variability in the southwest Pacific gyre. 

 

4.2 Study Area and Coral Cores 

 The island of Rarotonga is located at 159.5°W and 21.5°S in the Cook Islands of 

the western subtropical South Pacific (WSSP) (Fig. 4.1). It has been recognized that the 
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WSSP is a dominant source region for water transport to the equatorial thermocline 

(Johnson and McPhaden, 1999). In addition, the WSSP is also an important source region 

for interannual sea surface temperature (SST) anomalies propagating into higher latitudes 

of the southern Hemisphere and the Antarctic Circumpolar Current (White and Peterson, 

1996; Peterson and White, 1998). Since Rarotonga is one of the southern-most islands in 

the tropical south Pacific, with no islands directly between Rarotonga and the Antarctic, 

it may provide us a unique opportunity for reconstructing the past climate change in the 

southwest subtropical Pacific.  

In April 1997 coral cores were collected from a colony of Porites lutea in 18.3m 

(60 feet) of water on the southwest side of the island of Rarotonga in open-ocean 

conditions. Cores B and C were collected in the same colony within 0.5 meters from each 

other. The total usable length of core B is 1.3m while core C is 3.5m (Fig. 4.2).  

Over the last two decades SST for both the 2°x2° (CAC SST) and 1°x1° area 

(IGOSS SST) (Reynolds and Smith, 1994) surrounding Rarotonga has ranged from 24° to 

27° with an average annual variation of ~4°C. The highest SST occurs in February and 

the lowest in July-August of each year. Precipitation is also generally highest in 

February-March when the South Pacific Convergence Zone (SPCZ) is in its most 

southern position (Baker et al., 1994).  

 

4.3 Methods 

4.3.1 Sample Preparation 

 ~7mm thick slabs of coral cut from cores drilled along the major axis of growth 

were cleaned with deionized water to remove saw-cuttings and were oven dried at 40°C. 
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Samples were continuously drilled at 1mm intervals using a low-speed micro-drill along 

tracks parallel to corallite traces as identified in X-ray positives. Because of a growth 

hiatus in core C, cores B and C were spliced together to make a continuous record (see 

Fig. 4.2). Core B was sampled from the top to 1316mm depth, while core C was sampled 

from 1104mm depth to the very bottom. This sampling scheme resulted in an overlap of 

about 212mm (~13 years) between core B and core C. This ensured that there was some 

repetition between core B and core C. A clear match point in coral Sr/Ca and δ18O was 

found at 1926 A.D. and the data from two cores was spliced at this point.  

 

4.3.2 Mass Spectrometer Analysis 

 Oxygen isotope analyses were performed by Micromass Optima triple-collecting 

mass spectrometers at the University at Albany, State University of New York and at the 

Harvard University stable isotope facility. The total number of samples analyzed was 

2596. The first 668 samples were analyzed every 1mm at Harvard University while all 

other samples were analyzed every other mm at the University at Albany. At Harvard 

University ~1mg samples are reacted in vacuo in a modified autocarbonate device at 

90°C and the purified CO2 analyzed. At the University at Albany ~150µg samples were 

dissolved in 100% H3PO4 at 90°C in a Multiprep carbonate inlet system and the resulting 

CO2 gas analyzed. These two different sampling densities show equal annual δ18O 

amplitudes, which indicates that analysis of every other mm samples still captures the full 

range of the annual cycle. This result agrees with Boiseau et al. (1998) and Quinn et al. 

(1998) who concluded that with a relatively small annual SST range the bimonthly 

sampling captures the full range of the annual cycle. External precision at the University 
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at Albany is better than 0.04‰ for δ18O based on analysis of replicate samples. The 

standard deviation of 468 samples of the international NBS-19 standard analyzed was 

0.038‰ for δ18O. At Harvard University the analytical uncertainty and reproducibility of 

±0.05‰ is documented by analysis of an in-house homogenized coral standard. 10% of 

all samples were analyzed in duplicate. The average difference between duplicate 

analyses was 0.025‰.  

 

4.3.3 Chronology 

The chronology was developed based on the annual periodicity of δ18O and Sr/Ca 

and is the same as published in Linsley, et al. (2000a). The total record spans from 1726-

1997 and includes the 71 years (1997-1926) recorded in core B and the remaining 200 

years (1925-1726) recorded in core C (an overlap of about 13 years was discarded from 

core B). This places large positive δ18O anomalies in the record during the intervals 

1782-84, 1791-94, 1876-78, 1940-41, and 1982-83 when there were noted very strong El 

Niño events and colder SST anomalies in the eastern equatorial Pacific (Quinn et al., 

1987; Quinn, 1992). Based on our chronology, the top 61 years was analyzed for δ18O at 

an average of 15 samples/year, while below 1935, δ18O was analyzed at 7~8 

samples/year. In order to compare with the monthly instrumental data the subannual age 

estimates were then linearly interpolated into 12 points/year for δ18O. Since δ18O 

analyzed at 7~8 samples/year did not attenuate the amplitude of the annual cycle, this 

method does not appear to bias the data in any way. The final result of subseasonal δ18O 

at 12 samples/year for the period 1726-1997 from Rarotonga is shown in Fig. 4.3.  
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4.3.4 Time Series Analysis 

A Singular Spectrum Analysis (SSA) software program written by E. Cook 

(Lamont-Doherty Earth Observatory) was used in the analysis of the coral and climate 

time series discussed below. Briefly, SSA is a fully nonparametric analysis technique 

based on principal component analysis of delay coordinates in vector space for a time 

series. It uses M-lagged copies of a centered time series to calculate eigenvalues and 

eigenvectors of their covariance matrix. Reconstructed components (RC’s) are then 

calculated which allow a unique expansion of the signal into a sum of the different 

frequency components. A detailed description of this technique and its paleoclimate 

application is given by Vautard and Ghil (1989) and Vautard et al (1992). SSA analysis 

of the δ18O data was run multiple times with different window lengths (M). When set 

between M=80 months to M=160 months, there was little difference in the results. In 

table 4.1 I show SSA results for M set equal to 125 months. 

 

Eigenvector Variance (%) Cumulative Variance (%) Mean Period (year) 

1 30.42 30.42 Trend 

2, 3 38.04 68.46 1 

4 4.67 73.14 10.42 

5-8 9.47 82.61 3-7 

9, 10 2.76 85.37 2.98 

 
Table 4.1. Singular Spectrum Analysis for Rarotonga: Unfiltered δ18O Series 1726-1997. 
Window length M=125 months. 
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4.4 Results and Discussion 

4.4.1 General Characters and Frequency Analysis of Coral δ18O 

The annual mean δ18O value of this Rarotonga coral has decreased by about 

0.45‰ over the period 1726-1997 (see Fig. 4.3). This trend is not uniform and occurs in 

three stages. Before 1825 the trend is superimposed on large decadal fluctuations, while 

between 1825 and 1925 the trend is relatively stable showing a constant rate of 

decreasing δ18O. After 1900, δ18O shows abrupt decadal shifts to about 1950, then is more 

constant to the top of the core. This result is contrary to that found at Mariana Atoll in the 

equatorial western Pacific (Urban et al., 2000). They observed higher amplitude decadal 

variations and weaker interannual variations in coral δ18O in the 19th century. The abrupt 

shift between 1925-1940 which has been observed in several other coral δ18O records (for 

example, New Caledonia; Quinn et al., 1998), also occurs at Rarotonga, while another 

inferred climate shift between 1840-60 which is observed in Galápagos (Dunbar et al., 

1994) and the Great Barrier Reef (Druffel and Griffin, 1993) coral δ18O records is not 

recognized in our record. Finally, consistent with previous work on ENSO behavior 

(Trenberth and Shea, 1987; Cole et al., 1993; Linsley et al., 2000b), interannual δ18O 

variance is attenuated between 1920-1940.  

The record of δ18O shows clear seasonal variations (Fig. 4.4). Although the δ18O 

data shows good negative correlation with monthly SST in the period 1970-1997 (r=0.8), 

the slope of the SST-δ18O calibration is –0.135‰/°C which is much higher than the value 

derived from empirical and laboratory observations for biogenic aragonite (–0.21‰/°C ~ 

–0.23‰/°C) (Epstein et al., 1953; Tarutani et al., 1969; Grossman and Ku, 1986). If we 
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assume that the variation in coral δ18O is a function of variability of both δ18Osw and SST 

this deviation in slope should reflect the variation of δ18Osw (The separate effects of SST 

and δ18Osw on coral δ18O was discussed in Chapter 2). 

 SSA was used to more precisely identify and assess the pacing and amplitude of 

the interannual, interdecadal and long-term δ18O components in this δ18O record. For the 

original unfiltered data, the 10 most significant eigenvectors and their associated variance 

and periods are listed in Table 4.1. The most significant component is the annual cycle 

which accounts for ~38% of the total variance. The long-term trend counts for about 

~30% of the total variance. SSA also indicates a significant non-oscillatory decadal mode 

and several interannual modes. As discussed below the interannual components (3.0 to 

7.6 years) appear to be related to ENSO.  

 

4.4.2 Interannual Variance 

During ENSO “warm mode” events the SPCZ moves to the northeast joining the 

ITCZ in the central-western Pacific (Trenberth, 1991) which leads to cooler and drier 

than average conditions in the region of Rarotonga. During ENSO “cool mode” events, 

the situation reverses; SST rises and the SPCZ intensifies near Rarotonga. Monthly SST 

data for Rarotonga spanning the period 1971-1997 indicate ~1°C anomalies during most 

El Niño events (1976-77, 1982-83, and 1992-93) (Reynolds and Smith, 1994). To 

examine whether the interannual (3~7 year) δ18O variance at Rarotonga is associated with 

tropical ENSO variability, I compared the Rarotonga coral δ18O record with Quinn et al’s 

(1987) and Quinn’s (1992) ENSO reconstruction and the Niño 3.4 SST Index (Fig. 4.5). 

The coral δ18O data was detrended by removing a linear trend and a 1-year smoothing
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filter was applied to highlight the interannual variability. Nearly all the strong and very 

strong ENSO events listed in Quinn (1992) can be identified in the Rarotonga δ18O 

record for the period 1760-1997. Of the 28 strong to very strong ENSO events presented 

by Quinn (1992), 26 are reflected in our δ18O ENSO reconstruction. The only two 

exceptions are the 1827-28 and 1911-12 ENSO events. 12 of the moderate ENSO events 

identified by Quinn (1992) are also recognized in our δ18O record which include 1768-69, 

1776-78, 1806-07, 1817, 1835-36, 1880-81, 1884-85, 1891, 1923, 1932, 1951-52, and 

1953. However, it should be noticed that the strength of tropical ENSO events and the 

amplitude of the subtropical isotopic excursion are not directly correlated. The most 

apparent example is the moderate ENSO event of 1884-85 identified by Quinn et al. 

which is shown by a very large anomaly in our δ18O record (~0.25‰ enrichment in coral 

δ18O which is equal to ~1.2°C in SST if it is assumed that all the enrichment is due to the 

effect of SST (Epstein et al., 1951), ~0.65‰ in salinity if all is assumed as due to the 

effect of salinity (Schmidt, 1999), or some combination thereof) and even larger than 

most of the stronger ENSO events. Moreover, a few events for example in 1936-37 

revealed in my ENSO reconstruction are not referenced by Quinn (1992).  

Overall the strong correlation between coral δ18O at Rarotonga and ENSO events 

in the tropics is consistent with the coral-based δ18O record from Moore-lagoon in the 

central subtropical Pacific (149.5°W, 17.3°S) (Boiseau et al., 1998) but disagrees with 

another coral-based δ18O record from New Caledonia in the South subtropical Pacific 

(166°E, 22°S) (Quinn et al., 1998).  

The coral δ18O interannual variability at New Caledonia is not correlated strongly 

with ENSO indices in contrast to the results of Rarotonga and Moore-lagoon. Quinn et al. 
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(1998) suggest that some of the coral δ18O variability at New Caledonia may have been 

caused by volcanic eruptions near New Caledonia as first demonstrated by Crowley et al. 

(1997). However, this appears to be a minor factor in the Rarotonga region with the 

exception of the period 1815-1828 when coral δ18O at Rarotonga exhibits an abnormal 

enrichment. This period roughly coincides with the time that the Mount Tambora 

eruption (April, 1815) occurred which has been identified as the largest and deadliest 

volcanic eruption in recorded history (Rampino and Self, 1982; Stothers, 1984). Large 

amounts of fine ash and volatiles were dispersed into the upper atmosphere by Tambora 

eruptions, and Rampino and Self (1982) demonstrated that they could have led to long-

term climate cooling. A similar abrupt shifting in Sr/Ca which occurred in 1815 appears 

to support this observation (Linsley et al., 2000a). However, since the coral δ18O shift 

lasted for more than 10 years, the possibility cannot be excluded that there was also 

decadal oceanographic variability influencing coral δ18O over this same period.   

The strong correlation between coral δ18O and ENSO events at Rarotonga is 

further demonstrated when compared to the Niño3.4 SST Index for the period 1856-1997 

(Trenberth and Hoar, 1996; Niño3.4 Index from Kaplain et al., 1998). Interannual 

variations of δ18O is highly coherent with Niño3.4 Index in both time and frequency 

domains (see Fig. 4.5). The strong ENSO events in 1876-78, 1899-90, 1913-15, 1918-20, 

1940-41, 1957-58, 1972-73 and 1982-83 are all synchronously represented in the 

Rarotonga δ18O record. This both confirms the chronology and suggests that this coral 

δ18O record can be used to assess the response of the South Pacific gyre to ENSO forcing 

over the last 271 years. At Rarotonga, although stronger decadal variability for some 

periods (such as 1930-40) causes the visual offset between coral δ18O and Niño3.4 Index 
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(see Fig. 4.5), the interannual changes are consistent with Niño3.4 over the total period of 

1850-1997. This disagrees with the result from Druffel and Griffin (1999) who analyzed 

coral Δ14C and δ18O from Abraham Reef in the southwestern Pacific (153°E, 22°S). 

Although they also observed decreases in coral δ18O during the ENSO events, they 

indicated that the correlation between ENSO events and δ18O is not as good between 

1870 and 1920 as the other time intervals. At Rarotonga, the interannual changes show 

consistent correlation with the Niño3.4 region SST for the period 1850-1997.   

Finally, since the Niño3.4 SST Index only extends back to 1856, to display the 

spatial pattern of interannual variation around Rarotonga over the whole period of 1726-

1997, the interannual variability of δ18O is compared with that of Rarotonga coral Sr/Ca 

which is also shown in Fig. 4.5. In general, δ18O and Sr/Ca show consistent interannual 

variations over most of the record. For the period before 1850, when there is no Niño3.4 

record, Sr/Ca and δ18O show generally consistent correlation which is most pronounced 

for the period 1726-1765. There also exist discrepancies between coral Sr/Ca and δ18O in 

some periods of time, for example 1815-1820 and 1808-1813, which may be due to the 

fact that coral Sr/Ca is mainly a function of SST (Linsley et al., 2000a) while δ18O is a 

function of both SST and δ18Osw. But overall for the El Niño event years, the anomalous 

enrichment of δ18O (decreased SST and/or decreased precipitation) corresponds to an 

anomalous enrichment of Sr/Ca (decreased SST). During the La Niña event years, 

anomalous depletion of δ18O corresponds to an anomalous depletion of Sr/Ca.  

From the above analysis I suggest that although Rarotonga is outside of the center 

of El Niño activity, it is sensitive to oceanographic variability during ENSO events. 

There is a consistent response in this South Pacific region to ENSO forcing with El Niño 
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events which extends at least over the past 271 years. There is no strong evidence 

showing that ENSO events are intensifying in recent decades in this area which disagrees 

with the observation by Trenberth and Hoar (1996, 1997) and Hughen et al., (1999). 

However, it should be pointed out that since the subtropics is not in the center of action 

for ENSO variability, the possibility cannot be excluded that if other external factors are 

influencing coral δ18O at Rarotonga, they could obscure the influences of SST and SSS 

and result in indistinct characteristics of ENSO at this site.  

 

4.4.3 Decadal/Interdecadal Variance 

Characteristics of Decadal/Interdecadal Variance  

Another interesting aspect of the Rarotonga δ18O record is the large magnitude of 

decadal-scale variability. I compare the Rarotonga δ18O record with the PDO index for 

the period of 1900-1997 and find notable similarities in time and frequency domains (Fig. 

4.6). The two major decadal-scale phases in the PDO index (which are consistent with 

IPO index) are clearly shown in the Rarotonga δ18O record: A relatively warm/wet phase 

at Rarotonga prevailed between 1900-1924 and between 1947-1976, while a cool/dry 

phase dominated between 1925-1946 and from 1977 through the mid-1990’s (see Fig. 

4.6) (Latif and Barnett, 1994; Mantua et al., 1997). In addition, shifts of shorter duration 

in the Rarotonga δ18O data (such as an abrupt warming and/or salinity reduction 

beginning in 1940-41, a sudden cooling and/or salinity increase in 1958, and a warming 

and/or salinity reduction again after 1988) are also coherent with those in the PDO index. 

The correlation between δ18O and the PDO index is best for the period 1925-46 (r=0.72) 

compared with other periods and it is this period when Pacific-wide interannual ENSO
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variability was relatively weak (e.g., Trenberth and Shea, 1987). Based on the analysis of 

corals from Maiana Atoll, Urban et al. (2000) suggest that in general decadal variability 

should be strongest, and interannual variability weakest when environmental conditions 

are relatively cooler and drier in the Pacific. Our results seem to support their observation 

although this coupling occurred in a different period at Rarotonga (1925-46) from that at 

Maiana Atoll (mid to late nineteenth century).  

Thus the decadal/interdecadal SST and/or SSS variability in δ18O may be related 

to the process underlying the PDO and IPO. This agrees with some authors (e.g., 

Trenberth, 1990; Trenberth and Hurrel, 1994) who propose that North Pacific 

interdecadal changes appear to be linked through ocean-atmosphere teleconnections to 

the southern hemisphere and are characterized by global reflection and translation 

symmetries between the northern and southern hemisphere. Salinger et al. (in press) 

suggest that the decadal changes induced by the IPO in the South West Pacific regions 

originate as changes in atmospheric mass between the western and eastern parts of the 

region. White and Cayan (1998) and Johnson and McPhaden (1999) further document 

that the South Pacific dominates the Pacific interdecadal signal as the largest magnitude 

interdecadal upper ocean temperature anomalies occur at the depth of the main 

pycnocline in the South Pacific and the southern Hemisphere interior pycnocline flow in 

the Pacific carries about three times more subtropical water towards the equator than does 

the northern interior route. 
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Potential Mechanisms of Decadal/Interdecadal Variance  

The mechanism driving decadal-scale climate variability is still poorly 

constrained. In order to examine the spatial patterns of decadal-scale variability preserved 

in corals in the Pacific, western Pacific coral δ18O records from both subtropical and 

tropical regions are compared with the Niño3.4 SST index and the PDO index. In the 

western subtropical Pacific, a seasonal resolution δ18O record from New Caledonia 

(20.7°S, 166.2°E; 1660-1991) (Quinn et al., 1998) is compared to our data from 

Rarotonga. To evaluate the tropical signal, two δ18O series from the western tropical 

Pacific: a bimonthly δ18O record from Maiana (1°N, 173°E; 1840-1994) (Urban et al., 

2000) and a seasonal δ18O record from Nauru (0.5°S, 166°E; 1891-1995) (Guilderson and 

Schrag, 1999) are examined. All time series were low-pass filtered at 7 years then 

analyzed with SSA. Results are shown  in Table 4.2. This analysis differentiates the 

interdecadal from decadal variations. The PDO index only shows interdecadal variance 

while Nino3.4 index only shows decadal variability. The subtropical records (Rarotonga 

and  New Caledonia)  show both  decadal and  interdecadal variability  while the  tropical  

 

 Location Decadal 
Variance (yr) 

Interdecadal 
Variance (yr) 

PDO index Used as North Pacific Decadal index -- ~30 

Niño3.4 index Used as El Niño index ~12-16 -- 

Rarotonga South subtropics (21°S, 159°W)  ~12-15 ~31 

New Caledonia South subtropics (20°S, 166°E) ~11-15 ~30 

Maiana Tropics (1°N, 173°E) ~13 -- 

Nauru Tropics (0.5°N, 166°E) ~13 -- 

 
Table 4.2. Singular Spectrum Analysis for PDO index, Niño3.4 SST index, and four regions including 
Rarotonga, New Caledonia, Maiana and Nauru: Low passed filtered at period=7yr for all series.  
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records (Maiana and Nauru) only show decadal variability. These results support the 

suggestion that the climatic fingerprints of interdecadal variability are most visible in the 

subtropical sector (Mantua et al., 1997; Evans et al., 2000). 

Decadal variability is preserved at all four coral sites (Fig. 4.7) and comparisons 

with Niño3.4 index show that the decadal variability changes in phase with no lag and 

covaries in amplitude with Niño3.4 in most of the overlapping sections in all four 

regions. There is no distinct difference of the spatial pattern between tropical regions and 

subtropical regions although the magnitude of the decadal variability at tropical regions 

(Nauru and Maiana) is generally larger than that at subtropical regions (Rarotonga and 

New Caledonia). The correlation is highest in 1910, 1940, and 1977 for the four regions, 

which also happen to be strong El Niño years (Quinn et al., 1987; 1992).  

Interdecadal variability is only preserved in the subtropical records of New 

Caledonia and Rarotonga. The interdecadal components of both New Caledonia and 

Rarotonga show a similar pattern to that of PDO index throughout most of the 20th 

century (Fig. 4.8). Several of the most pronounced interdecadal changes in the PDO 

index are evident in the Rarotonga and New Caledonia δ18O records (for example at 

1976-77 and 1945-46). However, disagreements also exist between the coral interdecadal 

components and the PDO index in some intervals (for example over 1915-25 and 1960-

70). It is possible that these intervals represent the fact that δ18O is affected by both 

δ18Osw and SST while the PDO index is derived from only SST in the North Pacific. 

Thus, the lack of correlation in these intervals may be due to variations of δ18Osw. 

Another possible explanation for these disagreements may be related to the fact that we 

are comparing coral δ18O series from two specific points in the South Pacific with a
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North Pacific-wide index as indicated in Linsley et al. (2000a). The similar interdecadal 

trends between Rarotonga and New Caledonia in 1915-25 and 1960-70 seems to favor 

the later explanation (see Fig. 4.8). 

The above analysis indicates that in the subtropical South Pacific, coral δ18O 

decadal variability appears to be more related to tropical variations while the interdecadal 

variability appears to be more closely related to mid-latitude variations. Decadal variation 

is absent in the PDO while interdecadal variation is absent in the Niño3.4 and equatorial 

coral δ18O records. The decadal variability in the subtropics shows consistent temporal 

patterns at Rarotonga and New Caledonia but with a smaller amplitude than in the tropics 

at Nauru and Maiana. Interdecadal variability is only preserved in the subtropics. 

Therefore, I speculate that these two types of variability may represent separate SST 

and/or SSS spatial structures with different sources as suggested by White et al. (1997), 

White and Cayan (1998) and Mann and Park (1996). It leads me to hypothesize that there 

might exist separate modes of decadal and interdecadal variability in the Pacific. Decadal 

variability appears to be primarily a response to the tropical Pacific while interdecadal 

variability appears to be more related to the mid-latitudes of the South Pacific. The 

results from a western Indian coral Ocean further supports our hypothesis (Cole et al., 

2000). Cole et al. (2000) also observed decadal time-scale variability of coral δ18O from 

Kenya in the western Indian Ocean. Since there is not a PDO signature in the Indian 

Ocean SST and SLP fields (Mantua et al., 1997), they suggested that the tropical Pacific 

is the strong candidate for forcing of decadal climate variability in the Indian Ocean.  

Since the PDO index only extends back to 1900, to obtain temporal and spatial 

patterns of interdecadal variation in the subtropical southwest Pacific over a longer time 
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scale the interdecadal component of the Rarotonga record can also be compared with that 

of New Caledonia (see Fig. 4.8) back to the early 1700’s. A similar interdecadal pattern 

over the whole period is observed although they display different amplitudes over part of 

the period. It appears that the interdecadal variability at New Caledonia was stronger 

during the 19th century but weaker during the 18th century while at Rarotonga it was 

weaker during the 19th century but stronger during the 18th and 20th centuries. In general, 

it is evident that the interdecadal variability has persisted for the last three hundred years 

in the Pacific.  

Trenberth (1990) pointed out that since the ocean is simultaneously affected by 

many climate forcings, it may be very difficult to clearly separate different causes for any 

observed phenomenon and there may be multiple forcings contributing to any observed 

change in differing amounts. Therefore, further research on multi-century coral cores 

from broader areas is required to gain a better understanding of the longer-term changes.     

     

4.5 Summary 

(1) A 271-year δ18O coral record (1726-1997) has been developed from Rarotonga using 

a specimen of Porites lobata. The δ18O data shows clear seasonal variation with 

inverse correlation with SST. However, a δ18O-SST relationship of –0.135‰/°C 

indicates that salinity may also play a significant role in δ18O changes due to the 

influence of SPCZ rainfall.  

(2) Comparisons with historical ENSO activities reconstructed by Quinn et al. (1987; 

1992) and Niño3.4 Index suggest that although Rarotonga is located outside of the 

center of action of ENSO, the δ18O record is generally sensitive to ENSO variability 
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in this region. Its in-phase variation with the Niño3.4 suggests a consistent response 

in the region of the south Pacific to ENSO forcing. The comparison of coral δ18O 

with Sr/Ca further suggests that climate variability at this site is strongly affected by 

ENSO events which can extend back to 271 years. 

(3) There is a large percentage of variance in δ18O at decadal/interdecadal scales at 

Rarotonga. Comparison with the PDO index shows that the interdecadal variability in 

Rarotonga may be related to the processes associated with the North Pacific 

Oscillation. It supports the suggestion by some studies that North Pacific changes 

appears to be linked through air-ocean teleconnections to the southern hemisphere 

interactions.  

(4) The decadal-scale variability (11 to 16 year) is differentiated from the interdecadal-

scale variability (~30 year) for the period of 1726-1997 at Rarotonga. Comparisons of 

the decadal component of δ18O of both tropical and subtropical regions with that of 

Niño3.4 Index appear to suggest that the decadal-scale variability is different from 

interdecadal variability in periodicity and spatial structures. This observation implies 

that in the South Pacific gyre, decadal and interdecadal oceanographic variability 

might result from separate mechanisms. 
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CHAPTER 5 

 
EXAMINATION OF THE REPRODUCIBILITY OF  

δ18O AND δ13C IN CORALS 
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Abstract. Stable oxygen isotope (δ18O) analysis of two separate coral cores (1726-1997; 

1926-2000) from Porites Lutea colonies growing on the opposite sides of the island of 

Rarotonga (21.5°S, 159.5°W) suggests that coral δ18O is mainly affected by 

environmental variables such as SST and precipitation, while the effect of growth rate is 

minimal. Coral δ18O at Rarotonga not only faithfully records seasonal variability, but also 

interannual variability and a long-term trend. Coral δ18O at this site can therefore be 

reliably used to reconstruct past variation of SST and precipitation in this region. 

However, stable carbon isotope (δ13C) from the same corals fails to document common 

features in interannual to decadal signals at Rarotonga. Its interpretation therefore 

remains enigmatic. As the carbon in corals is derived from some combination of sources, 

development of robust paleoclimatic interpretations from coral δ13C records requires an 

improved understanding of both endogenous and exogenous factors that control δ13C 

fractionation in coral skeletons. Any environmental interpretation of δ13C record in corals 

should be made with caution.  
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5.1 Introduction 

 It is known that coral δ18O is several permil more depleted than expected from 

carbonate accreted in isotopic equilibrium with the ambient seawater (McConnaughey, 

1989a). Weber and Woodland (1972) demonstrated that although hermatypic corals 

deposit their aragonite skeleton in disequilibrium with seawater, the slope of the curve 

showing the relationship between δ18O and ambient temperature is constant and the same 

as that given by the equation of Epstein et al. (1953). It is this assumption, that the 

departure from equilibrium remains constant, that makes coral δ18O useful as a recorder 

of SST and δ18Osw. Therefore, at present it is generally believed that as long as a 

consistent, maximum growth axis is sampled within a coral colony (Weber and 

Woodhead, 1972; McConnaughey, 1989a; Shen et al., 1992b; Gagan et al., 1994; 

Wellington et al., 1996; Linsley et al., 2000b), δ18O in corals can be used to reconstruct 

environmental factors. However, several studies question this assumption and show that 

the rate of skeletal accretion may also be an important factor that influences coral δ18O 

(e.g. Land et al., 1975; Barnes and Lough, 1993; Allison et al., 1996; Cohen and Hart, 

1997). Land et al. (1975) observed greater depletion in skeletal 18O in the faster growing 

areas of single coral colonies and also in the faster growing skeletal elements from the 

same calice. Cohen and Hart (1997) also reported significant δ18O differences along 

sample tracks only 2 cm apart in two sections. They attributed the δ18O offset to different 

calcification rates on the irregular surface of this colony.  

         Therefore, one particular problem with the use of coral isotopic records in 

climatic studies is the reproducibility of the δ18O analysis, which is directly related to the 

validity and accuracy of the interpretation of the variation of skeletal δ18O. At present 
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there are several studies on the reproducibility of coral stable oxygen isotopic time series 

and there is some disagreement on the degree of reproducibility (Tudhope et al., 1995; 

Azzolina, 1997; Guilderson and Schrag, 1999; Linsley et al., 2000b). Azzolina (1997) 

examined δ18O in four coral cores collected from northern Red Sea and found no exact 

agreement among them and he attributed this disagreement as due to variations in the 

effect of the growth rate and the environmental stress during the winter months on the 

slower growing corals. Alternatively, Guilderson and Schrag (1999) observed a 

consistency of two coral δ18O records from Nauru in the western Pacific and confirmed 

that coral δ18O is a robust recorder of environmental variables. Tudhope et al. (1995) and 

Linsley et al. (2000b) arrived at similar conclusions based on reproducibility studies of 

δ18O at New Guinea and Clipperton, respectively. In this chapter, the reproducibility of 

temporal variations in coral δ18O record from Rarotonga (159°W, 21°S) is examined 

based on comparisons of the two coral records (cores 2B+2C, used in previous chapters 

2-4; and core 3R) collected from Rarotonga in 1997 and 2000, respectively. The potential 

growth rate effect on δ18O is also discussed. 

Unlike δ18O, the δ13C signal in coral skeletons is often difficult to decipher due to 

its complicated interactions with physiological processes. Although at certain sites coral 

δ13C shows strong correlation with changes in some environmental variables such as light 

levels (e.g. Fairbanks and Dodge, 1979; Leder et al., 1991), several studies on the 

reproducibility of δ13C at adjacent corals all indicate little similarity in their δ13C 

signatures (Guilderson and Schrag, 1999; Linsley et al., 2000b). In this chapter, the 

reproducibility of δ13C of the same two coral records (2B+2C; 3R) from Rarotonga is 

also examined and the complexity of δ13C signature is discussed. 
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5.2 Sample Preparation and Chronology of Core 3R 

Coral colonies of Porites lutea were collected at Rarotonga in 1997 and 2000. 

Two cores (2B+2C) were collected in April 1997 from the same colony on the southwest 

side of the island at a water depth of 18m (60 feet) (see chapters 2-4). In May 2000, 

another coral core (3R) was collected from a colony of Porites lutea at a water depth of 

9m  (30 feet) on the north side of the Rarotonga island. Average wave amplitude at this 

location is weaker than on the southwest side and a small river is 0.5km from the coral 

site. The sample preparation and mass spectrometer analysis are the same as those for 

core 2B and 2C presented in the previous chapters. The total usable length of core 3R is 

2.1m, of which 1025mm has been analyzed presently. Similar to cores 2B and 2C, the 

first 400mm of core 3R was sampled every 1 mm while the interval from 400 to 1025mm 

was sampled every other 1 mm. These two different sampling densities result in equal 

annual δ18O amplitudes, similar to the results for cores 2B and 2C. The standard 

deviation of 106 analyses of the international NBS-19 standard was 0.033‰ for δ18O and 

0.016‰ for δ13C.  

The chronology of core 3R was developed based on both the dense banding 

observed in X radiograph positive prints and annual periodicity of δ18O obtained from 

stable isotope profiles. Both methods documented a total of 74 years over the analyzed 

section of 3R. As this core was collected live from Rarotonga in June 2000, the first year 

is assigned to April 2000 (to account for the tissue layer) and the last year is counted 

down to 1926. The final result of subseasonal δ18O and δ13C for the period 1926-2000 of 

core 3R is shown in Fig. 5.1. 
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5.3 Oxygen Isotopes 

 Subseasonal oxygen isotope results are highly consistent along the length of the 

two records for the period 1926-1997 (r=0.8) (Fig. 5.2a and 5.2b). The average amplitude 

of the δ18O seasonal cycles in the two records is similar, with an annual range of variation 

of ~0.6‰ in both. In some years, for example, in 1931, 1951, 1959, 1971, and 1988, 

when 3R displays abnormal depletion or enrichment in δ18O, 2B+2C also shows similar 

δ18O amplitudes. The only exception occurs between 1935 and 1940 in which the annual 

amplitude of variation of δ18O in core 2B+2C is twice as large as that in core 3R. 

Examination of the 1 year moving correlation window shows that δ18O records of 3R and 

2B+2C are strongly correlated with each other, sharing an average of 83% variance (Fig. 

5.2c). Closer inspection indicates that before 1950, the shared variance is ~74%, while 

after 1950 it reaches ~87%. 

  The consistency of these two records also generally occurs on interannual time 

scales. Both show interannual variation with ~0.2-0.3‰ amplitude. In order to highlight 

the interannual variability the δ18O data in both records are smoothed using a 12-month 

running average (Fig. 5.3). The interannual variance of the two δ18O series shows 

common anomalies during ENSO event years and displays a strong correlation with 

R=0.84. For the period of 1926-1997, all the strong and very strong ENSO events 

identified in Quinn et al. (1987) and Quinn (1992) can be identified on both δ18O records 

(for example in 1940-41, 1957-58, 1965-66, 1972-73, and 1982-83). As discussed in 

chapter 4 core 2B+2C δ18O is sensitive to ENSO variability (see Chapter 4). The strong 

correlation between coral δ18O in core 2B+2C and 3R provides strong evidence that 

supports this observation although core 3R only extends back to 1926. However, I also
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note that there are a few discrepancies on interannual time-scales between the two curves, 

for example in 1942-47 and 1955-57, which can be as large as ~0.2‰ [equal to ~1°C in 

SST (Epstein et al., 1953), or ~0.5‰ in salinity (Schmidt, 1999), or some combination 

thereof]. These differences may be related to the fact that 3R is more affected by salinity 

due to a small local river which is 0.5km from it.  

A long-term trend of –0.4‰ in δ18O is observed in both records, showing a 

progressive shift toward more negative values over the interval 1926 to 1997. There is no 

offset in absolute values between the two δ18O records for the period 1926-1997. The 

differences in δ18O between the cores 2B+2C and 3R (δ18O2B+2C – δ18O3R) for the period 

1926-1997 are relatively small, and vary around zero with no trend, which suggests that 

the relative disequilibrium between the two records is constant (Fig. 5.4).  

It is generally believed that the factors that cause the long-term trend may include 

the secular change in SST due to global warming (Quay, 1992), a salinity change due to 

the secular change of the ocean circulation (Gagan et al., 1998) and/or some unknown 

coral growth effect (Land et al., 1975). At Rarotonga the average monthly temperature 

data (NOAA NODC WOA 98 monthly temperature) (Conkright et al., 1998) shows 

essentially the same variations at 10m and 20m although the data in several months is not 

available (Fig. 5.5a). The average monthly salinity data (NOAA NCEP EMC CMB 

Pacific monthly salinity) (Ji et al., 1995) shows identical variation at 10m and 20m water 

depth (Fig. 5.5b). Thus, we can assume that the variations of SST and salinity would have 

approximately the same effects on these two corals collected from different depths. The 

similar magnitude of the secular trend (–0.4‰) shown in the two records therefore 

implies that the effect of the growth rate of these two corals should also be approximately
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the same. However, the examination of their linear extension rates shows that the 

characteristics of the two extension rate records are different  (Fig. 5.6).  

Skeletal growth parameters can be separated into components of extension, 

density, and calcification. Linear extension can be estimated directly from x-radiographs 

by measuring the width of each annual density couplet. Consequently, this aspect of 

skeletal growth is the most commonly reported (Lough and Barnes, 1997), and growth-

rate related isotopic variations in coral skeleton are most often reportedly linked to 

variations in linear extension rather than calcification (Land et al., 1975; Aharon, 1991; 

de Villiers et al., 1995; Allison et al., 1996). Thus, if the linear extension rate is used as 

an albeit imprecise proxy for calcification rate, over the same period of 1926-1997, the 

linear extension rate of core 2B+2C was faster and increased from 14.8mm/yr to 

16.5mm/yr (totally 1.7mm increase of extension rate) while core 3R was slower and 

remained constant at about 13mm/yr. The differences of the extension rates between the 

two cores range from 1.8mm to 3.5mm over the 71 years. Changes in linear extension in 

the two cores do not correspond to the long-term trend in the δ18O profiles, which may 

suggest that extension rate is not responsible for the long-term secular changes in δ18O in 

the two records. Closer examination of Fig. 5.4 shows that before 1946 the difference 

between the two δ18O records was larger than after 1946. It is around this period that an 

important decadal shift occurred in the North Pacific, (Mantua et al., 1997; Zhang et al., 

1997). This change in the difference between the two coral δ18O records is therefore not 

likely attributable to the extension rate, but probably related to a major shift in 

environmental parameters (Latif and Barnett, 1994; Trenberth and Hurrell, 1994). In 

addition, as the two colonies are of different total age, the same 0.4‰ δ18O trend in the
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two cores with different ages supports the above analysis that the long-term trend in δ18O 

may not be biological mediated but rather may be due to external environmental changes.  

My results agree with the observations of Guilderson and Schrag (1999). From 

the analysis of two separate coral records from Nauru, the authors also interpret the 

secular trend in coral δ18O to be the result of environmental changes rather than a change 

in calcification-rate-driven disequilibria. In addition, from the analysis of three different 

coral records at Clipperton Atoll, Linsley et al. (2000b) also suggested that the long-term 

trend is not likely a result of biological growth effect. Therefore, these new results 

support the argument that if a consistent, maximum growth axis is sampled within a coral 

colony, δ18O in corals may be reliably used to reconstruct the past variations of SST and 

δ18Osw.  

 

5.4 Carbon Isotopes 

5.4.1 Reproducibility of Carbon Isotope in Corals 

 While the oxygen isotope results show mostly common features between the two 

records, the carbon isotope results are disparate (Fig. 5.7). Although in general, the 

seasonal cycles of the two records show a similar annual ranges of  ~0.7‰, examination 

of the 1 year moving correlation window shows that the correlation between 3R and 

2B+2C δ13C records are much lower than that of δ18O, sharing only ~42% variance. 

Especially before 1950, the average of the variance is near ~0%, with negative correlation 

in some time intervals. The difference between the two records (δ13C2B+2C – δ13C3R) 

highlights this varying discrepancy which are much larger than those between δ18O 

records (Fig. 5.8 and see Fig. 5.4). There is also a big change in δ13C difference around
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1946, which is similar to that found in δ18O. Before 1946 the difference between the two 

δ13C records is larger and more negative than after 1946. The interannual and 

interdecadal modes of the two δ13C records are also very different (Fig. 5.9). For 

example, between 1950-1970, δ13C in core 3R shows relatively little variation while in 

core 2B+2C it shows strong decadal-scale variability. Alternatively, between 1980-1997, 

δ13C in core 2B+2C shows relatively little low frequent variation while in core 3R it 

shows relatively strong decadal-scale variability. However, there is one exception around 

1975-76 when the two δ13C time series show similar amplitudes of anomalous 

enrichment. It is in this period that a significant decadal climatic shift in the northern 

Hemisphere has been recognized (Trenberth, 1990; Mantua et al., 1997). In the long-term 

trend, although both show a secular trend towards more negative values for the period 

1926-1997, δ13C in 2B+2C displays a shift from –2.2 to –3.0‰ while 3R displays a δ13C 

shift from –2.0 to –3.0‰ from 1926-1997 (See Fig. 5.9). 

In summary, the δ13C records from cores 2B+2C and 3R fail to display 

consistently common characteristics of interannal and interdecadal variability at 

Rarotonga which agrees with analysis of corals from other areas (Guilderson and Schrag, 

1999; Linsley et al., 1999; Linsley et al., 2000b). The variation of coral δ13C still remains 

enigmatic. 
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5.4.2 Complexity of Effects of Various Factors on Coral δ13C 

When comparing the two coral δ13C records, I found that although they grew at 

different depths, there is no offset in absolute values between the two time series and they 

show a similar depletion departure from disequilibrium over the period 1926-1997 (See 

Fig. 5.7). As discussed in the previous section, the effect of SST variation can be 

regarded as essentially the same at the two depths. Then, according to δ13C-depth 

relationship (Fairbanks and Dodge, 1979; McCloskey and Muscatine, 1984; Leder et al., 

1991; Juillet-Leclerc et al., 1997), δ13C in 2B+2C (at 18m) should be more depleted than 

δ13C in 3R (at 9m), provided that photosynthesis is the main process for the metabolic 

fractionation while heterotrophy is negligible (Porter, 1976; Sorokin, 1993). The similar 

δ13C depletion of the two cores appears to contradict with the hypothesis that δ13C 

composition in corals is strongly depth-dependent upon light intensity. One explanation 

could be that the effect of heterotrophy cannot be negligible and the levels of 

heterotrophy at 3R and 2B+2C were different, which have counteracted the discrepancies 

due to the effects of different light levels at the two different depths. Some experiments 

by McCloskey and Muscatine (1984) and Grottoli and Wellington (1999) appear to 

support this opinion. They observed that deeper corals have an obligate requirement for 

heterotrophically obtained carbon, while by contrast, shallower corals appear to be 

phototrophic with respect to carbon. However, since zooplankton and particulate organic 

material in seawater have lower carbon isotopic values (Rau et al., 1989; 1990), high 

levels of heterotrophic feeding in corals should be accompanied by a decrease in the δ13C 

values. As a result, coral δ13C in 2B+2C, which grew at deeper water depth, should be 

even more depleted than, rather than closer to, δ13C of 3R. Therefore, besides the effects 
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of radiation, SST, as well as heterotrophy on metabolic fractionation, some other factors 

must also be responsible for complicating the deviation of δ13C of the two corals. Some 

experiments with hermatypic corals reveal that although photosynthetic intensity 

decreases with increasing depth, photosynthetic efficiency increases and energy 

expenditure decreases when water depth increases (McCloskey and Muscatine, 1984). 

The reason given by McCloskey and Muscatine (1984) for this effect is because although 

at deeper water depths zooxanthellae density in corals is lower than that at shallower 

depth, the chlorophylla a per algal cell is increased at deeper depth which may result in 

an increase in coral δ13C. In addition, Juillet-Leclerc et al. (1997) hypothesized other 

internal and/or external factors that may also induce different physiological activity and 

isotopic carbon fractionation. Their experiments revealed that even for colonies growing 

in identical environmental conditions at the same depths, a large variability of both 

metabolic and isotopic δ13C data is still observed. They therefore concluded that high 

δ13C may simply indicate that corals grew in more favorable conditions, rather than high 

solar radiation. Furthermore, colony-specific effects may also have influence on the δ13C 

composition of the skeleton (Guilderson and Schrag, 1999; Linsley et al., 2000b). 

 

Therefore, as the carbon in corals is derived from some combination of sources, 

the balance between autotrophic and heterotrophic carbon supply to the calcification site, 

the ability of corals to modulate algal photosynthesis by controlling pigment or 

zooxanthellar concentrations, as well as some unknown internal and/or external factors 

may all combine to make the interpretation of δ13C extremely difficult. Some authors 

suggest that δ13C record in coral skeletons represents a promising cloud-cover and/or 
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solar radiation proxy (e.g. Fairbanks and Dodge, 1979), however as discussed above, 

these new results from Rarotonga support other studies and suggest that any 

environmental interpretation of δ13C records in corals should be made with more caution.  
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This study has attempted an evaluation of the paleoclimate utility of both δ18O 

and δ13C in corals in terms of quantitatively separating the effects of the different climatic 

factors and/or processes on coral δ18O and δ13C from the island of Rarotonga. It has also 

examined the interannual and interdecadal variability from the analysis of a coral δ18O 

record from Rarotonga for the period 1726-1997. This concluding chapter summaries the 

main results obtained in this study and also comments on possible further work. 

 

6.1 Summary 

One of the most important results of this study is the development of a revised 

method of separating the effects of SST and δ18Osw on coral δ18O by using coupled coral 

Sr/Ca and δ18O analyses. Different from the previous methods (McCulloch, 1994; Gagan 

et al., 1998; 2000) that treat coral δ18O as the sum of two separate single-variable 

functions (δ18O vs. SST; and δ18O vs. δ18Osw), this method separates the effects of δ18Osw 

from SST by breaking the instantaneous changes of coral δ18O into separate contributions 

by instantaneous SST and δ18Osw changes, respectively. This method was applied to the 

δ18O record from Rarotonga for the period 1726-1997. It was found that the reconstructed 

δ18Osw contributes significantly to the annual changes of δ18O in corals. Changes in SST 

account for 61% of the total coral δ18O variation, while changes in δ18Osw account for 

39%. The variation of the reconstructed δ18Osw agrees with the local seasonal pattern of 

variation in the precipitation and evaporation balance in this area. In addition, the 

reconstructed δ18Osw also shows a roughly linear correlation with instrumental salinity in 
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this region although the salinity data is only available after 1980. Therefore, the 

reconstructed δ18Osw not only provides us with significant information on the past 

variation of salinity, precipitation and evaporation in the study region, but the method 

may also be of potential use for estimating past changes of salinity in other regions.  

Applying the similar principles to coral δ13C, the effects of kinetic and metabolic 

activity on coral δ13C were also quantitatively separated. If we assume that the coral δ13C 

in DIC was relatively constant over the period 1983-1991, the instantaneous changes of 

δ13C can be expressed as the sum of two separate instantaneous contributions brought by 

instantaneous changes of kinetic and metabolic activity, respectively. When this method 

was applied to coral δ13C from both tropical and subtropical regions in the Pacific for the 

period 1983-1991, it was found that the variation of coral δ13C appears to be mainly 

caused by the variation of metabolic activity rather than by that of kinetic activity. 

Although the same views have been proposed by several other authors (e.g. Fairbanks 

and Dodge, 1979; Grottoli and Wellington, 1999), the analysis of this study is the first 

attempt to quantitatively separate the effects of kinetic and metabolic fractionation on 

δ13C in corals and it gives actual estimates of different magnitudes of contributions by the 

two processes. It shows that in the tropical regions over 90% of the variation of coral 

δ13C is due to the effects of metabolic activity, while in the subtropical regions, despite 

their larger annual ranges of SST variation, there is still approximately 70% of the total 

variation of coral δ13C that is caused by effects of metabolic activity. One implication of 

these results is that in order to better understand the relationships between δ13C and the 

various climatic variables and to utilize coral δ13C for reconstructing the paleoclimate 
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variations, more work should be concentrated on a better understanding of the processes 

of metabolic fractionation.   

In addition to the above results, another important result of this study involved the 

development of a coral δ18O record at Rarotonga for the period 1726-1997 and the 

examination of the interannual and decadal/ interdecadal variability in coral δ18O in this 

region. Firstly, it demonstrated that although Rarotonga is located outside of the center of 

action of ENSO, it is generally sensitive to ENSO variability in this region and coral δ18O 

faithfully records the past El Niño events. There is a consistent response in this south 

Pacific region to ENSO forcing which extends at least to the past 270 years. Secondly, 

the comparison of the interdecadal mode of the coral δ18O with the PDO index suggests 

that the interdecadal variability in Rarotonga may be related to the processes associated 

with North Pacific Oscillation. In addition, the decadal-scale variability (~12 years) was 

further differentiated from the interdecadal-scale variability (~32 years) for the period 

1726-1997 at Rarotonga. Based on the analysis of both subtropical and tropical coral data 

and comparison with the instrumental data (Niño3.4 SST index and PDO index), it was 

hypothesized that the decadal and interdecadal variability might result from separate 

forcing mechanisms. The decadal variability appears to be primarily a response to the 

tropical pacific while the interdecadal variability is more related to a midlatitude 

oscillation. As the ocean is simultaneously affected by many climate forcings, multiple 

forcings may contribute to the changes of the oceans in differing amounts.   

          Finally, the reliability of both coral δ18O and δ13C records from Rarotonga was 

also examined in this study. Based on the comparison with another coral isotopic record 

from Rarotonga, coral δ18O appears to be a robust indicator of environmental variables 
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such as SST and precipitation, while the potential effects of growth rate on δ18O are 

minimal. This implies that δ18O could be used for reconstructing the environmental 

variables in the oceans, while the effects of growth rate could be neglected. On the other 

hand, however, the coral δ13C fails to document common characteristics of interannual 

and decadal signals at Rarotonga. The lack of the reliable coherent δ13C from the two 

separate coral records implies that when using δ13C to interpret the variation of 

environmental variables such as cloud cover as suggested by some authors, more caution 

should be exercised.  

 

6.2 Future Research 

Although the relative importance of the effects of different climatic factors and/or 

processes on δ18O and δ13C has been evaluated in this study, and the interannual and 

interdecadal variability on δ18O examined at Rarotonga, many questions remain to be 

answered in further work. Some of these are outlined as follows. 

--- Although the method of separating effects of SST from δ18O in corals 

developed in this study has been successfully used for reconstructing δ18Osw from 

coupled Sr/Ca and δ18O records from Rarotonga, it is not known whether it is generally 

applicable to other regions. Further evaluation of this method is therefore needed, which 

includes applying this method to other coral records from both tropical and subtropical 

areas.   

--- The fundamental problem with the method involves some assumptions that 

remain to be verified. One such underlying assumption is that the partial derivative of 

δ18O with respect to δ18Osw (∂δ18O(coral)/∂δ18Osw) is a constant, so that the shape of the 
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reconstructed contribution by δ18Osw could be used to represent the actual variation of 

δ18Osw. However, this assumption needs to be justified. In order to better reconstruct the 

past variation of δ18Osw, the salinity as well as the precipitation, future studies and 

experiments should be carried out to quantify the δ18Ocoral-δ18Osw relationships under 

controlled conditions. This kind of study is also helpful for us to better examine the 

relative importance of the effects of SST and δ18Osw on coral δ18O. 

--- Another problem involves the partial derivative of δ13C with respect to SST 

(∂δ13C(coral)/∂SST) in the coral δ13C system. Note that ∂δ13C(coral)/∂SST in equation 2 (see 

chapter 3) is the rate of change of δ13C with respect to SST when the metabolic activity 

rather than radiation is constant. It is a parameter whose accurate value is difficult to find 

from available experimental data. Present experiments (e.g. Bemis et al., 2000) are 

usually designed to fix SST or radiation rather than metabolic or kinetic activity. Since 

when SST varies, it must also affect the metabolic process, the experiments thus have to 

be designed to adjust the other environmental factor, such as radiation to keep the 

metabolic intensity constant. This kind of experiment is of particular importance for 

improving our understanding of the relative significance of the roles of kinetic and 

metabolic activity and how to utilize δ13C for reconstructing environmental variables 

such as cloud cover.  

--- Another kind of experiment is also needed for evaluating the effects of 

different factors on coral δ13C under different controlled conditions. At present, more 

experiments are concentrated on attempting to examine the effects of light level and/or 

zooplankton on coral δ13C, while few experiments quantify the effect of SST on δ13C. As 

a matter of fact, SST not only determines the magnitude of the kinetic activity, but it also 
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affects the metabolic process. Closer monitoring on the variation of coral δ13C with SST 

is thus crucial on fully determining the different effects of individual factors on coral 

δ13C.  

--- Another interesting aspect for future investigation is related to the 

establishment of the network of the coral records so far we have. At present, there are 

over 30 coral records available worldwide. Development of spatially comprehensive 

reconstruction of annual to century scale variability in tropical and subtropical ocean-

atmosphere systems (e.g. ENSO, interdecadal variability), based on coral proxy data is 

therefore possible. In this study I have only attempted to analyze and compare the coral 

data at Rarotonga with some of those from tropical and subtropical areas. The ultimate 

goal should be to establish a systematic reconstruction of SST and other environmental 

variables from proxy coral data for the past 300-1000 years. 
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APPENDIX I

CORAL δ18O AND δ13C IN CORES B AND C FROM RAROTONGA
FOR THE PERIOD 1726-1997 
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1996.96 1 -2.74 -4.97
1996.92 2 -2.79 -4.95
1996.89 3 -2.85 -4.90
1996.85 4 -2.84 -4.89
1996.81 5 -2.75 -4.69
1996.78 6 -2.91 -4.61
1996.74 7 -2.83 -4.61
1996.70 8 -2.77 -4.62
1996.67 9 -2.90 -4.59
1996.62 10 -3.25 -4.64
1996.57 11 -3.27 -4.77
1996.53 12 -3.27 -4.92
1996.48 13 -3.37 -4.88
1996.44 14 -3.26 -4.88
1996.39 15 -3.06 -5.02
1996.34 16 -2.80 -5.06
1996.30 17 -2.91 -4.93
1996.25 18 -2.73 -4.96
1996.17 19 -2.80 -4.74
1996.08 20 -2.78 -4.64
1996.00 21 -2.96 -4.56
1995.92 22 -2.93 -4.61
1995.83 23 -2.98 -4.38
1995.75 24 -2.96 -4.33
1995.67 25 -2.99 -4.56
1995.58 26 -3.00 -4.40
1995.50 27 -3.06 -4.68
1995.42 28 -3.26 -4.85
1995.33 29 -3.26 -4.89
1995.25 30 -3.26 -4.93
1995.19 31 -2.90 -4.83
1995.12 32 -2.78 -4.75
1995.06 33 -2.75 -4.64
1994.99 34 -2.78 -4.55
1994.93 35 -3.01 -4.48
1994.86 36 -2.73 -4.46
1994.80 37 -2.60 -4.31
1994.73 38 -2.54 -4.39
1994.67 39 -2.83 -4.21
1994.60 40 -3.11 -4.34
1994.52 41 -3.17 -4.43
1994.45 42 -3.09 -4.42
1994.38 43 -2.96 -4.78
1994.31 44 -3.03 -4.79
1994.24 45 -3.03 -4.92
1994.17 46 -2.79 -4.93
1994.10 47 -2.66 -4.90
1994.04 48 -2.64 -4.83
1993.98 49 -2.57 -4.79
1993.92 50 -2.55 -4.58

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1993.85 51 -2.47 -4.40
1993.79 52 -2.93 -4.23
1993.73 53 -2.85 -4.23
1993.67 54 -2.91 -4.13
1993.60 55 -2.99 -4.23
1993.52 56 -3.12 -4.29
1993.45 57 -3.16 -4.48
1993.38 58 -3.13 -4.65
1993.31 59 -3.05 -4.72
1993.24 60 -2.89 -4.81
1993.17 61 -2.57 -4.88
1993.10 62 -2.52 -4.79
1993.04 63 -2.67 -4.63
1992.97 64 -2.69 -4.59
1992.91 65 -2.73 -4.58
1992.84 66 -2.80 -4.52
1992.78 67 -2.73 -4.50
1992.71 68 -2.69 -4.36
1992.65 69 -2.68 -4.33
1992.58 70 -2.74 -4.27
1992.52 71 -3.06 -4.27
1992.45 72 -3.04 -4.35
1992.38 73 -2.80 -4.46
1992.32 74 -2.96 -4.59
1992.25 75 -2.90 -4.75
1992.17 76 -2.74 -4.71
1992.08 77 -2.73 -4.65
1992.00 78 -2.62 -4.60
1991.92 79 -2.55 -4.61
1991.83 80 -2.53 -4.56
1991.75 81 -2.55 -4.46
1991.67 82 -2.52 -4.30
1991.58 83 -2.73 -4.17
1991.54 84 -2.78 -4.20
1991.49 85 -2.96 -4.27
1991.44 86 -2.88 -4.36
1991.39 87 -2.76 -4.43
1991.35 88 -2.92 -4.64
1991.30 89 -3.13 -4.78
1991.25 90 -3.04 -4.79
1991.20 91 -2.87 -4.78
1991.14 92 -2.80 -4.77
1991.09 93 -2.77 -4.63
1991.04 94 -2.70 -4.54
1990.99 95 -2.73 -4.38
1990.93 96 -2.68 -4.40
1990.88 97 -2.38 -4.43
1990.83 98 -2.55 -4.33
1990.77 99 -2.73 -4.29
1990.72 100 -2.60 -4.25
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1990.67 101 -2.60 -4.22
1990.61 102 -2.70 -4.32
1990.56 103 -2.70 -4.32
1990.51 104 -2.73 -4.42
1990.46 105 -2.68 -4.54
1990.41 106 -2.50 -4.67
1990.35 107 -2.49 -4.69
1990.30 108 -2.99 -4.63
1990.25 109 -2.53 -4.75
1990.17 110 -2.53 -4.74
1990.08 111 -2.45 -4.55
1990.00 112 -2.64 -4.46
1989.92 113 -2.65 -4.46
1989.83 114 -2.35 -4.36
1989.75 115 -2.36 -4.33
1989.69 116 -2.50 -4.44
1989.63 117 -2.75 -4.58
1989.56 118 -2.68 -4.67
1989.50 119 -2.79 -4.58
1989.44 120 -2.82 -4.76
1989.38 121 -2.91 -4.76
1989.31 122 -2.96 -4.94
1989.25 123 -2.66 -5.00
1989.19 124 -2.18 -4.97
1989.13 125 -2.20 -4.85
1989.08 126 -2.47 -4.77
1989.02 127 -2.08 -4.44
1988.96 128 -2.41 -4.63
1988.90 129 -2.46 -4.56
1988.84 130 -2.39 -4.61
1988.78 131 -2.39 -4.52
1988.73 132 -2.44 -4.38
1988.67 133 -2.80 -4.27
1988.61 134 -2.83 -4.36
1988.55 135 -3.02 -4.54
1988.49 136 -2.78 -4.51
1988.43 137 -2.86 -4.68
1988.37 138 -3.16 -4.84
1988.31 139 -2.76 -4.73
1988.25 140 -2.58 -4.84
1988.17 141 -2.27 -4.75
1988.08 142 -2.37 -4.69
1988.00 143 -2.33 -4.68
1987.92 144 -2.28 -4.49
1987.83 145 -2.40 -4.18
1987.75 146 -2.37 -4.14
1987.67 147 -2.47 -4.01
1987.61 148 -2.75 -4.14
1987.55 149 -2.82 -4.28
1987.49 150 -2.92 -4.35

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1987.43 151 -3.00 -4.32
1987.37 152 -3.10 -4.35
1987.31 153 -2.69 -4.56
1987.25 154 -2.15 -4.61
1987.18 155 -2.24 -4.60
1987.10 156 -2.57 -5.12
1987.03 157 -2.64 -4.47
1986.96 158 -2.20 -4.48
1986.89 159 -2.30 -4.42
1986.81 160 -2.39 -4.33
1986.74 161 -2.55 -4.39
1986.67 162 -2.44 -4.28
1986.61 163 -2.76 -4.46
1986.56 164 -2.85 -4.50
1986.50 165 -3.04 -4.47
1986.44 166 -3.30 -4.59
1986.39 167 -3.34 -4.74
1986.33 168 -2.93 -4.77
1986.28 169 -2.62 -4.77
1986.22 170 -2.50 -4.81
1986.17 171 -2.34 -4.89
1986.10 172 -2.41 -4.70
1986.03 173 -2.50 -4.57
1985.96 174 -2.34 -4.47
1985.89 175 -2.52 -4.42
1985.82 176 -2.35 -4.21
1985.75 177 -2.26 -4.05
1985.69 178 -2.81 -4.17
1985.64 179 -2.89 -4.26
1985.58 180 -2.62 -4.25
1985.53 181 -2.68 -4.31
1985.47 182 -3.03 -4.53
1985.42 183 -2.84 -4.61
1985.36 184 -2.97 -4.66
1985.31 185 -3.05 -4.77
1985.25 186 -2.80 -4.94
1985.18 187 -2.18 -4.89
1985.10 188 -1.88 -4.85
1985.03 189 -2.32 -4.71
1984.96 190 -2.64 -4.58
1984.89 191 -2.43 -4.52
1984.81 192 -2.18 -4.32
1984.74 193 -2.37 -4.00
1984.67 194 -2.35 -3.99
1984.61 195 -2.28 -4.02
1984.56 196 -2.68 -4.08
1984.50 197 -2.79 -4.17
1984.44 198 -2.96 -4.31
1984.39 199 -2.91 -4.31
1984.33 200 -2.39 -4.08
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1984.28 201 -2.93 -4.74
1984.22 202 -2.88 -4.77
1984.17 203 -2.65 -4.78
1984.12 204 -2.48 -4.78
1984.07 205 -2.48 -4.70
1984.02 206 -2.46 -4.60
1983.97 207 -2.42 -4.46
1983.92 208 -2.33 -4.41
1983.87 209 -2.08 -4.30
1983.82 210 -2.47 -4.19
1983.77 211 -2.58 -4.02
1983.72 212 -2.47 -4.04
1983.67 213 -2.60 -4.00
1983.60 214 -2.71 -4.04
1983.54 215 -2.85 -4.13
1983.48 216 -2.90 -4.27
1983.42 217 -3.15 -4.40
1983.35 218 -2.83 -4.42
1983.29 219 -2.57 -4.51
1983.23 220 -2.02 -4.54
1983.17 221 -2.08 -4.60
1983.10 222 -2.08 -4.56
1983.03 223 -1.99 -4.40
1982.96 224 -2.28 -4.32
1982.89 225 -2.27 -4.23
1982.82 226 -2.10 -4.02
1982.75 227 -1.90 -3.86
1982.69 228 -2.26 -4.07
1982.63 229 -2.50 -4.14
1982.56 230 -2.40 -4.24
1982.50 231 -2.73 -4.44
1982.44 232 -2.96 -4.59
1982.38 233 -2.78 -4.66
1982.31 234 -2.74 -4.75
1982.25 235 -2.50 -4.80
1982.19 236 -2.37 -4.68
1982.12 237 -2.26 -4.63
1982.06 238 -2.12 -4.66
1981.99 239 -2.19 -4.56
1981.93 240 -2.14 -4.48
1981.86 241 -1.99 -4.45
1981.80 242 -2.08 -4.14
1981.73 243 -2.24 -4.15
1981.67 244 -2.69 -4.02
1981.62 245 -2.56 -4.08
1981.57 246 -2.74 -4.16
1981.52 247 -2.83 -4.17
1981.47 248 -2.70 -4.22
1981.42 249 -2.78 -4.41
1981.37 250 -2.70 -4.54

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1981.32 251 -2.76 -4.59
1981.27 252 -2.90 -4.56
1981.22 253 -2.67 -4.73
1981.17 254 -2.28 -4.79
1981.10 255 -2.35 -4.65
1981.04 256 -2.40 -4.72
1980.97 257 -2.40 -4.75
1980.91 258 -2.43 -4.47
1980.84 259 -2.30 -4.33
1980.78 260 -2.25 -4.17
1980.71 261 -2.38 -4.31
1980.65 262 -2.41 -4.16
1980.58 263 -2.42 -4.15
1980.54 264 -2.63 -4.18
1980.49 265 -2.75 -4.22
1980.44 266 -2.73 -4.31
1980.39 267 -2.81 -4.31
1980.35 268 -3.22 -4.57
1980.30 269 -2.99 -4.76
1980.25 270 -2.68 -4.83
1980.19 271 -2.37 -4.82
1980.13 272 -2.28 -4.80
1980.06 273 -2.64 -4.74
1980.00 274 -2.42 -4.58
1979.94 275 -2.13 -4.36
1979.88 276 -2.06 -4.20
1979.81 277 -2.08 -4.30
1979.75 278 -2.10 -4.14
1979.68 279 -2.16 -4.21
1979.60 280 -2.46 -4.22
1979.53 281 -2.61 -4.39
1979.46 282 -2.62 -4.53
1979.39 283 -2.39 -4.58
1979.31 284 -2.28 -4.66
1979.24 285 -2.39 -4.67
1979.17 286 -2.29 -4.74
1979.11 287 -2.25 -4.61
1979.06 288 -2.23 -4.59
1979.00 289 -2.43 -4.51
1978.94 290 -2.20 -4.42
1978.89 291 -2.33 -4.36
1978.83 292 -2.38 -4.28
1978.78 293 -2.33 -4.33
1978.72 294 -2.26 -4.24
1978.67 295 -2.57 -4.14
1978.54 296 -2.58 -4.17
1978.42 297 -2.66 -4.47
1978.29 298 -2.74 -4.44
1978.17 299 -2.64 -4.56
1978.07 300 -2.14 -4.43
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1977.97 301 -2.19 -4.49
1977.87 302 -2.09 -4.58
1977.77 303 -2.31 -4.36
1977.67 304 -2.29 -4.21
1977.56 305 -3.06 -4.59
1977.46 306 -3.10 -4.72
1977.35 307 -3.00 -4.82
1977.25 308 -3.03 -4.88
1977.18 309 -2.67 -4.78
1977.10 310 -2.36 -4.67
1977.03 311 -2.29 -4.53
1976.96 312 -2.20 -4.32
1976.89 313 -2.20 -4.29
1976.81 314 -2.26 -4.21
1976.74 315 -2.04 -4.19
1976.67 316 -1.92 -4.05
1976.58 317 -1.96 -4.13
1976.50 318 -2.28 -4.26
1976.42 319 -2.44 -4.32
1976.33 320 -2.80 -4.51
1976.25 321 -3.05 -4.62
1976.17 322 -3.02 -4.70
1976.10 323 -2.79 -4.69
1976.04 324 -2.37 -4.60
1975.98 325 -2.02 -4.52
1975.92 326 -1.90 -4.40
1975.85 327 -2.01 -4.38
1975.79 328 -2.17 -4.40
1975.73 329 -2.19 -4.35
1975.67 330 -2.15 -4.28
1975.62 331 -2.12 -4.32
1975.57 332 -2.33 -4.30
1975.53 333 -2.33 -4.40
1975.48 334 -2.20 -4.42
1975.44 335 -2.15 -4.43
1975.39 336 -2.08 -4.60
1975.34 337 -2.08 -4.65
1975.30 338 -1.99 -4.68
1975.25 339 -1.99 -4.69
1975.17 340 -1.99 -4.68
1975.08 341 -1.86 -4.57
1975.00 342 -1.84 -4.54
1974.92 343 -1.74 -4.45
1974.83 344 -1.80 -4.32
1974.75 345 -2.00 -4.37
1974.67 346 -2.10 -4.32
1974.57 347 -2.23 -4.39
1974.47 348 -2.39 -4.55
1974.37 349 -2.39 -4.64
1974.27 350 -1.91 -4.57

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1974.17 351 -2.12 -4.81
1974.08 352 -1.87 -4.80
1974.00 353 -1.81 -4.78
1973.92 354 -1.78 -4.69
1973.83 355 -1.70 -4.54
1973.75 356 -1.71 -4.28
1973.67 357 -1.77 -4.19
1973.61 358 -2.02 -4.21
1973.55 359 -2.19 -4.32
1973.49 360 -2.19 -4.44
1973.43 361 -2.13 -4.55
1973.37 362 -2.00 -4.69
1973.31 363 -2.10 -4.72
1973.25 364 -2.24 -4.85
1973.08 365 -2.03 -4.46
1972.92 366 -2.05 -4.32
1972.75 367 -2.00 -4.18
1972.68 368 -2.15 -4.22
1972.60 369 -2.07 -4.23
1972.53 370 -2.10 -4.26
1972.46 371 -2.18 -4.36
1972.39 372 -2.27 -4.44
1972.31 373 -2.27 -4.70
1972.24 374 -2.27 -4.74
1972.17 375 -2.24 -4.78
1972.11 376 -1.96 -4.57
1972.06 377 -2.06 -4.71
1972.00 378 -2.14 -4.64
1971.94 379 -2.16 -4.55
1971.89 380 -2.18 -4.52
1971.83 381 -2.21 -4.46
1971.78 382 -2.32 -4.38
1971.72 383 -2.46 -4.38
1971.67 384 -2.35 -4.31
1971.61 385 -2.49 -4.38
1971.55 386 -2.58 -4.45
1971.49 387 -2.63 -4.52
1971.43 388 -2.60 -4.61
1971.37 389 -2.63 -4.83
1971.31 390 -2.49 -4.92
1971.25 391 -2.52 -4.92
1971.21 392 -2.38 -4.89
1971.17 393 -2.39 -4.86
1971.13 394 -2.48 -4.78
1971.10 395 -2.50 -4.73
1971.06 396 -2.47 -4.71
1971.02 397 -2.48 -4.67
1970.98 398 -2.44 -4.52
1970.94 399 -2.30 -4.32
1970.90 400 -2.25 -4.30
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1970.87 401 -2.61 -4.40
1970.83 402 -2.38 -4.31
1970.79 403 -2.40 -4.33
1970.75 404 -2.51 -4.29
1970.65 405 -2.71 -4.30
1970.56 406 -2.69 -4.48
1970.46 407 -2.80 -4.60
1970.36 408 -2.57 -4.62
1970.26 409 -2.37 -4.69
1970.17 410 -2.18 -4.72
1970.10 411 -2.15 -4.65
1970.04 412 -2.09 -4.55
1969.98 413 -2.29 -4.45
1969.92 414 -2.24 -4.32
1969.85 415 -2.36 -4.25
1969.79 416 -2.32 -4.13
1969.73 417 -2.33 -4.13
1969.67 418 -2.30 -4.02
1969.60 419 -2.29 -4.07
1969.54 420 -2.56 -4.28
1969.47 421 -2.61 -4.37
1969.40 422 -2.64 -4.54
1969.34 423 -2.65 -4.66
1969.27 424 -2.56 -4.71
1969.21 425 -2.26 -4.73
1969.16 426 -1.93 -4.59
1969.11 427 -1.98 -4.70
1969.06 428 -2.10 -4.68
1969.01 429 -2.15 -4.60
1968.96 430 -2.13 -4.50
1968.91 431 -2.00 -4.42
1968.86 432 -1.90 -4.30
1968.81 433 -2.13 -4.32
1968.77 434 -2.30 -4.31
1968.72 435 -2.31 -4.30
1968.67 436 -2.43 -4.24
1968.55 437 -2.57 -4.30
1968.44 438 -2.70 -4.48
1968.32 439 -2.68 -4.66
1968.21 440 -2.63 -4.73
1968.15 441 -2.47 -4.69
1968.10 442 -2.17 -4.69
1968.05 443 -2.15 -4.62
1967.99 444 -2.13 -4.53
1967.94 445 -2.18 -4.49
1967.88 446 -2.15 -4.42
1967.83 447 -2.17 -4.31
1967.78 448 -2.24 -4.19
1967.72 449 -2.20 -4.12
1967.67 450 -2.19 -4.07

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1967.61 451 -2.35 -4.12
1967.55 452 -2.56 -4.28
1967.49 453 -2.63 -4.27
1967.44 454 -2.69 -4.48
1967.38 455 -2.66 -4.56
1967.32 456 -2.69 -4.66
1967.27 457 -2.33 -4.65
1967.21 458 -2.22 -4.68
1967.14 459 -1.94 -4.61
1967.07 460 -2.10 -4.58
1967.01 461 -1.90 -4.51
1966.94 462 -2.01 -4.46
1966.87 463 -1.86 -4.27
1966.80 464 -1.66 -4.14
1966.73 465 -1.81 -4.12
1966.67 466 -1.73 -4.01
1966.59 467 -2.10 -4.10
1966.51 468 -2.49 -4.22
1966.44 469 -2.61 -4.37
1966.36 470 -2.58 -4.43
1966.28 471 -2.44 -4.48
1966.21 472 -2.17 -4.52
1966.14 473 -2.04 -4.46
1966.07 474 -2.06 -4.45
1966.01 475 -2.18 -4.41
1965.94 476 -1.92 -4.20
1965.87 477 -2.07 -4.25
1965.80 478 -2.09 -4.20
1965.73 479 -1.93 -4.15
1965.67 480 -1.91 -4.09
1965.60 481 -2.11 -4.17
1965.54 482 -2.23 -4.26
1965.47 483 -2.30 -4.42
1965.40 484 -2.38 -4.48
1965.34 485 -2.36 -4.55
1965.27 486 -2.24 -4.63
1965.21 487 -2.21 -4.70
1965.16 488 -2.02 -4.57
1965.11 489 -1.90 -4.50
1965.06 490 -1.96 -4.49
1965.01 491 -1.98 -4.50
1964.96 492 -1.80 -4.42
1964.91 493 -1.65 -4.33
1964.86 494 -1.59 -4.23
1964.81 495 -1.92 -4.21
1964.77 496 -1.81 -4.09
1964.72 497 -2.24 -4.09
1964.67 498 -2.28 -4.01
1964.58 499 -2.31 -4.13
1964.48 500 -2.22 -4.17
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1964.39 501 -2.36 -4.45
1964.30 502 -2.35 -4.55
1964.21 503 -2.09 -4.60
1964.14 504 -1.86 -4.59
1964.07 505 -1.67 -4.58
1964.01 506 -1.85 -4.55
1963.94 507 -1.59 -4.31
1963.87 508 -1.72 -4.22
1963.80 509 -1.86 -4.15
1963.73 510 -1.89 -4.13
1963.67 511 -1.93 -4.02
1963.61 512 -2.21 -4.15
1963.55 513 -2.38 -4.23
1963.49 514 -2.31 -4.30
1963.44 515 -2.26 -4.44
1963.38 516 -2.48 -4.59
1963.32 517 -2.27 -4.63
1963.27 518 -2.11 -4.66
1963.21 519 -2.03 -4.69
1963.15 520 -1.74 -4.63
1963.09 521 -1.75 -4.59
1963.03 522 -1.96 -4.52
1962.97 523 -1.87 -4.42
1962.91 524 -1.56 -4.25
1962.85 525 -1.78 -4.29
1962.79 526 -1.83 -4.13
1962.73 527 -2.10 -4.12
1962.67 528 -2.21 -4.08
1962.59 529 -2.22 -4.19
1962.51 530 -2.50 -4.30
1962.44 531 -2.61 -4.43
1962.36 532 -2.42 -4.49
1962.28 533 -2.20 -4.65
1962.21 534 -2.00 -4.71
1962.14 535 -1.74 -4.68
1962.07 536 -1.82 -4.51
1962.01 537 -1.99 -4.43
1961.94 538 -1.88 -4.33
1961.87 539 -1.66 -4.17
1961.80 540 -1.65 -4.18
1961.73 541 -1.77 -4.16
1961.67 542 -1.93 -4.13
1961.60 543 -2.18 -4.18
1961.54 544 -2.41 -4.36
1961.47 545 -2.28 -4.54
1961.40 546 -2.17 -4.56
1961.34 547 -2.11 -4.60
1961.27 548 -2.16 -4.66
1961.21 549 -2.09 -4.75
1961.15 550 -2.03 -4.72

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1961.09 551 -1.87 -4.69
1961.03 552 -1.74 -4.64
1960.97 553 -1.88 -4.65
1960.91 554 -1.90 -4.58
1960.85 555 -1.73 -4.42
1960.79 556 -1.81 -4.23
1960.73 557 -2.10 -4.22
1960.67 558 -2.07 -4.21
1960.60 559 -2.09 -4.25
1960.54 560 -2.23 -4.37
1960.47 561 -2.35 -4.39
1960.40 562 -2.17 -4.28
1960.34 563 -2.29 -4.63
1960.27 564 -2.14 -4.54
1960.21 565 -2.06 -4.78
1960.14 566 -2.03 -4.70
1960.07 567 -1.91 -4.69
1960.01 568 -1.86 -4.68
1959.94 569 -1.90 -4.65
1959.87 570 -1.86 -4.38
1959.80 571 -2.04 -4.25
1959.73 572 -1.83 -4.16
1959.67 573 -1.88 -4.11
1959.60 574 -2.12 -4.22
1959.54 575 -2.19 -4.36
1959.47 576 -2.19 -4.39
1959.40 577 -2.27 -4.39
1959.34 578 -2.53 -4.68
1959.27 579 -2.59 -4.79
1959.21 580 -2.21 -4.79
1959.15 581 -1.83 -4.79
1959.09 582 -1.71 -4.65
1959.03 583 -2.17 -4.43
1958.97 584 -2.20 -4.15
1958.91 585 -2.32 -4.20
1958.85 586 -1.99 -4.18
1958.79 587 -1.93 -4.11
1958.73 588 -2.15 -4.12
1958.67 589 -2.09 -4.03
1958.62 590 -2.29 -4.14
1958.57 591 -2.44 -4.27
1958.51 592 -2.33 -4.20
1958.46 593 -2.39 -4.43
1958.41 594 -2.35 -4.55
1958.36 595 -2.23 -4.53
1958.31 596 -1.95 -4.47
1958.26 597 -2.01 -4.50
1958.21 598 -2.08 -4.58
1958.12 599 -2.12 -4.56
1958.03 600 -1.89 -4.40
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1957.94 601 -2.03 -4.42
1957.85 602 -1.99 -4.27
1957.76 603 -1.97 -4.23
1957.67 604 -1.93 -4.16
1957.61 605 -1.94 -4.20
1957.55 606 -2.13 -4.31
1957.49 607 -2.25 -4.42
1957.44 608 -2.32 -4.56
1957.38 609 -2.39 -4.69
1957.32 610 -2.41 -4.88
1957.27 611 -2.20 -4.82
1957.21 612 -2.19 -4.89
1957.15 613 -2.17 -4.87
1957.09 614 -2.24 -4.83
1957.03 615 -2.30 -4.82
1956.97 616 -2.26 -4.76
1956.91 617 -2.25 -4.70
1956.85 618 -2.19 -4.67
1956.79 619 -2.06 -4.56
1956.73 620 -1.97 -4.38
1956.67 621 -1.93 -4.32
1956.62 622 -2.12 -4.33
1956.57 623 -2.04 -4.73
1956.51 624 -2.24 -4.38
1956.46 625 -2.39 -4.53
1956.41 626 -2.46 -4.57
1956.36 627 -2.50 -4.67
1956.31 628 -2.54 -4.75
1956.26 629 -2.37 -4.80
1956.21 630 -2.29 -4.87
1956.14 631 -2.06 -4.81
1956.07 632 -2.18 -4.84
1956.01 633 -2.22 -4.77
1955.94 634 -2.27 -4.72
1955.87 635 -2.04 -4.51
1955.80 636 -2.06 -4.48
1955.73 637 -2.12 -4.41
1955.67 638 -2.19 -4.36
1955.62 639 -2.19 -4.42
1955.58 640 -2.18 -4.48
1955.53 641 -2.38 -4.59
1955.48 642 -2.48 -4.63
1955.44 643 -2.54 -4.75
1955.39 644 -2.52 -4.79
1955.35 645 -2.52 -4.86
1955.30 646 -2.44 -4.84
1955.25 647 -2.31 -4.84
1955.21 648 -2.28 -4.88
1955.15 649 -2.17 -4.83
1955.10 650 -2.12 -4.61

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1955.05 651 -2.20 -4.61
1954.99 652 -2.22 -4.58
1954.94 653 -2.20 -4.39
1954.88 654 -2.27 -4.42
1954.83 655 -2.31 -4.33
1954.78 656 -2.35 -4.27
1954.72 657 -2.36 -4.26
1954.67 658 -2.36 -4.22
1954.58 659 -2.37 -4.26
1954.48 660 -2.56 -4.30
1954.39 661 -2.68 -4.36
1954.30 662 -2.77 -4.45
1954.21 663 -2.64 -4.51
1954.16 664 -2.27 -4.49
1954.11 665 -2.20 -4.45
1954.06 666 -2.05 -4.47
1954.01 667 -2.10 -4.46
1953.96 668 -2.11 -4.31
1953.91 669 -1.95 -4.31
1953.86 670 -1.89 -4.21
1953.81 671 -1.87 -4.10
1953.77 672 -2.09 -4.05
1953.72 673 -2.03 -3.93
1953.67 674 -2.14 -3.77
1953.62 675 -2.15 -3.88
1953.58 676 -2.52 -3.98
1953.53 677 -2.51 -4.06
1953.48 678 -2.66 -4.23
1953.44 679 -2.65 -4.41
1953.39 680 -2.60 -4.62
1953.35 681 -2.41 -4.60
1953.30 682 -2.39 -4.60
1953.25 683 -2.13 -4.62
1953.21 684 -1.92 -4.63
1953.13 685 -1.93 -4.54
1953.05 686 -2.02 -4.39
1952.98 687 -1.96 -4.37
1952.90 688 -1.93 -4.32
1952.82 689 -1.97 -4.27
1952.74 690 -2.09 -4.08
1952.67 691 -2.22 -3.99
1952.61 692 -2.39 -4.04
1952.55 693 -2.48 -4.03
1952.49 694 -2.67 -4.08
1952.44 695 -2.71 -4.13
1952.38 696 -2.76 -4.15
1952.32 697 -2.83 -4.26
1952.27 698 -2.60 -4.46
1952.21 699 -2.64 -4.55
1952.16 700 -2.35 -4.54
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1952.11 701 -2.18 -4.48
1952.06 702 -2.10 -4.41
1952.01 703 -2.17 -4.42
1951.96 704 -2.29 -4.48
1951.91 705 -2.20 -4.35
1951.86 706 -2.02 -4.16
1951.81 707 -2.08 -4.06
1951.77 708 -1.97 -4.06
1951.72 709 -2.16 -4.03
1951.67 710 -1.96 -3.90
1951.62 711 -1.90 -3.97
1951.57 712 -2.12 -4.04
1951.51 713 -2.67 -4.40
1951.46 714 -2.42 -4.18
1951.41 715 -2.31 -4.60
1951.36 716 -2.25 -4.80
1951.31 717 -2.21 -4.84
1951.26 718 -2.18 -4.81
1951.21 719 -1.91 -4.83
1951.14 720 -2.09 -4.65
1951.07 721 -2.11 -4.58
1951.01 722 -1.87 -4.48
1950.94 723 -2.19 -4.39
1950.87 724 -2.01 -4.23
1950.80 725 -2.21 -4.42
1950.73 726 -2.08 -4.25
1950.67 727 -2.39 -4.20
1950.55 728 -2.58 -4.32
1950.44 729 -2.77 -4.60
1950.32 730 -2.60 -4.68
1950.21 731 -2.20 -4.66
1950.15 732 -2.15 -4.63
1950.09 733 -2.08 -4.60
1950.03 734 -1.99 -4.62
1949.97 735 -2.25 -4.43
1949.91 736 -2.28 -4.34
1949.85 737 -2.28 -4.31
1949.79 738 -2.26 -4.04
1949.73 739 -2.69 -4.07
1949.67 740 -1.99 -3.74
1949.59 741 -2.11 -3.94
1949.51 742 -2.10 -3.88
1949.44 743 -2.38 -3.92
1949.36 744 -2.51 -4.06
1949.28 745 -2.49 -4.47
1949.21 746 -2.21 -4.57
1949.12 747 -2.00 -4.37
1949.03 748 -1.98 -4.27
1948.94 749 -1.94 -4.28
1948.85 750 -1.91 -4.09

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1948.76 751 -1.87 -4.06
1948.67 752 -1.99 -3.87
1948.63 753 -1.93 -4.05
1948.60 754 -1.96 -3.91
1948.57 755 -2.45 -3.97
1948.54 756 -2.25 -4.14
1948.50 757 -2.30 -3.96
1948.47 758 -2.28 -4.03
1948.44 759 -2.20 -4.42
1948.40 760 -1.96 -4.31
1948.37 761 -2.01 -4.40
1948.34 762 -2.37 -4.38
1948.31 763 -2.09 -4.39
1948.27 764 -1.97 -4.57
1948.24 765 -1.69 -4.18
1948.21 766 -2.03 -4.58
1948.15 767 -2.07 -4.45
1948.09 768 -2.18 -4.57
1948.03 769 -1.97 -4.43
1947.97 770 -1.96 -4.30
1947.91 771 -1.85 -4.12
1947.85 772 -1.77 -4.21
1947.79 773 -1.81 -4.08
1947.73 774 -2.09 -4.22
1947.67 775 -2.14 -3.81
1947.59 776 -2.34 -4.18
1947.51 777 -2.23 -4.12
1947.44 778 -2.37 -4.01
1947.36 779 -2.61 -4.50
1947.28 780 -2.24 -4.56
1947.21 781 -2.08 -4.66
1947.15 782 -2.17 -4.58
1947.09 783 -2.09 -4.60
1947.03 784 -2.10 -4.64
1946.97 785 -1.83 -4.56
1946.91 786 -1.64 -4.48
1946.85 787 -1.55 -4.22
1946.79 788 -1.82 -4.25
1946.73 789 -1.77 -4.21
1946.67 790 -1.76 -4.14
1946.59 791 -2.18 -4.18
1946.51 792 -2.35 -4.21
1946.44 793 -2.50 -4.31
1946.36 794 -2.70 -4.40
1946.28 795 -2.49 -4.51
1946.21 796 -2.44 -4.98
1946.15 797 -2.26 -4.84
1946.10 798 -2.17 -4.88
1946.05 799 -2.13 -4.84
1945.99 800 -2.25 -4.82
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1945.94 801 -2.35 -4.79
1945.88 802 -2.52 -4.66
1945.83 803 -2.47 -4.98
1945.78 804 -2.05 -4.40
1945.72 805 -2.05 -4.17
1945.67 806 -2.17 -4.16
1945.60 807 -2.38 -4.23
1945.54 808 -2.39 -4.32
1945.47 809 -1.91 -4.37
1945.40 810 -2.25 -4.48
1945.34 811 -2.36 -4.70
1945.27 812 -2.56 -4.75
1945.21 813 -2.09 -4.79
1945.13 814 -2.03 -4.75
1945.05 815 -2.20 -4.67
1944.98 816 -1.99 -4.46
1944.90 817 -2.35 -4.25
1944.82 818 -2.18 -4.30
1944.74 819 -1.60 -4.14
1944.67 820 -1.84 -3.97
1944.59 821 -1.80 -4.03
1944.51 822 -1.97 -4.40
1944.44 823 -2.05 -4.36
1944.36 824 -1.97 -4.40
1944.28 825 -1.77 -4.54
1944.21 826 -1.88 -4.86
1944.13 827 -1.85 -4.77
1944.05 828 -1.81 -4.77
1943.98 829 -1.55 -4.80
1943.90 830 -1.62 -4.57
1943.82 831 -1.50 -4.31
1943.74 832 -1.96 -4.44
1943.67 833 -1.94 -4.25
1943.62 834 -1.89 -4.26
1943.60 835 -2.27 -4.03
1943.59 836 -2.19 -4.17
1943.57 837 -2.45 -4.59
1943.51 838 -1.91 -4.23
1943.46 839 -1.73 -4.34
1943.41 840 -1.80 -4.40
1943.36 841 -1.81 -4.49
1943.31 842 -1.73 -4.56
1943.26 843 -1.53 -4.31
1943.21 844 -1.54 -4.87
1943.03 845 -1.68 -4.41
1942.67 846 -2.05 -4.09
1942.55 847 -1.98 -4.18
1942.44 848 -2.17 -4.20
1942.32 849 -1.97 -4.57
1942.21 850 -1.66 -4.58

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1942.10 851 -2.06 -4.48
1941.99 852 -2.03 -4.17
1941.88 853 -2.21 -4.26
1941.78 854 -2.15 -3.71
1941.67 855 -2.04 -3.58
1941.55 856 -2.26 -4.08
1941.44 857 -1.87 -4.29
1941.32 858 -1.96 -4.22
1941.21 859 -2.20 -4.58
1941.03 860 -2.07 -3.98
1940.85 861 -2.14 -3.97
1940.67 862 -1.98 -3.83
1940.55 863 -2.71 -4.18
1940.44 864 -1.95 -4.23
1940.32 865 -1.60 -4.34
1940.21 866 -1.91 -4.51
1939.94 867 -1.82 -4.41
1939.67 868 -1.77 -4.18
1939.55 869 -1.82 -4.31
1939.44 870 -2.39 -4.34
1939.32 871 -2.79 -4.51
1939.21 872 -2.08 -4.67
1939.07 873 -1.85 -4.61
1938.94 874 -2.08 -4.45
1938.80 875 -1.77 -4.21
1938.67 876 -2.27 -4.03
1938.51 877 -2.46 -4.11
1938.36 878 -2.86 -4.09
1938.21 879 -2.49 -4.66
1938.07 880 -1.85 -4.46
1937.94 881 -2.17 -4.37
1937.80 882 -1.99 -4.10
1937.67 883 -1.58 -3.90
1937.59 884 -2.10 -3.93
1937.51 885 -2.69 -4.18
1937.44 886 -2.08 -4.47
1937.36 887 -1.67 -4.43
1937.28 888 -2.01 -4.40
1937.21 889 -1.95 -4.61
1936.94 890 -1.43 -3.70
1936.67 891 -2.89 -3.95
1936.51 892 -2.98 -3.97
1936.36 893 -1.86 -4.39
1936.21 894 -1.68 -4.39
1936.07 895 -2.01 -4.26
1935.94 896 -2.15 -4.23
1935.80 897 -2.66 -4.09
1935.67 898 -2.34 -3.89
1935.55 899 -2.50 -4.04
1935.44 901 -2.35 -4.21
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1935.32 903 -1.72 -4.10
1935.21 905 -2.08 -4.41
1934.94 907 -2.25 -4.24
1934.67 909 -2.17 -3.91
1934.51 911 -2.48 -4.18
1934.36 913 -2.36 -4.16
1934.21 915 -1.68 -4.48
1934.10 917 -1.21 -4.39
1933.99 919 -1.70 -4.32
1933.88 921 -1.90 -4.27
1933.78 923 -2.89 -4.16
1933.67 925 -2.72 -4.04
1933.55 927 -2.47 -4.37
1933.44 929 -2.15 -4.37
1933.32 931 -1.89 -4.48
1933.21 933 -2.15 -4.49
1933.07 935 -2.06 -4.34
1932.94 937 -2.21 -4.14
1932.80 939 -2.14 -4.20
1932.67 941 -2.43 -4.03
1932.51 943 -2.72 -4.29
1932.36 945 -2.50 -4.58
1932.21 947 -2.09 -4.58
1932.03 949 -2.84 -4.30
1931.85 951 -2.56 -4.05
1931.67 953 -2.07 -3.82
1931.51 955 -2.09 -3.87
1931.36 957 -2.49 -4.00
1931.21 959 -2.59 -4.35
1931.10 961 -1.81 -4.15
1930.99 963 -2.53 -4.26
1930.88 965 -2.27 -4.29
1930.78 967 -1.76 -4.07
1930.67 969 -1.88 -3.61
1930.51 971 -2.31 -3.87
1930.36 973 -2.73 -4.06
1930.21 975 -2.05 -4.57
1930.10 977 -2.15 -4.55
1929.99 979 -1.90 -4.56
1929.88 981 -1.90 -4.31
1929.78 983 -1.87 -4.26
1929.67 985 -2.25 -3.78
1929.55 987 -2.32 -3.89
1929.44 989 -2.57 -4.05
1929.32 991 -2.62 -4.49
1929.21 993 -2.11 -4.60
1929.13 995 -1.55 -4.43
1929.05 997 -2.13 -4.48
1928.98 999 -2.12 -4.32
1928.90 1001 -1.68 -4.19

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1928.82 1003 -2.04 -4.10
1928.74 1005 -2.02 -3.93
1928.67 1007 -2.36 -3.88
1928.51 1009 -2.21 -4.17
1928.36 1011 -1.47 -4.30
1928.21 1013 -2.35 -4.61
1928.07 1015 -2.15 -4.42
1927.94 1017 -2.11 -4.13
1927.80 1019 -2.32 -4.10
1927.67 1021 -2.23 -3.97
1927.58 1023 -2.28 -4.06
1927.48 1025 -2.15 -4.43
1927.39 1027 -2.30 -4.54
1927.30 1029 -2.32 -4.56
1927.21 1031 -2.17 -4.69
1927.10 1033 -2.32 -4.61
1926.99 1035 -2.39 -4.39
1926.88 1037 -2.44 -4.25
1926.78 1039 -2.57 -4.08
1926.67 1041 -1.78 -3.94
1926.44 1043 -2.69 -4.00
1926.21 1045 -2.79 -4.25
1926.00 1047 -2.07 -4.53
1925.89 1049 -1.83 -4.23
1925.78 1051 -1.71 -4.06
1925.67 1053 -1.53 -3.77
1925.60 1055 -1.91 -4.27
1925.54 1057 -1.83 -4.14
1925.47 1059 -2.19 -4.06
1925.41 1061 -2.25 -4.40
1925.34 1063 -2.03 -4.63
1925.28 1065 -2.04 -4.67
1925.21 1067 -1.95 -4.73
1925.10 1069 -2.09 -4.70
1924.99 1071 -1.78 -4.47
1924.89 1073 -1.74 -4.27
1924.78 1075 -1.70 -4.12
1924.67 1077 -2.03 -4.06
1924.55 1079 -2.19 -4.37
1924.44 1081 -1.99 -4.43
1924.32 1083 -1.52 -4.46
1924.21 1085 -1.69 -4.85
1924.07 1087 -1.73 -4.24
1923.94 1089 -1.62 -4.10
1923.80 1091 -2.02 -4.10
1923.67 1093 -1.77 -4.07
1923.52 1095 -2.22 -4.23
1923.36 1097 -1.72 -4.44
1923.21 1099 -1.51 -4.57
1922.94 1101 -1.75 -4.29
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1922.67 1103 -1.93 -4.14
1922.58 1105 -1.83 -4.18
1922.49 1107 -2.15 -4.40
1922.39 1109 -2.11 -4.69
1922.30 1111 -1.92 -4.79
1922.21 1113 -1.81 -4.85
1922.07 1115 -1.64 -4.56
1921.94 1117 -1.55 -4.30
1921.80 1119 -1.85 -4.50
1921.67 1121 -2.15 -4.29
1921.44 1123 -2.56 -4.89
1921.21 1125 -1.78 -4.89
1921.07 1127 -1.59 -4.83
1920.94 1129 -1.87 -4.57
1920.80 1131 -1.87 -4.46
1920.67 1133 -1.87 -4.12
1920.52 1135 -2.05 -4.51
1920.36 1137 -2.00 -4.47
1920.21 1139 -1.70 -4.56
1920.07 1141 -1.80 -4.50
1919.94 1143 -1.70 -4.12
1919.80 1145 -1.58 -3.97
1919.67 1147 -1.83 -3.90
1919.52 1149 -2.14 -4.15
1919.36 1151 -1.93 -4.54
1919.21 1153 -1.88 -4.62
1919.03 1155 -1.75 -4.54
1918.85 1157 -1.51 -4.30
1918.67 1159 -1.55 -4.01
1918.55 1161 -1.53 -4.17
1918.44 1163 -2.20 -4.38
1918.32 1165 -2.02 -4.75
1918.21 1167 -1.86 -4.84
1918.07 1169 -1.80 -4.82
1917.94 1171 -2.03 -4.68
1917.80 1173 -1.70 -4.46
1917.67 1175 -1.89 -4.35
1917.52 1177 -2.12 -4.47
1917.36 1179 -2.20 -4.67
1917.21 1181 -2.12 -5.03
1917.12 1183 -1.83 -4.81
1917.03 1185 -1.61 -4.73
1916.94 1187 -1.75 -4.55
1916.85 1189 -1.54 -4.39
1916.76 1191 -1.64 -4.33
1916.67 1193 -2.11 -4.20
1916.44 1195 -1.99 -4.41
1916.21 1197 -1.90 -4.88
1916.07 1199 -1.66 -4.77
1915.94 1201 -1.50 -4.58

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1915.80 1203 -1.21 -4.03
1915.67 1205 -1.70 -3.67
1915.52 1207 -2.14 -4.07
1915.36 1209 -1.91 -4.73
1915.21 1211 -1.90 -4.87
1915.07 1213 -1.73 -4.68
1914.94 1215 -1.62 -4.57
1914.80 1217 -1.58 -4.23
1914.67 1219 -1.70 -3.95
1914.55 1221 -1.63 -4.05
1914.44 1223 -2.03 -4.41
1914.32 1225 -1.82 -4.48
1914.21 1227 -1.54 -4.50
1914.03 1229 -1.55 -4.48
1913.85 1231 -1.34 -4.11
1913.67 1233 -1.55 -3.93
1913.55 1235 -1.68 -3.95
1913.44 1237 -1.73 -4.46
1913.32 1239 -1.54 -4.45
1913.21 1241 -1.42 -4.48
1913.03 1243 -1.43 -4.25
1912.85 1245 -1.53 -4.11
1912.67 1247 -1.51 -3.95
1912.55 1249 -1.69 -4.10
1912.44 1251 -1.65 -4.38
1912.32 1253 -1.50 -4.54
1912.21 1255 -1.49 -4.67
1911.94 1257 -1.44 -4.39
1911.67 1259 -1.34 -4.19
1911.55 1261 -1.66 -4.23
1911.44 1263 -1.88 -4.28
1911.32 1265 -1.92 -4.62
1911.21 1267 -1.80 -4.71
1911.07 1269 -1.48 -4.63
1910.94 1271 -1.40 -4.43
1910.80 1273 -1.50 -4.33
1910.67 1275 -1.63 -4.07
1910.52 1277 -2.03 -4.72
1910.36 1279 -1.92 -4.62
1910.21 1281 -1.74 -4.74
1910.07 1283 -1.63 -4.61
1909.94 1285 -1.46 -4.44
1909.80 1287 -1.36 -4.37
1909.67 1289 -1.63 -4.21
1909.52 1291 -1.63 -4.45
1909.36 1293 -1.73 -4.61
1909.21 1295 -1.74 -4.98
1909.03 1297 -1.34 -4.68
1908.85 1299 -1.35 -4.58
1908.67 1301 -1.51 -4.29
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1908.55 1303 -1.51 -4.30
1908.44 1305 -1.83 -4.40
1908.32 1307 -2.09 -4.73
1908.21 1309 -1.52 -4.82
1908.03 1311 -1.31 -4.34
1907.85 1313 -1.62 -4.24
1907.67 1315 -1.42 -4.03
1907.54 1317 -1.63 -4.05
1907.41 1319 -1.66 -4.05
1907.28 1321 -1.79 -4.51
1907.21 1323 -1.90 -4.54
1907.07 1325 -1.71 -4.53
1906.94 1327 -1.83 -4.42
1906.80 1329 -1.45 -4.17
1906.67 1331 -1.61 -4.02
1906.52 1333 -1.99 -4.18
1906.36 1335 -2.18 -4.36
1906.21 1337 -1.63 -4.39
1906.07 1339 -1.75 -4.36
1905.94 1341 -1.73 -4.08
1905.80 1343 -1.70 -4.02
1905.67 1345 -2.15 -3.85
1905.55 1347 -2.53 -3.97
1905.44 1349 -2.49 -4.29
1905.32 1351 -2.01 -4.48
1905.21 1353 -1.87 -4.51
1905.03 1355 -1.49 -4.25
1904.85 1357 -1.85 -4.12
1904.67 1359 -1.61 -3.89
1904.52 1361 -1.92 -3.95
1904.36 1363 -2.33 -4.59
1904.21 1365 -1.98 -4.61
1904.07 1367 -1.79 -4.57
1903.94 1369 -1.98 -4.20
1903.80 1371 -1.67 -3.90
1903.67 1373 -1.92 -3.86
1903.52 1375 -2.42 -4.24
1903.36 1377 -2.36 -4.43
1903.21 1379 -1.67 -4.50
1903.03 1381 -1.63 -4.45
1902.85 1383 -1.48 -4.18
1902.67 1385 -1.38 -3.92
1902.55 1387 -1.95 -4.12
1902.44 1389 -2.23 -4.61
1902.32 1391 -2.09 -4.59
1902.21 1393 -1.89 -4.63
1902.07 1395 -1.78 -4.55
1901.80 1397 -1.76 -4.20
1901.67 1399 -1.91 -4.18
1901.52 1401 -2.19 -4.25

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1901.36 1403 -2.71 -4.54
1901.21 1405 -2.88 -4.70
1901.07 1407 -1.76 -4.57
1900.94 1409 -1.72 -4.57
1900.80 1411 -1.69 -4.41
1900.67 1413 -2.15 -4.21
1900.58 1415 -2.24 -4.24
1900.49 1417 -2.37 -4.24
1900.39 1419 -2.72 -4.25
1900.30 1421 -2.39 -4.43
1900.21 1423 -1.64 -4.48
1900.03 1425 -1.70 -4.27
1899.85 1427 -1.58 -4.24
1899.67 1429 -1.74 -4.18
1899.44 1431 -2.03 -4.47
1899.21 1433 -2.26 -4.91
1899.10 1435 -1.71 -4.85
1898.99 1437 -1.79 -4.72
1898.89 1439 -1.75 -4.48
1898.78 1441 -1.59 -4.12
1898.67 1443 -1.54 -3.94
1898.52 1445 -2.30 -4.28
1898.36 1447 -2.33 -4.62
1898.21 1449 -2.26 -4.89
1898.10 1451 -1.60 -4.58
1897.99 1453 -1.67 -4.45
1897.89 1455 -1.53 -4.14
1897.78 1457 -1.54 -4.07
1897.67 1459 -1.80 -3.97
1897.21 1461 -1.66 -4.34
1897.07 1463 -1.17 -4.26
1896.94 1465 -1.40 -4.18
1896.80 1467 -1.45 -4.03
1896.67 1469 -1.45 -3.99
1896.52 1471 -1.76 -4.24
1896.36 1473 -1.74 -4.61
1896.21 1475 -1.46 -4.61
1896.07 1477 -1.45 -4.53
1895.94 1479 -1.24 -4.20
1895.80 1481 -1.61 -4.09
1895.67 1483 -1.55 -3.96
1895.44 1485 -1.98 -4.55
1895.21 1487 -1.56 -4.56
1895.10 1489 -1.57 -4.55
1894.99 1491 -1.54 -4.42
1894.89 1493 -1.86 -4.24
1894.78 1495 -1.47 -4.20
1894.67 1497 -1.77 -4.06
1894.52 1499 -2.26 -4.36
1894.36 1501 -2.08 -4.64
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1894.21 1503 -1.72 -4.73
1893.94 1505 -1.95 -4.69
1893.67 1507 -1.41 -4.13
1893.55 1509 -1.82 -4.15
1893.44 1511 -1.64 -4.41
1893.32 1513 -2.06 -4.51
1893.21 1515 -1.19 -4.67
1893.07 1517 -1.62 -4.63
1892.94 1519 -1.46 -4.54
1892.80 1521 -1.70 -4.48
1892.67 1523 -1.80 -4.13
1892.58 1525 -1.87 -4.16
1892.49 1527 -1.88 -4.53
1892.39 1529 -1.86 -4.64
1892.30 1531 -1.69 -4.64
1892.21 1533 -1.83 -4.74
1892.07 1535 -1.61 -4.42
1891.94 1537 -1.50 -4.24
1891.80 1539 -1.59 -4.02
1891.67 1541 -1.58 -3.98
1891.52 1543 -1.25 -4.11
1891.36 1545 -1.63 -4.53
1891.21 1547 -1.35 -4.66
1890.99 1549 -1.43 -4.52
1890.78 1551 -1.60 -4.10
1890.67 1553 -1.86 -4.00
1890.44 1555 -2.05 -4.38
1890.21 1557 -1.96 -4.71
1890.07 1559 -1.62 -4.56
1889.94 1561 -1.65 -4.31
1889.80 1563 -1.77 -4.24
1889.67 1565 -1.46 -4.11
1889.52 1567 -1.99 -4.23
1889.36 1569 -1.90 -4.42
1889.21 1571 -1.70 -4.73
1889.07 1573 -1.38 -4.71
1888.94 1575 -1.62 -4.50
1888.80 1577 -1.60 -4.18
1888.67 1579 -1.57 -4.05
1888.52 1581 -1.76 -4.21
1888.36 1583 -1.47 -4.27
1888.21 1585 -1.50 -4.45
1888.03 1587 -1.68 -4.36
1887.85 1589 -1.61 -4.07
1887.67 1591 -1.47 -3.91
1887.55 1593 -1.73 -4.01
1887.44 1595 -1.79 -4.20
1887.32 1597 -1.91 -4.40
1887.21 1599 -1.49 -4.59
1887.07 1601 -1.49 -4.58

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1886.94 1603 -1.54 -4.55
1886.80 1605 -1.61 -4.48
1886.67 1607 -1.24 -4.25
1886.52 1609 -1.75 -4.34
1886.36 1611 -1.93 -4.60
1886.21 1613 -1.92 -4.77
1886.10 1615 -1.51 -4.74
1885.99 1617 -1.69 -4.75
1885.89 1619 -1.67 -4.53
1885.78 1621 -1.48 -4.53
1885.67 1623 -1.31 -4.13
1885.55 1625 -1.58 -4.25
1885.44 1627 -1.96 -4.44
1885.32 1629 -1.77 -4.60
1885.21 1631 -1.45 -4.61
1885.03 1633 -1.68 -4.28
1884.85 1635 -1.24 -3.78
1884.67 1637 -1.62 -3.61
1884.44 1639 -1.58 -3.92
1884.21 1641 -1.37 -4.42
1884.10 1643 -1.14 -4.37
1883.99 1645 -1.47 -4.36
1883.89 1647 -1.54 -4.30
1883.78 1649 -1.32 -4.04
1883.67 1651 -1.31 -4.00
1883.55 1653 -1.78 -4.22
1883.44 1655 -1.56 -4.43
1883.32 1657 -1.52 -4.67
1883.21 1659 -1.14 -4.68
1883.07 1661 -1.50 -4.40
1882.94 1663 -1.51 -4.21
1882.80 1665 -1.51 -4.10
1882.67 1667 -1.63 -4.00
1882.55 1669 -1.63 -4.31
1882.44 1671 -1.40 -4.50
1882.32 1673 -1.11 -4.64
1882.21 1675 -1.38 -4.64
1882.03 1677 -1.42 -4.46
1881.85 1679 -1.42 -4.40
1881.67 1681 -1.19 -4.21
1881.52 1683 -1.53 -4.27
1881.36 1685 -1.68 -4.37
1881.21 1687 -1.62 -4.42
1881.10 1689 -1.42 -4.39
1880.99 1691 -1.67 -4.27
1880.89 1693 -1.51 -4.02
1880.78 1695 -1.36 -3.96
1880.67 1697 -1.57 -3.78
1880.52 1699 -1.88 -4.13
1880.36 1701 -1.55 -4.53
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1880.21 1703 -1.25 -4.57
1880.07 1705 -1.35 -4.51
1879.94 1707 -1.74 -4.11
1879.80 1709 -1.64 -4.11
1879.67 1711 -1.48 -4.07
1879.52 1713 -1.60 -4.51
1879.36 1715 -1.47 -4.72
1879.21 1717 -1.50 -4.88
1879.10 1719 -1.28 -4.74
1878.99 1721 -1.30 -4.60
1878.89 1723 -1.45 -4.50
1878.78 1725 -1.43 -4.34
1878.67 1727 -1.53 -4.15
1878.52 1729 -1.69 -4.47
1878.36 1731 -1.54 -4.67
1878.21 1733 -1.06 -4.76
1878.07 1735 -1.62 -4.37
1877.94 1737 -1.59 -3.94
1877.80 1739 -1.78 -3.93
1877.67 1741 -1.16 -3.92
1877.44 1743 -1.58 -4.15
1877.21 1745 -1.74 -4.44
1877.10 1747 -1.20 -4.30
1876.99 1749 -1.38 -4.26
1876.89 1751 -1.51 -4.04
1876.78 1753 -0.98 -3.94
1876.67 1755 -1.74 -3.90
1876.52 1757 -1.73 -4.20
1876.36 1759 -1.28 -4.39
1876.21 1761 -1.36 -4.44
1876.07 1763 -1.30 -4.41
1875.94 1765 -1.56 -4.28
1875.80 1767 -1.32 -4.12
1875.67 1769 -1.32 -4.06
1875.52 1771 -1.60 -4.15
1875.36 1773 -1.51 -4.48
1875.21 1775 -1.59 -4.62
1875.10 1777 -1.35 -4.59
1874.99 1779 -1.65 -4.37
1874.89 1781 -1.49 -4.30
1874.78 1783 -1.42 -4.11
1874.67 1785 -1.16 -4.01
1874.52 1787 -1.62 -4.34
1874.36 1789 -1.42 -4.49
1874.21 1791 -1.59 -4.54
1874.03 1793 -1.60 -4.45
1873.85 1795 -1.41 -4.37
1873.67 1797 -1.40 -4.08
1873.52 1799 -1.19 -4.14
1873.36 1801 -1.52 -4.32

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1873.21 1803 -1.54 -4.61
1873.10 1805 -1.42 -4.53
1872.99 1807 -1.47 -4.45
1872.89 1809 -1.49 -4.17
1872.78 1811 -1.57 -4.09
1872.67 1813 -1.43 -4.07
1872.52 1815 -1.60 -4.24
1872.36 1817 -1.94 -4.43
1872.21 1819 -1.40 -4.56
1872.09 1821 -1.33 -4.49
1871.97 1823 -1.63 -4.43
1871.85 1825 -1.28 -4.19
1871.73 1827 -1.26 -4.03
1871.67 1829 -1.45 -3.97
1871.52 1831 -1.37 -4.17
1871.36 1833 -1.80 -4.43
1871.21 1835 -1.55 -4.69
1871.10 1837 -1.33 -4.56
1870.99 1839 -1.53 -4.52
1870.89 1841 -1.33 -4.25
1870.78 1843 -1.36 -4.19
1870.67 1845 -1.11 -4.11
1870.44 1847 -1.49 -4.39
1870.21 1849 -1.66 -4.71
1870.10 1851 -1.46 -4.63
1869.99 1853 -1.35 -4.63
1869.89 1855 -1.44 -4.32
1869.78 1857 -1.62 -4.26
1869.67 1859 -1.59 -4.20
1869.52 1861 -1.57 -4.24
1869.36 1863 -1.32 -4.58
1869.21 1865 -1.36 -4.61
1869.07 1867 -1.61 -4.51
1868.94 1869 -1.78 -4.63
1868.80 1871 -1.20 -4.06
1868.67 1873 -1.70 -4.00
1868.44 1875 -1.49 -4.21
1868.21 1877 -1.41 -4.41
1868.07 1879 -1.41 -4.40
1867.94 1881 -1.53 -4.29
1867.80 1883 -1.53 -4.17
1867.67 1885 -1.28 -3.99
1867.55 1887 -1.21 -4.03
1867.44 1889 -1.64 -4.35
1867.32 1891 -1.43 -4.54
1867.21 1893 -1.34 -4.56
1867.03 1895 -1.43 -4.44
1866.85 1897 -1.39 -4.35
1866.67 1899 -1.32 -4.07
1866.52 1901 -1.69 -4.12
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1866.36 1903 -1.58 -4.20
1866.21 1905 -1.22 -4.49
1866.03 1907 -1.82 -4.33
1865.85 1909 -1.48 -3.93
1865.67 1911 -1.31 -3.93
1865.55 1913 -1.31 -3.93
1865.44 1915 -1.76 -4.34
1865.32 1917 -1.46 -4.41
1865.21 1919 -1.43 -4.48
1865.03 1921 -1.54 -4.41
1864.85 1923 -1.34 -4.12
1864.67 1925 -1.33 -4.07
1864.52 1927 -1.23 -4.21
1864.36 1929 -1.65 -4.31
1864.21 1931 -1.31 -4.38
1864.07 1933 -1.42 -4.28
1863.94 1935 -1.28 -4.19
1863.80 1937 -1.30 -3.99
1863.67 1939 -1.19 -3.89
1863.52 1941 -1.53 -4.01
1863.36 1943 -1.87 -4.49
1863.21 1945 -1.54 -4.53
1863.07 1947 -1.72 -4.43
1862.94 1949 -1.58 -4.17
1862.80 1951 -1.68 -3.98
1862.67 1953 -1.63 -3.84
1862.52 1955 -1.75 -4.13
1862.36 1957 -1.94 -4.36
1862.21 1959 -1.61 -4.49
1862.03 1961 -1.57 -4.42
1861.85 1963 -1.48 -4.28
1861.67 1965 -1.36 -4.07
1861.55 1967 -1.52 -4.12
1861.44 1969 -1.70 -4.28
1861.32 1971 -1.76 -4.59
1861.21 1973 -1.77 -4.77
1861.07 1975 -1.49 -4.66
1860.94 1977 -1.44 -4.59
1860.80 1979 -1.67 -4.27
1860.67 1981 -1.48 -4.04
1860.52 1983 -1.53 -4.07
1860.36 1985 -1.66 -4.24
1860.21 1987 -1.65 -4.51
1860.10 1989 -1.31 -4.46
1859.99 1991 -1.42 -4.29
1859.89 1993 -1.38 -4.25
1859.78 1995 -1.30 -3.91
1859.67 1997 -1.14 -3.91
1859.55 1999 -1.82 -4.07
1859.44 2001 -1.65 -4.46

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1859.32 2003 -1.75 -4.50
1859.21 2005 -1.73 -4.51
1859.03 2007 -1.46 -4.17
1858.85 2009 -1.41 -3.90
1858.67 2011 -1.52 -3.90
1858.52 2013 -1.51 -4.06
1858.36 2015 -1.71 -4.64
1858.21 2017 -1.77 -4.66
1858.03 2019 -1.51 -4.47
1857.85 2021 -1.36 -4.24
1857.67 2023 -1.21 -3.93
1857.52 2025 -1.71 -4.00
1857.36 2027 -1.72 -4.28
1857.21 2029 -1.44 -4.52
1857.10 2031 -1.13 -4.44
1856.99 2033 -1.59 -4.48
1856.89 2035 -1.46 -4.34
1856.78 2037 -1.08 -4.15
1856.67 2039 -1.18 -3.98
1856.52 2041 -1.36 -4.29
1856.36 2043 -1.97 -4.52
1856.21 2045 -1.45 -4.71
1856.07 2047 -1.27 -4.59
1855.94 2049 -1.75 -4.09
1855.80 2051 -1.46 -4.19
1855.67 2053 -1.68 -3.93
1855.52 2055 -1.54 -4.18
1855.36 2057 -1.55 -4.38
1855.21 2059 -1.66 -4.56
1855.03 2061 -1.19 -4.36
1854.85 2063 -1.35 -4.35
1854.67 2065 -1.79 -3.93
1854.44 2067 -1.72 -4.25
1854.21 2069 -1.67 -4.43
1854.07 2071 -1.40 -4.38
1853.94 2073 -1.52 -4.15
1853.80 2075 -1.37 -4.07
1853.67 2077 -1.54 -3.96
1853.52 2079 -1.64 -3.97
1853.36 2081 -1.79 -4.24
1853.21 2083 -1.83 -4.32
1853.07 2085 -1.54 -4.32
1852.94 2087 -1.39 -4.16
1852.80 2089 -1.23 -3.94
1852.67 2091 -1.76 -3.93
1852.52 2093 -1.77 -4.02
1852.36 2095 -1.78 -4.34
1852.21 2097 -1.72 -4.55
1852.10 2099 -1.60 -4.53
1851.99 2101 -1.71 -4.38
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1851.89 2103 -1.77 -4.33
1851.78 2105 -1.75 -4.17
1851.67 2107 -1.88 -4.06
1851.44 2109 -1.80 -4.34
1851.21 2111 -2.00 -4.49
1851.03 2113 -1.87 -4.41
1850.85 2115 -1.51 -4.00
1850.67 2117 -1.80 -3.87
1850.55 2119 -1.75 -3.90
1850.44 2121 -1.74 -3.94
1850.32 2123 -1.63 -4.24
1850.21 2125 -1.54 -4.25
1850.03 2127 -1.52 -4.04
1849.85 2129 -1.46 -3.99
1849.67 2131 -1.36 -3.89
1849.52 2133 -1.51 -4.01
1849.36 2135 -1.66 -4.37
1849.21 2137 -1.66 -4.48
1849.07 2139 -1.52 -4.41
1848.94 2141 -1.56 -4.32
1848.80 2143 -1.45 -4.18
1848.67 2145 -1.32 -4.04
1848.44 2147 -1.13 -4.25
1848.21 2149 -1.27 -4.58
1848.07 2151 -1.41 -4.57
1847.94 2153 -1.41 -4.38
1847.80 2155 -1.34 -4.12
1847.67 2157 -1.38 -4.02
1847.52 2159 -1.66 -4.14
1847.36 2161 -1.38 -4.32
1847.21 2163 -1.41 -4.48
1847.10 2165 -1.18 -4.41
1846.99 2167 -1.46 -4.24
1846.89 2169 -1.32 -4.13
1846.78 2171 -1.30 -3.99
1846.67 2173 -1.35 -3.94
1846.52 2175 -1.66 -4.15
1846.36 2177 -1.47 -4.41
1846.21 2179 -1.32 -4.45
1845.94 2181 -1.37 -4.26
1845.67 2183 -1.46 -3.96
1845.55 2185 -1.44 -4.00
1845.44 2187 -1.68 -4.18
1845.32 2189 -1.38 -4.28
1845.21 2191 -1.41 -4.55
1845.03 2193 -1.31 -4.30
1844.85 2195 -1.10 -4.04
1844.67 2197 -1.58 -3.88
1844.52 2199 -1.89 -4.13
1844.36 2201 -1.67 -4.22

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1844.21 2203 -1.46 -4.55
1844.07 2205 -1.52 -4.52
1843.94 2207 -1.29 -4.20
1843.80 2209 -1.42 -4.09
1843.67 2211 -1.52 -4.07
1843.21 2213 -1.69 -4.47
1843.10 2215 -1.50 -4.40
1842.99 2217 -1.51 -4.26
1842.89 2219 -1.47 -4.16
1842.78 2221 -1.40 -3.93
1842.67 2223 -1.41 -3.89
1842.58 2225 -1.64 -4.00
1842.49 2227 -1.53 -4.40
1842.39 2229 -1.44 -4.40
1842.30 2231 -1.36 -4.47
1842.21 2233 -1.46 -4.49
1841.94 2235 -1.34 -4.18
1841.67 2237 -1.44 -4.08
1841.52 2239 -1.56 -4.29
1841.36 2241 -1.86 -4.52
1841.21 2243 -1.51 -4.61
1841.03 2245 -1.26 -4.30
1840.85 2247 -1.30 -4.12
1840.67 2249 -1.45 -3.81
1840.52 2251 -1.61 -4.04
1840.36 2253 -1.65 -4.42
1840.21 2255 -1.57 -4.56
1840.03 2257 -1.62 -4.53
1839.85 2259 -1.52 -4.33
1839.67 2261 -1.18 -4.02
1839.55 2263 -1.50 -4.18
1839.44 2265 -1.49 -3.97
1839.32 2267 -1.25 -4.28
1839.21 2269 -1.32 -4.39
1838.94 2271 -1.47 -4.03
1838.67 2273 -1.29 -3.89
1838.52 2275 -1.21 -3.94
1838.36 2277 -1.41 -4.19
1838.21 2279 -1.37 -4.35
1838.03 2281 -1.28 -4.29
1837.85 2283 -1.25 -3.93
1837.67 2285 -1.27 -3.90
1837.44 2287 -1.59 -4.17
1837.21 2289 -1.81 -4.62
1837.10 2291 -1.34 -4.62
1836.99 2293 -1.54 -4.49
1836.89 2295 -1.55 -4.22
1836.78 2297 -1.54 -4.19
1836.67 2299 -0.98 -4.03
1836.56 2301 -1.42 -4.23
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1836.45 2303 -1.30 -4.44
1836.40 2305 -1.37 -4.05
1836.15 2307 -1.40 -3.87
1835.91 2309 -1.63 -3.98
1835.66 2311 -1.63 -4.33
1835.41 2313 -1.45 -4.58
1835.17 2315 -1.41 -4.51
1834.98 2317 -1.34 -4.29
1834.80 2319 -1.34 -4.15
1834.62 2321 -1.61 -4.00
1834.44 2323 -1.84 -4.44
1834.26 2325 -1.62 -4.60
1834.10 2327 -1.50 -4.56
1833.95 2329 -1.53 -4.30
1833.81 2331 -1.46 -4.19
1833.67 2333 -1.45 -4.08
1833.52 2335 -1.38 -4.13
1833.38 2337 -1.59 -4.36
1833.24 2339 -1.57 -4.53
1833.08 2341 -1.51 -4.28
1832.89 2343 -1.94 -4.52
1832.71 2345 -1.59 -3.77
1832.53 2347 -1.45 -3.99
1832.35 2349 -1.52 -4.33
1832.17 2351 -1.41 -4.25
1831.98 2353 -1.26 -4.16
1831.80 2355 -0.99 -3.95
1831.62 2357 -1.26 -3.97
1831.44 2359 -1.81 -4.23
1831.26 2361 -1.42 -4.34
1831.09 2363 -1.34 -4.29
1830.94 2365 -1.21 -4.15
1830.78 2367 -1.60 -4.03
1830.63 2369 -1.51 -4.17
1830.47 2371 -1.45 -4.34
1830.32 2373 -1.41 -4.54
1830.17 2375 -1.51 -4.44
1830.00 2377 -1.58 -4.22
1829.83 2379 -1.21 -3.98
1829.67 2381 -1.31 -3.96
1829.50 2383 -1.62 -4.04
1829.33 2385 -1.45 -4.45
1829.17 2387 -1.25 -4.53
1828.98 2389 -1.41 -4.50
1828.80 2391 -1.09 -4.23
1828.62 2393 -1.36 -4.02
1828.44 2395 -1.34 -4.02
1828.26 2397 -1.49 -4.50
1828.09 2399 -1.48 -4.51
1827.94 2401 -1.26 -4.59

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1827.78 2403 -1.33 -4.35
1827.63 2405 -1.46 -4.02
1827.47 2407 -1.48 -4.03
1827.32 2409 -1.48 -4.22
1827.17 2411 -1.58 -4.44
1827.03 2413 -1.43 -4.42
1826.90 2415 -1.21 -4.40
1826.77 2417 -1.26 -4.10
1826.63 2419 -1.31 -3.99
1826.50 2421 -1.44 -4.10
1826.37 2423 -1.64 -4.46
1826.23 2425 -1.11 -4.53
1826.08 2427 -1.14 -4.62
1825.89 2429 -1.55 -4.33
1825.71 2431 -1.27 -4.00
1825.53 2433 -1.39 -4.03
1825.35 2435 -1.44 -4.15
1825.17 2437 -1.41 -4.52
1824.97 2439 -1.65 -4.50
1824.77 2441 -1.26 -4.46
1824.57 2443 -1.42 -4.38
1824.37 2445 -1.37 -3.71
1824.08 2447 -0.87 -3.72
1823.89 2449 -0.88 -3.75
1823.71 2451 -1.06 -3.53
1823.53 2453 -1.66 -3.64
1823.35 2455 -1.80 -3.72
1823.17 2457 -1.65 -4.02
1823.02 2459 -1.21 -4.17
1822.88 2461 -1.00 -4.08
1822.74 2463 -1.14 -3.93
1822.60 2465 -1.07 -3.92
1822.45 2467 -1.42 -3.84
1822.31 2469 -1.64 -4.04
1822.17 2471 -1.56 -4.29
1822.02 2473 -0.88 -4.16
1821.88 2475 -0.82 -3.93
1821.74 2477 -0.62 -3.80
1821.60 2479 -1.47 -3.83
1821.45 2481 -1.67 -3.88
1821.31 2483 -1.81 -4.13
1821.17 2485 -0.94 -4.12
1820.98 2487 -0.71 -3.88
1820.80 2489 -0.36 -3.70
1820.62 2491 -0.76 -3.70
1820.44 2493 -1.80 -3.78
1820.26 2495 -1.80 -4.29
1820.08 2497 -0.66 -3.97
1819.89 2499 -0.45 -3.77
1819.71 2501 -0.16 -3.61

169



Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1819.53 2503 -1.12 -3.94
1819.35 2505 -1.73 -4.11
1819.17 2507 -1.13 -4.27
1819.00 2509 -0.98 -4.22
1818.83 2511 -0.39 -3.82
1818.67 2513 -0.33 -3.72
1818.50 2515 -0.98 -3.79
1818.33 2517 -1.46 -4.03
1818.17 2519 -0.56 -3.94
1817.94 2521 -0.64 -3.92
1817.72 2523 -0.54 -3.71
1817.50 2525 -0.63 -3.48
1817.28 2527 -1.37 -4.05
1817.06 2529 -0.86 -4.09
1816.83 2531 -0.95 -3.90
1816.61 2533 -0.92 -3.62
1816.39 2535 -1.58 -4.00
1816.17 2537 -1.04 -4.18
1815.97 2539 -1.19 -4.01
1815.77 2541 -1.20 -3.79
1815.57 2543 -1.15 -3.68
1815.37 2545 -1.37 -4.00
1815.17 2547 -1.25 -4.09
1814.97 2549 -1.09 -3.96
1814.77 2551 -1.19 -3.73
1814.57 2553 -1.04 -3.67
1814.37 2555 -1.51 -4.12
1814.17 2557 -1.48 -4.37
1813.97 2559 -1.37 -4.33
1813.77 2561 -1.46 -3.98
1813.57 2563 -1.36 -3.98
1813.37 2565 -1.55 -4.12
1813.17 2567 -1.21 -4.43
1812.97 2569 -1.32 -4.46
1812.77 2571 -1.23 -4.20
1812.57 2573 -1.19 -4.05
1812.37 2575 -1.58 -4.34
1812.17 2577 -1.59 -4.59
1812.00 2579 -1.52 -4.60
1811.83 2581 -1.20 -4.27
1811.67 2583 -1.31 -4.09
1811.50 2585 -1.36 -4.03
1811.33 2587 -1.19 -4.34
1811.17 2589 -1.35 -4.42
1810.92 2591 -1.27 -4.26
1810.67 2593 -1.00 -4.16
1810.42 2595 -1.53 -4.19
1810.17 2597 -1.37 -4.16
1809.98 2599 -1.43 -4.39
1809.80 2601 -1.20 -4.13

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1809.62 2603 -1.19 -3.82
1809.44 2605 -1.54 -3.79
1809.26 2607 -1.21 -3.99
1809.07 2609 -1.07 -4.24
1808.87 2611 -1.33 -4.09
1808.67 2613 -1.32 -3.88
1808.47 2615 -1.54 -3.91
1808.27 2617 -1.75 -4.18
1808.08 2619 -1.34 -4.33
1807.92 2621 -1.34 -4.30
1807.75 2623 -1.27 -4.16
1807.58 2625 -1.66 -4.07
1807.42 2627 -1.57 -4.05
1807.25 2629 -1.43 -4.28
1807.08 2631 -1.19 -4.44
1806.92 2633 -1.25 -4.34
1806.75 2635 -1.35 -3.99
1806.58 2637 -1.27 -3.94
1806.42 2639 -1.60 -4.21
1806.25 2641 -1.64 -4.41
1806.08 2643 -1.46 -4.42
1805.89 2645 -1.38 -4.28
1805.71 2647 -1.45 -4.02
1805.53 2649 -1.55 -3.93
1805.35 2651 -1.67 -4.16
1805.17 2653 -1.33 -4.48
1805.01 2655 -1.18 -4.51
1804.86 2657 -1.23 -4.34
1804.71 2659 -1.10 -4.21
1804.55 2661 -1.17 -4.08
1804.40 2663 -1.37 -4.30
1804.24 2665 -1.36 -4.45
1804.08 2667 -1.17 -4.56
1803.92 2669 -1.16 -4.17
1803.75 2671 -0.90 -3.92
1803.58 2673 -1.08 -3.74
1803.42 2675 -1.46 -3.90
1803.25 2677 -1.16 -4.03
1803.04 2679 -1.06 -4.08
1802.79 2681 -1.06 -3.80
1802.54 2683 -1.21 -3.91
1802.29 2685 -1.54 -4.26
1802.10 2687 -1.33 -4.46
1801.97 2689 -1.32 -4.21
1801.83 2691 -1.47 -4.24
1801.70 2693 -1.36 -4.01
1801.57 2695 -1.66 -4.07
1801.43 2697 -1.70 -4.09
1801.30 2699 -1.48 -4.31
1801.17 2701 -1.23 -4.41
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1800.94 2703 -1.05 -4.15
1800.72 2705 -1.19 -4.01
1800.50 2707 -1.26 -4.03
1800.28 2709 -1.26 -4.23
1800.08 2711 -1.06 -4.34
1799.89 2713 -1.03 -4.30
1799.71 2715 -0.98 -4.12
1799.53 2717 -1.23 -3.91
1799.35 2719 -1.32 -4.21
1799.17 2721 -1.50 -4.39
1799.00 2723 -1.30 -4.26
1798.83 2725 -1.22 -3.97
1798.67 2727 -1.33 -3.95
1798.50 2729 -1.32 -3.96
1798.33 2731 -1.37 -4.32
1798.17 2733 -1.34 -4.45
1797.98 2735 -1.35 -4.31
1797.80 2737 -1.19 -4.01
1797.62 2739 -1.32 -3.96
1797.44 2741 -1.49 -4.11
1797.26 2743 -1.70 -4.65
1797.09 2745 -1.37 -4.58
1796.94 2747 -1.37 -4.36
1796.78 2749 -1.34 -4.15
1796.63 2751 -1.37 -3.94
1796.47 2753 -1.63 -4.05
1796.32 2755 -1.74 -4.49
1796.17 2757 -1.53 -4.56
1795.98 2759 -1.56 -4.56
1795.80 2761 -1.57 -4.18
1795.62 2763 -1.42 -3.94
1795.44 2765 -1.49 -4.17
1795.26 2767 -1.61 -4.47
1795.10 2769 -1.59 -4.73
1794.98 2771 -1.49 -4.68
1794.85 2773 -1.41 -4.52
1794.73 2775 -1.25 -4.25
1794.60 2777 -1.43 -4.17
1794.48 2779 -1.72 -4.32
1794.35 2781 -1.57 -4.61
1794.23 2783 -1.30 -4.69
1794.08 2785 -1.26 -4.66
1793.89 2787 -1.23 -4.60
1793.71 2789 -1.23 -4.18
1793.53 2791 -1.54 -4.01
1793.35 2793 -1.54 -4.35
1793.17 2795 -1.50 -4.70
1793.01 2797 -1.36 -4.57
1792.86 2799 -1.12 -4.44
1792.71 2801 -1.31 -4.16

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1792.55 2803 -1.42 -3.90
1792.40 2805 -1.54 -3.89
1792.24 2807 -1.54 -4.10
1792.07 2809 -1.14 -4.13
1791.87 2811 -1.21 -3.68
1791.67 2813 -1.16 -3.88
1791.47 2815 -1.11 -4.13
1791.27 2817 -1.03 -4.42
1791.07 2819 -0.76 -3.96
1790.87 2821 -1.22 -3.60
1790.67 2823 -1.27 -3.97
1790.47 2825 -1.35 -4.37
1790.27 2827 -1.15 -4.30
1790.08 2829 -1.15 -4.19
1789.89 2831 -0.94 -3.99
1789.71 2833 -1.32 -4.06
1789.53 2835 -1.47 -4.27
1789.35 2837 -1.44 -4.44
1789.17 2839 -1.10 -4.41
1788.98 2841 -1.21 -4.32
1788.80 2843 -1.41 -3.84
1788.62 2845 -1.43 -3.91
1788.44 2847 -1.69 -3.99
1788.26 2849 -1.75 -4.37
1788.10 2851 -1.41 -4.45
1787.95 2853 -1.41 -4.44
1787.81 2855 -1.46 -4.15
1787.67 2857 -1.50 -3.90
1787.52 2859 -1.23 -3.81
1787.38 2861 -1.55 -4.31
1787.24 2863 -1.04 -4.36
1787.10 2865 -1.55 -4.49
1786.95 2867 -1.39 -4.18
1786.81 2869 -1.38 -3.95
1786.67 2871 -1.68 -4.17
1786.52 2873 -1.91 -4.28
1786.38 2875 -1.99 -4.74
1786.24 2877 -1.27 -4.50
1786.09 2879 -1.30 -4.34
1785.94 2881 -1.35 -4.13
1785.78 2883 -1.23 -4.05
1785.63 2885 -1.72 -4.03
1785.47 2887 -1.94 -4.26
1785.32 2889 -1.55 -4.60
1785.17 2891 -1.54 -4.53
1785.00 2893 -1.38 -4.47
1784.83 2895 -1.37 -4.26
1784.67 2897 -1.51 -4.03
1784.50 2899 -1.51 -4.34
1784.33 2901 -1.84 -4.26
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1784.17 2903 -1.37 -4.56
1784.02 2905 -1.23 -4.47
1783.88 2907 -1.27 -4.40
1783.74 2909 -1.29 -4.17
1783.60 2911 -1.31 -3.90
1783.45 2913 -1.46 -3.87
1783.31 2915 -1.88 -4.36
1783.17 2917 -1.49 -4.31
1783.02 2919 -1.65 -4.46
1782.88 2921 -1.29 -4.03
1782.74 2923 -1.29 -3.97
1782.60 2925 -1.57 -3.78
1782.45 2927 -1.91 -3.98
1782.31 2929 -1.89 -4.08
1782.17 2931 -1.65 -4.18
1782.00 2933 -1.64 -4.19
1781.83 2935 -1.25 -3.94
1781.67 2937 -1.37 -3.93
1781.50 2939 -1.40 -3.81
1781.33 2941 -1.77 -3.93
1781.17 2943 -1.91 -4.37
1781.04 2945 -1.12 -4.41
1780.92 2947 -1.28 -4.32
1780.79 2949 -1.40 -4.30
1780.67 2951 -1.24 -4.10
1780.54 2953 -1.28 -3.88
1780.42 2955 -1.74 -4.00
1780.29 2957 -1.98 -4.41
1780.17 2959 -1.56 -4.40
1780.05 2961 -1.42 -4.31
1779.93 2963 -1.51 -4.09
1779.81 2965 -1.44 -3.78
1779.70 2967 -1.57 -3.90
1779.58 2969 -1.89 -4.17
1779.46 2971 -1.85 -4.22
1779.34 2973 -1.44 -4.37
1779.17 2975 -1.28 -3.98
1779.01 2977 -1.69 -4.01
1778.86 2979 -1.27 -3.80
1778.71 2981 -1.25 -3.62
1778.55 2983 -2.07 -3.94
1778.40 2985 -2.08 -4.22
1778.24 2987 -1.38 -4.27
1778.09 2989 -0.92 -4.17
1777.94 2991 -0.77 -3.97
1777.78 2993 -0.71 -3.80
1777.63 2995 -1.13 -3.81
1777.47 2997 -1.65 -3.97
1777.32 2999 -1.59 -4.06
1777.17 3001 -0.88 -4.08

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1776.94 3003 -0.82 -3.86
1776.72 3005 -0.47 -3.58
1776.50 3007 -1.07 -3.62
1776.28 3009 -2.02 -4.35
1776.10 3011 -0.93 -4.29
1775.97 3013 -0.91 -4.17
1775.83 3015 -0.84 -3.81
1775.70 3017 -0.98 -3.74
1775.57 3019 -1.20 -3.80
1775.50 3021 -1.62 -4.11
1775.37 3023 -1.63 -4.24
1775.23 3025 -1.19 -4.29
1775.10 3027 -1.01 -4.19
1774.98 3029 -0.65 -3.97
1774.85 3031 -0.84 -3.95
1774.73 3033 -1.19 -3.95
1774.60 3035 -1.67 -4.32
1774.48 3037 -1.55 -4.48
1774.35 3039 -1.04 -4.44
1774.23 3041 -1.23 -4.34
1774.11 3043 -0.83 -4.21
1774.00 3045 -1.44 -3.82
1773.89 3047 -1.19 -3.79
1773.78 3049 -0.93 -3.92
1773.67 3051 -0.95 -4.01
1773.56 3053 -0.79 -3.89
1773.44 3055 -0.63 -3.66
1773.33 3057 -1.08 -4.03
1773.22 3059 -1.19 -4.52
1773.08 3061 -1.15 -4.48
1772.92 3063 -0.89 -4.10
1772.75 3065 -0.71 -3.91
1772.58 3067 -0.88 -3.82
1772.42 3069 -1.31 -4.01
1772.25 3071 -1.17 -4.32
1772.08 3073 -0.94 -4.28
1771.89 3075 -0.85 -4.26
1771.71 3077 -1.02 -3.98
1771.53 3079 -1.27 -3.99
1771.35 3081 -1.29 -4.50
1771.17 3083 -1.37 -4.40
1771.00 3085 -1.12 -4.12
1770.83 3087 -1.20 -3.83
1770.67 3089 -0.89 -3.52
1770.50 3091 -1.26 -3.89
1770.33 3093 -1.33 -4.17
1770.17 3095 -1.42 -4.22
1769.88 3097 -2.05 -3.71
1769.60 3099 -1.94 -4.02
1769.31 3101 -1.29 -4.18
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1769.10 3103 -0.99 -4.10
1768.97 3105 -1.06 -3.80
1768.83 3107 -0.92 -3.64
1768.70 3109 -1.17 -3.46
1768.57 3111 -2.01 -3.68
1768.43 3113 -1.84 -3.83
1768.30 3115 -1.62 -4.04
1768.17 3117 -1.40 -3.98
1768.03 3119 -0.90 -3.69
1767.97 3121 -1.53 -4.01
1767.83 3123 -1.20 -3.83
1767.70 3125 -1.09 -3.60
1767.57 3127 -1.77 -3.54
1767.43 3129 -2.06 -3.83
1767.30 3131 -1.65 -4.10
1767.17 3133 -1.24 -4.21
1766.98 3135 -0.91 -3.81
1766.80 3137 -0.83 -3.57
1766.62 3139 -1.46 -3.54
1766.44 3141 -1.94 -3.68
1766.26 3143 -1.13 -3.97
1766.09 3145 -1.12 -3.93
1765.94 3147 -0.73 -3.59
1765.78 3149 -0.99 -3.55
1765.63 3151 -1.89 -3.86
1765.47 3153 -1.42 -3.99
1765.32 3155 -0.98 -4.03
1765.17 3157 -1.03 -4.07
1764.97 3159 -1.37 -3.86
1764.77 3161 -1.46 -4.02
1764.57 3163 -1.36 -4.25
1764.37 3165 -0.95 -4.28
1764.17 3167 -1.30 -4.18
1763.97 3169 -0.84 -3.92
1763.77 3171 -1.28 -3.86
1763.57 3173 -1.57 -4.06
1763.37 3175 -1.11 -4.09
1763.17 3177 -1.15 -4.13
1762.94 3179 -1.07 -3.88
1762.72 3181 -1.05 -3.64
1762.50 3183 -1.51 -3.93
1762.28 3185 -1.12 -4.03
1762.08 3187 -1.30 -4.04
1761.89 3189 -1.10 -3.90
1761.71 3191 -1.12 -3.76
1761.53 3193 -1.53 -3.82
1761.35 3195 -1.24 -4.16
1761.17 3197 -0.77 -4.05
1761.04 3199 -0.79 -3.74
1760.79 3201 -1.42 -3.69

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1760.54 3203 -1.73 -3.91
1760.29 3205 -0.58 -3.91
1760.10 3207 -1.10 -4.00
1759.95 3209 -1.12 -4.00
1759.81 3211 -1.28 -4.01
1759.67 3213 -1.06 -3.89
1759.52 3215 -1.64 -3.98
1759.38 3217 -1.80 -4.05
1759.24 3219 -1.36 -4.49
1759.08 3221 -1.28 -4.06
1758.92 3223 -0.86 -3.95
1758.75 3225 -1.00 -3.77
1758.58 3227 -1.49 -3.72
1758.42 3229 -1.85 -4.01
1758.33 3231 -1.54 -3.74
1758.17 3233 -0.89 -4.21
1757.98 3235 -1.33 -4.18
1757.80 3237 -1.33 -3.97
1757.62 3239 -1.65 -3.98
1757.44 3241 -1.89 -4.10
1757.26 3243 -1.41 -4.23
1757.08 3245 -1.19 -4.26
1756.89 3247 -1.27 -4.08
1756.71 3249 -1.32 -3.89
1756.53 3251 -1.46 -3.76
1756.35 3253 -1.79 -4.14
1756.17 3255 -1.27 -4.34
1756.02 3257 -1.38 -4.25
1755.88 3259 -1.00 -4.06
1755.74 3261 -1.36 -4.04
1755.60 3263 -1.33 -3.98
1755.45 3265 -1.96 -4.33
1755.31 3267 -1.08 -4.30
1755.17 3269 -1.43 -4.20
1754.92 3271 -1.31 -4.13
1754.67 3273 -1.20 -3.89
1754.42 3275 -1.74 -4.11
1754.17 3277 -1.43 -4.35
1753.97 3279 -1.50 -4.31
1753.77 3281 -1.38 -4.12
1753.57 3283 -1.78 -3.99
1753.37 3285 -1.68 -4.07
1753.17 3287 -1.43 -4.49
1753.01 3289 -1.48 -4.27
1752.86 3291 -1.25 -4.11
1752.71 3293 -1.29 -3.93
1752.55 3295 -1.77 -4.09
1752.40 3297 -1.59 -4.38
1752.24 3299 -1.41 -4.42
1752.08 3301 -1.13 -4.39
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1751.89 3303 -1.15 -4.16
1751.71 3305 -1.28 -4.16
1751.53 3307 -1.57 -4.21
1751.35 3309 -1.80 -4.54
1751.17 3311 -1.36 -4.44
1750.83 3313 -1.21 -4.23
1750.50 3315 -1.15 -4.12
1750.17 3317 -1.31 -4.23
1749.98 3319 -1.09 -4.06
1749.80 3321 -1.26 -4.06
1749.62 3323 -1.32 -4.03
1749.44 3325 -1.38 -4.30
1749.26 3327 -1.17 -4.42
1749.04 3329 -1.19 -4.25
1748.79 3331 -1.06 -4.06
1748.54 3333 -1.24 -3.95
1748.29 3335 -1.28 -4.40
1748.10 3337 -1.25 -4.48
1747.95 3339 -1.17 -4.34
1747.81 3341 -1.19 -4.34
1747.67 3343 -1.24 -4.11
1747.52 3345 -1.36 -4.13
1747.38 3347 -1.32 -4.22
1747.24 3349 -1.42 -4.43
1747.10 3351 -1.07 -4.32
1746.97 3353 -1.38 -4.11
1746.83 3355 -1.39 -4.00
1746.70 3357 -1.43 -3.91
1746.57 3359 -1.48 -4.13
1746.43 3361 -1.28 -4.32
1746.30 3363 -1.30 -4.27
1746.17 3365 -1.07 -4.26
1745.94 3367 -1.23 -3.90
1745.72 3369 -1.25 -3.90
1745.50 3371 -1.54 -4.01
1745.28 3373 -1.36 -4.35
1745.08 3375 -1.27 -4.33
1744.92 3377 -1.48 -4.11
1744.75 3379 -1.42 -3.93
1744.58 3381 -1.63 -4.08
1744.42 3383 -1.48 -4.17
1744.25 3385 -1.58 -4.40
1744.10 3387 -1.26 -4.52
1743.95 3389 -1.27 -4.37
1743.81 3391 -1.00 -4.36
1743.67 3393 -1.04 -4.10
1743.52 3395 -1.01 -3.96
1743.38 3397 -1.35 -4.08
1743.24 3399 -1.34 -4.33
1743.08 3401 -1.43 -4.38

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1742.92 3403 -1.19 -4.20
1742.75 3405 -1.25 -3.98
1742.58 3407 -1.45 -3.99
1742.42 3409 -1.52 -4.10
1742.25 3411 -1.44 -4.37
1742.10 3413 -1.25 -4.41
1741.95 3415 -1.29 -4.30
1741.81 3417 -1.10 -4.02
1741.67 3419 -1.33 -3.94
1741.52 3421 -1.47 -4.13
1741.38 3423 -1.39 -4.53
1741.24 3425 -1.28 -4.45
1741.09 3427 -1.20 -4.41
1740.94 3429 -1.12 -4.14
1740.78 3431 -1.10 -3.90
1740.63 3433 -1.62 -4.09
1740.47 3435 -1.65 -4.37
1740.32 3437 -1.33 -4.42
1740.17 3439 -1.30 -4.37
1739.98 3441 -1.49 -4.04
1739.80 3443 -1.16 -4.00
1739.62 3445 -1.33 -3.96
1739.44 3447 -1.41 -4.25
1739.26 3449 -1.37 -4.32
1739.08 3451 -1.20 -4.37
1738.92 3453 -1.18 -4.13
1738.75 3455 -1.31 -3.99
1738.58 3457 -1.22 -4.01
1738.42 3459 -1.46 -4.31
1738.25 3461 -1.25 -4.52
1738.08 3463 -1.32 -4.37
1737.89 3465 -1.32 -4.17
1737.71 3467 -1.31 -4.19
1737.53 3469 -1.34 -4.15
1737.35 3471 -1.57 -4.30
1737.17 3473 -1.05 -4.36
1737.01 3475 -1.29 -4.39
1736.86 3477 -1.17 -4.18
1736.71 3479 -0.98 -3.90
1736.55 3481 -1.68 -3.92
1736.40 3483 -1.40 -4.35
1736.24 3485 -1.18 -4.26
1736.08 3487 -1.19 -4.19
1735.89 3489 -1.02 -3.96
1735.71 3491 -1.12 -3.95
1735.53 3493 -1.53 -4.23
1735.35 3495 -1.43 -4.33
1735.17 3497 -1.35 -4.42
1735.03 3499 -1.21 -4.23
1734.90 3501 -1.12 -4.25
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Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1734.77 3503 -1.05 -4.09
1734.63 3505 -1.09 -4.06
1734.50 3507 -1.20 -3.94
1734.37 3509 -1.63 -4.13
1734.23 3511 -1.35 -4.17
1734.08 3513 -1.03 -4.16
1733.92 3515 -1.27 -3.93
1733.75 3517 -0.90 -3.65
1733.58 3519 -1.61 -3.86
1733.42 3521 -1.56 -4.05
1733.25 3523 -1.19 -4.28
1733.10 3525 -1.05 -4.21
1732.97 3527 -0.93 -4.14
1732.83 3529 -0.93 -3.85
1732.70 3531 -1.12 -3.84
1732.57 3533 -1.86 -4.08
1732.43 3535 -1.36 -4.44
1732.30 3537 -1.21 -4.42
1732.17 3539 -1.16 -4.40
1732.00 3541 -0.97 -4.12
1731.83 3543 -0.77 -4.04
1731.67 3545 -1.74 -3.83
1731.50 3547 -1.94 -3.92
1731.33 3549 -1.19 -4.00
1731.17 3551 -1.37 -3.98
1731.01 3553 -1.07 -3.77
1730.86 3555 -1.17 -3.77
1730.71 3557 -2.18 -3.83
1730.55 3559 -2.03 -3.90
1730.40 3561 -1.17 -4.00
1730.24 3563 -1.52 -4.02
1730.07 3565 -0.99 -3.88
1729.87 3567 -1.27 -3.74
1729.67 3569 -1.74 -3.73
1729.47 3571 -2.13 -4.04
1729.27 3573 -1.80 -4.14
1729.09 3575 -1.38 -4.18
1728.94 3577 -1.39 -4.11
1728.78 3579 -1.41 -3.83
1728.63 3581 -1.53 -3.75
1728.47 3583 -2.16 -4.01
1728.32 3585 -1.74 -4.21
1728.17 3587 -1.07 -4.27
1728.01 3589 -1.15 -4.16
1727.86 3591 -1.27 -3.96
1727.71 3593 -1.56 -3.87
1727.55 3595 -2.41 -4.09
1727.40 3597 -2.12 -4.23
1727.24 3599 -2.22 -4.32
1727.09 3601 -1.93 -4.19

Year A.D. Depth 
(mm)

δ13C (‰) δ18O (‰)

1726.94 3603 -2.00 -4.00
1726.78 3605 -2.26 -3.85
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APPENDIX II

CORAL δ18O AND δ13C IN CORE 3R FROM RAROTONGA
FOR THE PERIOD 1926-2000 
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Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

2000.28 1 -4.863 -3.211
2000.17 2 -4.948 -2.938
2000.07 3 -4.802 -2.669
1999.96 4 -4.624 -3.117
1999.86 5 -4.574 -3.184
1999.75 6 -4.507 -3.233
1999.69 7 -4.583 -3.096
1999.62 8 -4.716 -3.134
1999.56 9 -4.860 -3.234
1999.49 10 -4.955 -3.297
1999.36 12 -4.978 -3.356
1999.30 13 -4.871 -3.068
1999.23 14 -4.931 -2.904
1999.17 15 -4.967 -2.984
1999.12 16 -4.943 -2.716
1999.07 17 -4.938 -2.708
1999.01 18 -4.776 -2.472
1998.96 19 -4.688 -2.528
1998.91 20 -4.542 -2.837
1998.86 21 -4.346 -2.952
1998.80 22 -4.336 -3.133
1998.75 23 -4.245 -3.237
1998.65 24 -4.310 -3.375
1998.56 25 -4.324 -3.347
1998.46 26 -4.485 -3.320
1998.36 27 -4.566 -3.198
1998.27 28 -4.556 -2.942
1998.17 29 -4.638 -2.766
1998.10 30 -4.444 -2.789
1998.03 31 -4.259 -2.797
1997.96 32 -4.170 -2.653
1997.89 33 -4.125 -2.888
1997.82 34 -4.112 -2.968
1997.75 35 -4.071 -2.997
1997.67 36 -4.229 -3.312
1997.58 37 -4.186 -3.237
1997.50 38 -4.434 -3.340
1997.42 39 -4.563 -3.470
1997.34 40 -4.562 -3.245
1997.25 41 -4.629 -2.884
1997.17 42 -4.707 -2.675
1997.10 43 -4.626 -2.567
1997.03 44 -4.535 -2.557
1996.96 45 -4.566 -2.539
1996.89 46 -4.586 -2.475
1996.82 47 -4.451 -2.728
1996.75 48 -4.404 -2.744
1996.69 49 -4.497 -3.052
1996.63 50 -4.555 -3.112
1996.58 51 -4.541 -3.210

Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1996.52 52 -4.562 -3.152
1996.46 53 -4.661 -3.315
1996.40 54 -4.845 -3.549
1996.34 55 -4.806 -3.498
1996.29 56 -4.780 -3.308
1996.23 57 -4.883 -3.057
1996.17 58 -4.954 -2.558
1996.11 59 -4.938 -2.513
1996.05 60 -4.882 -2.622
1995.99 61 -4.661 -2.565
1995.93 62 -4.674 -2.724
1995.87 63 -4.488 -2.717
1995.81 64 -4.290 -3.037
1995.75 65 -4.292 -2.964
1995.68 66 -4.340 -2.878
1995.61 67 -4.343 -2.936
1995.53 68 -4.490 -3.189
1995.46 69 -4.552 -3.268
1995.39 70 -4.644 -3.405
1995.32 71 -4.701 -3.218
1995.24 72 -4.761 -2.985
1995.17 73 -4.810 -2.715
1995.11 74 -4.497 -2.670
1995.05 75 -4.399 -2.566
1994.99 76 -4.381 -2.684
1994.93 77 -4.360 -2.759
1994.87 78 -4.314 -2.651
1994.81 79 -4.365 -2.775
1994.75 80 -4.244 -2.927
1994.69 81 -4.340 -3.118
1994.63 82 -4.428 -3.295
1994.58 83 -4.409 -3.377
1994.52 84 -4.481 -3.448
1994.46 85 -4.596 -3.374
1994.40 86 -4.691 -3.352
1994.34 87 -4.741 -3.365
1994.29 88 -4.839 -3.174
1994.23 89 -4.783 -3.099
1994.17 90 -4.890 -2.753
1994.12 91 -4.729 -2.776
1994.08 92 -4.604 -2.823
1994.03 93 -4.494 -2.660
1993.98 94 -4.429 -2.846
1993.94 95 -4.345 -3.014
1993.89 96 -4.264 -3.056
1993.84 97 -4.185 -3.139
1993.80 98 -4.160 -3.263
1993.75 99 -4.122 -3.365
1993.63 100 -4.232 -3.537
1993.52 101 -4.416 -3.404
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Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1993.40 102 -4.490 -3.308
1993.29 103 -4.635 -3.125
1993.17 104 -4.673 -2.982
1993.12 105 -4.645 -2.856
1993.07 106 -4.556 -2.908
1993.01 107 -4.451 -2.783
1992.96 108 -4.343 -2.756
1992.91 109 -4.398 -2.743
1992.86 110 -4.323 -2.787
1992.80 111 -4.384 -2.875
1992.75 112 -4.324 -3.005
1992.65 113 -4.370 -3.088
1992.56 114 -4.339 -3.132
1992.46 115 -4.311 -3.225
1992.36 116 -4.439 -3.074
1992.27 117 -4.558 -3.014
1992.17 118 -4.515 -2.973
1992.09 119 -4.452 -2.922
1992.00 120 -4.441 -2.704
1991.92 121 -4.361 -2.699
1991.83 122 -4.148 -2.878
1991.75 123 -4.164 -2.900
1991.68 124 -4.194 -3.041
1991.61 125 -4.200 -3.068
1991.53 126 -4.256 -3.147
1991.46 127 -4.316 -3.353
1991.39 128 -4.404 -3.298
1991.32 129 -4.439 -3.335
1991.24 130 -4.652 -3.277
1991.17 131 -4.725 -3.149
1991.11 132 -4.669 -3.107
1991.05 133 -4.582 -3.001
1990.99 134 -4.498 -2.970
1990.93 135 -4.401 -2.991
1990.87 136 -4.344 -2.825
1990.81 137 -4.299 -2.889
1990.75 138 -4.289 -2.723
1990.65 139 -4.313 -2.931
1990.56 140 -4.323 -3.077
1990.46 141 -4.392 -3.063
1990.36 142 -4.488 -3.021
1990.27 143 -4.579 -3.015
1990.17 144 -4.632 -2.981
1990.12 145 -4.588 -2.689
1990.07 146 -4.514 -2.474
1990.01 147 -4.529 -2.515
1989.96 148 -4.551 -2.366
1989.91 149 -4.520 -2.750
1989.86 150 -4.475 -3.111
1989.80 151 -4.293 -2.929

Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1989.75 152 -4.297 -2.817
1989.68 153 -4.368 -2.961
1989.61 154 -4.394 -2.988
1989.53 155 -4.530 -3.193
1989.46 156 -4.659 -3.250
1989.39 157 -4.755 -3.295
1989.32 158 -4.794 -3.389
1989.24 159 -4.773 -3.360
1989.17 160 -5.000 -3.023
1989.12 161 -4.901 -2.450
1989.08 162 -4.813 -2.800
1989.03 163 -4.713 -2.919
1988.98 164 -4.679 -2.891
1988.94 165 -4.544 -2.933
1988.89 166 -4.596 -2.699
1988.84 167 -4.488 -2.686
1988.80 168 -4.555 -2.912
1988.75 169 -4.365 -3.018
1988.65 170 -4.389 -3.251
1988.56 171 -4.575 -3.426
1988.46 172 -4.642 -3.319
1988.36 173 -4.782 -3.181
1988.27 174 -4.821 -2.871
1988.17 175 -4.889 -2.741
1988.10 176 -4.818 -2.676
1988.03 177 -4.654 -2.576
1987.96 178 -4.436 -2.498
1987.89 179 -4.257 -2.706
1987.82 180 -4.143 -2.950
1987.75 181 -4.031 -3.226
1987.65 182 -4.131 -3.088
1987.56 183 -4.271 -3.034
1987.46 184 -4.399 -3.063
1987.36 185 -4.368 -2.840
1987.27 186 -4.367 -2.412
1987.17 187 -4.364 -2.426
1987.11 188 -4.354 -2.381
1987.05 189 -4.295 -2.453
1986.99 190 -4.327 -2.693
1986.93 191 -4.348 -2.982
1986.87 192 -4.288 -2.962
1986.81 193 -4.466 -3.209
1986.75 194 -4.443 -3.167
1986.67 195 -4.551 -3.137
1986.58 196 -4.565 -3.255
1986.50 197 -4.597 -3.322
1986.42 198 -4.727 -3.508
1986.34 199 -4.777 -3.124
1986.25 200 -4.865 -2.500
1986.17 201 -4.834 -2.350
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Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1986.11 202 -4.616 -2.465
1986.05 203 -4.633 -2.601
1985.99 204 -4.471 -2.687
1985.93 205 -4.487 -3.096
1985.87 206 -4.416 -3.154
1985.81 207 -4.259 -3.161
1985.75 208 -4.320 -3.058
1985.67 209 -4.385 -3.100
1985.58 210 -4.424 -3.353
1985.50 211 -4.320 -3.419
1985.42 212 -4.496 -3.487
1985.34 213 -4.595 -3.245
1985.25 214 -4.542 -2.894
1985.17 215 -4.693 -3.249
1985.11 216 -4.515 -2.634
1985.05 217 -4.485 -2.896
1984.99 218 -4.472 -2.825
1984.93 219 -4.284 -2.925
1984.87 220 -4.242 -3.119
1984.81 221 -4.091 -3.156
1984.75 222 -4.074 -3.400
1984.67 223 -4.113 -3.372
1984.58 224 -4.188 -3.470
1984.50 225 -4.236 -3.490
1984.42 226 -4.300 -3.528
1984.34 227 -4.472 -3.520
1984.25 228 -4.654 -3.410
1984.17 229 -4.735 -3.226
1984.10 230 -4.714 -2.881
1984.03 231 -4.565 -2.804
1983.96 232 -4.251 -3.125
1983.89 233 -4.119 -3.017
1983.82 234 -4.072 -3.056
1983.75 235 -4.074 -3.295
1983.63 236 -4.143 -3.308
1983.52 237 -4.149 -3.308
1983.40 238 -4.338 -3.326
1983.29 239 -4.379 -3.227
1983.17 240 -4.368 -2.797
1983.10 241 -4.150 -2.583
1983.03 242 -4.160 -2.634
1982.96 243 -4.135 -2.874
1982.89 244 -4.113 -2.844
1982.82 245 -4.131 -2.910
1982.75 246 -3.970 -2.797
1982.69 247 -3.988 -2.730
1982.62 248 -4.080 -2.934
1982.56 249 -4.196 -3.169
1982.49 250 -4.236 -3.314
1982.43 251 -4.395 -3.378

Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1982.36 252 -4.405 -3.403
1982.30 253 -4.576 -3.204
1982.23 254 -4.624 -2.853
1982.17 255 -4.646 -2.671
1982.11 256 -4.600 -2.510
1982.05 257 -4.539 -2.595
1981.99 258 -4.519 -2.867
1981.93 259 -4.470 -2.654
1981.87 260 -4.430 -2.560
1981.81 261 -4.236 -2.778
1981.75 262 -4.170 -2.864
1981.65 263 -4.221 -2.766
1981.56 264 -4.318 -3.181
1981.46 265 -4.342 -3.239
1981.36 266 -4.553 -3.216
1981.27 267 -4.603 -2.847
1981.17 268 -4.601 -2.623
1981.11 269 -4.441 -2.101
1981.05 270 -4.610 -2.608
1980.99 271 -4.439 -2.544
1980.87 273 -4.193 -2.435
1980.81 274 -4.110 -2.399
1980.75 275 -4.148 -2.448
1980.65 276 -4.096 -2.717
1980.56 277 -4.269 -2.842
1980.46 278 -4.215 -2.792
1980.36 279 -4.407 -2.875
1980.27 280 -4.538 -2.671
1980.17 281 -4.547 -2.150
1980.07 282 -4.452 -2.056
1979.96 283 -4.445 -2.190
1979.86 284 -4.228 -2.405
1979.75 285 -4.110 -2.171
1979.69 286 -4.250 -2.138
1979.62 287 -4.263 -2.258
1979.49 289 -4.142 -2.384
1979.43 290 -4.120 -2.224
1979.36 291 -4.261 -2.552
1979.30 292 -4.270 -2.609
1979.23 293 -4.432 -2.327
1979.17 294 -4.499 -2.161
1979.12 295 -4.358 -1.912
1979.07 296 -4.378 -2.105
1979.01 297 -4.390 -2.260
1978.96 298 -4.426 -2.310
1978.91 299 -4.283 -2.642
1978.86 300 -4.294 -2.387
1978.80 301 -4.164 -2.448
1978.75 302 -4.106 -2.537
1978.61 303 -4.159 -2.787
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Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1978.46 304 -4.343 -2.983
1978.32 305 -4.566 -2.940
1978.17 306 -4.462 -2.668
1978.09 307 -4.309 -2.508
1978.00 308 -4.228 -2.630
1977.92 309 -4.067 -2.339
1977.83 310 -4.036 -2.562
1977.75 311 -4.027 -2.443
1977.61 312 -4.186 -2.866
1977.46 313 -4.419 -2.923
1977.32 314 -4.523 -2.638
1977.17 315 -4.647 -2.451
1977.10 316 -4.384 -1.884
1977.03 317 -4.246 -2.074
1976.96 318 -4.255 -2.454
1976.89 319 -4.208 -2.455
1976.82 320 -4.137 -2.232
1976.75 321 -4.071 -2.289
1976.65 322 -4.222 -2.624
1976.56 323 -4.357 -2.781
1976.46 324 -4.552 -3.112
1976.36 325 -4.555 -2.852
1976.27 326 -4.600 -2.643
1976.17 327 -4.662 -2.440
1976.10 328 -4.562 -2.011
1976.03 329 -4.430 -1.980
1975.96 330 -4.457 -2.132
1975.89 331 -4.187 -2.223
1975.82 332 -4.117 -1.863
1975.75 333 -4.030 -2.054
1975.63 334 -4.247 -2.614
1975.52 335 -4.327 -2.574
1975.40 336 -4.396 -2.542
1975.29 337 -4.527 -2.370
1975.17 338 -4.625 -2.426
1975.10 339 -4.492 -2.334
1975.03 340 -4.511 -2.273
1974.96 341 -4.348 -2.063
1974.89 342 -4.295 -2.158
1974.82 343 -4.213 -1.956
1974.75 344 -4.246 -1.851
1974.65 345 -4.269 -1.964
1974.56 346 -4.218 -1.784
1974.46 347 -4.381 -2.309
1974.36 348 -4.467 -2.687
1974.27 349 -4.627 -2.436
1974.17 350 -4.615 -1.829
1974.09 351 -4.521 -1.810
1974.00 352 -4.403 -1.949
1973.92 353 -4.283 -1.700

Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1973.83 354 -4.146 -1.826
1973.75 355 -4.081 -1.921
1973.63 356 -4.117 -1.992
1973.52 357 -4.257 -2.166
1973.40 358 -4.391 -2.423
1973.29 359 -4.394 -2.608
1973.17 360 -4.569 -2.676
1973.10 361 -4.444 -2.170
1973.03 362 -4.302 -2.257
1972.96 363 -4.247 -2.044
1972.89 364 -4.140 -2.026
1972.82 365 -4.176 -2.213
1972.75 366 -4.181 -2.386
1972.65 367 -4.170 -2.571
1972.56 368 -4.149 -2.795
1972.46 369 -4.377 -2.606
1972.36 370 -4.506 -2.591
1972.27 371 -4.665 -2.810
1972.17 372 -4.724 -2.178
1972.12 373 -4.705 -2.205
1972.07 374 -4.646 -2.390
1972.01 375 -4.465 -2.240
1971.96 376 -4.557 -2.030
1971.91 377 -4.497 -1.888
1971.86 378 -4.427 -2.171
1971.80 379 -4.307 -2.270
1971.75 380 -4.271 -2.447
1971.65 381 -4.302 -2.527
1971.56 382 -4.434 -2.658
1971.46 383 -4.568 -2.532
1971.36 384 -4.682 -2.812
1971.27 385 -4.906 -2.730
1971.17 386 -4.953 -2.429
1971.10 387 -4.908 -2.209
1971.03 388 -4.736 -2.193
1970.96 389 -4.603 -2.188
1970.89 390 -4.533 -2.266
1970.82 391 -4.237 -2.412
1970.75 392 -4.203 -2.463
1970.68 393 -4.258 -2.477
1970.61 394 -4.310 -2.593
1970.53 395 -4.263 -2.572
1970.46 396 -4.308 -2.718
1970.39 397 -4.371 -2.617
1970.32 398 -4.535 -2.393
1970.24 399 -4.606 -2.429
1970.17 400 -4.612 -1.966
1970.11 401 -4.619 -2.123
1969.99 403 -4.311 -2.387
1969.87 405 -4.255 -2.297
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Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1969.75 407 -4.144 -2.601
1969.61 409 -4.229 -2.868
1969.46 411 -4.409 -2.638
1969.32 413 -4.596 -2.494
1969.17 415 -4.558 -2.196
1969.07 417 -4.478 -2.205
1968.96 419 -4.295 -2.432
1968.86 421 -4.272 -2.467
1968.75 423 -4.264 -2.601
1968.46 425 -4.431 -2.619
1968.17 427 -4.533 -2.328
1968.07 429 -4.357 -2.182
1967.96 431 -4.285 -2.282
1967.86 433 -4.200 -2.683
1967.75 435 -4.101 -2.696
1967.56 437 -4.261 -2.835
1967.36 439 -4.536 -3.128
1967.17 441 -4.581 -2.724
1967.09 443 -4.465 -2.531
1967.00 445 -4.271 -2.294
1966.83 449 -4.069 -2.582
1966.75 451 -4.028 -2.601
1966.56 453 -4.113 -2.791
1966.36 455 -4.225 -2.662
1966.17 457 -4.184 -2.203
1966.03 459 -4.204 -2.305
1965.89 461 -4.104 -2.399
1965.75 463 -4.045 -2.637
1965.56 465 -4.081 -2.749
1965.36 467 -4.320 -2.883
1965.17 469 -4.456 -2.777
1965.07 471 -4.300 -2.088
1964.96 473 -4.243 -2.241
1964.86 475 -4.228 -2.182
1964.75 477 -4.222 -2.493
1964.61 479 -4.134 -2.711
1964.46 481 -4.282 -2.826
1964.32 483 -4.420 -2.729
1964.17 485 -4.497 -2.239
1964.07 487 -4.313 -2.119
1963.96 489 -4.207 -2.300
1963.86 491 -4.125 -2.524
1963.75 493 -4.119 -2.558
1963.56 495 -4.088 -2.700
1963.36 497 -4.512 -2.831
1963.17 499 -4.659 -2.535
1963.07 501 -4.505 -2.336
1962.96 503 -4.195 -2.308
1962.86 505 -4.173 -2.291
1962.75 507 -4.122 -2.794

Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1962.56 509 -4.118 -2.816
1962.36 511 -4.296 -2.814
1962.17 513 -4.605 -2.119
1962.03 515 -4.515 -2.301
1961.89 517 -4.349 -2.321
1961.75 519 -4.173 -2.358
1961.61 521 -4.230 -2.505
1961.46 523 -4.374 -2.757
1961.32 525 -4.580 -2.489
1961.17 527 -4.702 -2.260
1961.07 529 -4.699 -1.910
1960.96 531 -4.595 -2.121
1960.86 533 -4.284 -2.506
1960.75 535 -4.224 -2.532
1960.56 537 -4.359 -2.722
1960.36 539 -4.462 -2.883
1960.17 541 -4.888 -2.513
1960.07 543 -4.638 -2.024
1959.96 545 -4.456 -2.163
1959.86 547 -4.276 -2.313
1959.75 549 -4.229 -2.539
1959.56 551 -4.449 -2.707
1959.36 553 -4.719 -2.574
1959.17 555 -4.880 -2.104
1959.07 557 -4.391 -2.342
1958.96 559 -4.170 -2.315
1958.86 561 -4.156 -2.325
1958.75 563 -4.019 -2.615
1958.56 565 -4.126 -2.638
1958.36 567 -4.375 -2.654
1958.17 569 -4.456 -2.589
1958.03 571 -4.318 -2.075
1957.89 573 -4.242 -2.415
1957.75 575 -4.186 -2.498
1957.61 577 -4.338 -2.597
1957.46 579 -4.467 -2.874
1957.32 581 -4.774 -2.608
1957.17 583 -4.828 -2.465
1957.07 585 -4.604 -2.196
1956.96 587 -4.453 -2.133
1956.86 589 -4.318 -2.318
1956.75 591 -4.263 -2.467
1956.56 593 -4.431 -2.752
1956.36 595 -4.586 -2.652
1956.17 597 -4.653 -2.071
1956.03 599 -4.505 -1.994
1955.89 601 -4.412 -2.123
1955.75 603 -4.275 -2.099
1955.61 605 -4.373 -2.204
1955.46 607 -4.565 -2.715
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Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1955.32 609 -4.676 -2.601
1955.17 611 -4.772 -2.381
1955.09 613 -4.647 -1.930
1955.00 615 -4.464 -2.075
1954.92 617 -4.293 -2.168
1954.83 619 -4.261 -2.421
1954.75 621 -4.134 -2.506
1954.46 623 -4.392 -2.433
1954.17 625 -4.526 -2.171
1954.07 627 -4.278 -2.009
1953.96 629 -4.265 -2.167
1953.86 631 -4.156 -2.521
1953.75 633 -4.057 -2.564
1953.61 635 -4.017 -2.847
1953.46 637 -4.290 -2.825
1953.32 639 -4.546 -2.662
1953.17 641 -4.583 -2.066
1953.07 643 -4.312 -1.945
1952.96 645 -4.324 -1.853
1952.86 647 -4.154 -2.479
1952.75 649 -4.106 -2.469
1952.56 651 -4.277 -2.873
1952.36 653 -4.478 -2.712
1952.17 655 -4.530 -2.471
1952.03 657 -4.375 -2.209
1951.89 659 -4.186 -2.184
1951.75 661 -4.122 -2.426
1951.61 663 -4.279 -2.495
1951.46 665 -4.194 -2.613
1951.32 667 -4.575 -2.669
1951.17 669 -4.750 -2.405
1951.07 671 -4.725 -2.285
1950.96 673 -4.576 -2.363
1950.86 675 -4.389 -2.026
1950.75 677 -4.219 -2.339
1950.61 679 -4.337 -2.433
1950.46 681 -4.239 -2.810
1950.32 683 -4.406 -2.696
1950.17 685 -4.647 -2.209
1950.07 687 -4.419 -2.123
1949.96 689 -4.362 -2.052
1949.86 691 -4.563 -2.531
1949.75 693 -4.193 -2.556
1949.46 695 -4.227 -2.669
1949.17 697 -4.610 -2.075
1949.03 699 -4.422 -2.398
1948.89 701 -4.146 -1.987
1948.75 703 -3.995 -2.585
1948.61 705 -4.003 -2.322
1948.46 707 -4.151 -2.646

Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1948.32 709 -4.329 -2.753
1948.17 711 -4.478 -1.991
1948.07 713 -4.401 -2.196
1947.96 715 -4.274 -2.293
1947.86 717 -4.140 -2.311
1947.75 719 -4.103 -2.454
1947.56 721 -4.335 -2.787
1947.36 723 -4.428 -2.396
1947.17 725 -4.594 -2.186
1947.03 727 -4.570 -2.103
1946.89 729 -4.291 -2.323
1946.75 731 -4.146 -2.226
1946.56 733 -4.075 -2.362
1946.36 735 -4.312 -2.914
1946.17 737 -4.599 -2.471
1946.07 739 -4.473 -2.364
1945.96 741 -4.296 -2.158
1945.86 743 -4.141 -2.239
1945.75 745 -4.113 -2.148
1945.63 747 -4.199 -2.257
1945.52 749 -4.273 -2.383
1945.40 751 -4.316 -2.418
1945.29 753 -4.494 -2.672
1945.17 755 -4.548 -2.187
1945.07 757 -4.338 -2.276
1944.96 759 -4.225 -2.099
1944.86 761 -4.007 -1.919
1944.75 763 -3.857 -1.970
1944.56 765 -4.100 -2.151
1944.36 767 -4.355 -2.072
1944.17 769 -4.410 -1.938
1944.03 771 -4.268 -2.054
1943.89 773 -4.177 -2.002
1943.75 775 -4.040 -2.478
1943.46 777 -4.140 -2.273
1943.17 779 -4.449 -2.142
1943.03 781 -4.372 -2.228
1942.89 783 -4.180 -2.027
1942.75 785 -3.961 -1.811
1942.61 787 -4.010 -2.011
1942.46 789 -4.113 -2.012
1942.32 791 -4.398 -2.037
1942.17 793 -4.518 -2.292
1942.03 795 -4.212 -2.082
1941.89 797 -3.989 -1.908
1941.75 799 -3.684 -1.683
1941.46 801 -3.728 -1.846
1941.17 803 -4.004 -2.110
1941.07 805 -3.993 -1.904
1940.96 807 -3.983 -1.927
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Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1940.86 809 -4.000 -2.159
1940.75 811 -3.941 -2.120
1940.56 813 -4.139 -2.300
1940.36 815 -4.269 -2.096
1940.17 817 -4.488 -1.715
1940.07 819 -4.458 -1.716
1939.96 821 -4.145 -1.927
1939.86 823 -4.279 -1.952
1939.75 825 -3.989 -1.860
1939.56 827 -4.011 -1.547
1939.36 829 -4.306 -2.118
1939.17 831 -4.520 -2.029
1939.07 833 -4.457 -1.986
1938.96 835 -4.164 -2.063
1938.86 837 -4.024 -1.771
1938.75 839 -3.953 -1.685
1938.56 841 -4.134 -1.895
1938.36 843 -4.136 -2.219
1938.17 845 -4.206 -1.813
1938.03 847 -4.025 -1.612
1937.89 849 -4.062 -1.504
1937.75 851 -3.878 -1.840
1937.56 853 -3.963 -2.155
1937.36 855 -4.129 -1.944
1937.17 857 -4.130 -1.880
1936.96 859 -4.078 -1.828
1936.75 861 -3.950 -1.770
1936.46 863 -4.033 -2.043
1936.17 865 -4.113 -1.645
1935.96 867 -4.119 -1.571
1935.75 869 -3.990 -1.598
1935.56 871 -4.057 -1.693
1935.36 873 -4.077 -1.436
1935.17 875 -4.253 -2.295
1935.03 877 -4.209 -2.331
1934.89 879 -4.113 -2.110
1934.75 881 -4.011 -2.149
1934.56 883 -4.263 -2.562
1934.36 885 -4.463 -2.240
1934.17 887 -4.513 -1.944
1934.07 889 -4.342 -2.167
1933.96 891 -4.330 -1.755
1933.86 893 -4.215 -1.786
1933.75 895 -4.225 -2.084
1933.56 897 -4.176 -2.493
1933.36 899 -4.326 -2.667
1933.17 901 -4.474 -2.570
1933.10 903 -4.464 -2.441
1933.03 905 -4.483 -2.741
1932.96 907 -4.373 -2.545

Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1932.89 909 -4.206 -3.222
1932.82 911 -4.319 -2.882
1932.75 913 -4.170 -2.354
1932.56 915 -4.184 -2.649
1932.36 917 -4.221 -2.767
1932.17 919 -4.447 -2.870
1932.10 921 -4.365 -2.418
1932.03 923 -4.261 -2.232
1931.96 925 -4.198 -2.399
1931.89 927 -3.927 -2.279
1931.82 929 -3.787 -2.116
1931.75 931 -3.711 -1.831
1931.56 933 -3.839 -1.216
1931.36 935 -4.042 -2.010
1931.17 937 -4.072 -1.982
1930.96 939 -3.891 -1.917
1930.75 941 -3.567 -1.963
1930.61 943 -3.781 -1.944
1930.46 945 -4.194 -1.947
1930.32 947 -4.136 -1.964
1930.17 949 -4.140 -2.038
1930.03 951 -4.087 -1.886
1929.89 953 -3.888 -2.090
1929.75 955 -3.787 -2.165
1929.56 957 -4.111 -2.175
1929.36 959 -4.299 -1.852
1929.17 961 -4.396 -1.572
1929.03 963 -4.095 -1.936
1928.89 965 -4.171 -1.706
1928.75 967 -3.880 -1.750
1928.65 969 -3.924 -2.073
1928.56 971 -4.079 -1.310
1928.46 973 -4.124 -1.990
1928.36 975 -3.997 -2.135
1928.27 977 -4.302 -2.335
1928.17 979 -4.489 -2.645
1928.11 981 -4.453 -1.967
1928.05 983 -4.386 -2.392
1927.99 985 -4.184 -2.354
1927.93 987 -3.990 -2.707
1927.87 989 -4.219 -2.769
1927.81 991 -3.967 -2.252
1927.75 993 -3.868 -2.015
1927.63 995 -3.858 -2.096
1927.52 997 -3.884 -2.355
1927.40 999 -4.014 -2.460
1927.29 1001 -4.214 -2.162
1927.17 1003 -4.296 -1.708
1927.07 1005 -4.192 -1.327
1926.96 1007 -4.312 -2.222
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Year 
A.D.

depth 
(mm)

δ18O 
(‰)

δ13C (‰)

1926.86 1009 -4.133 -1.649
1926.75 1011 -3.886 -1.960
1926.65 1013 -3.974 -2.213
1926.54 1015 -4.283 -1.887
1926.44 1017 -4.098 -2.067
1926.33 1019 -4.008 -2.179
1926.23 1021 -3.952 -1.985
1926.12 1023 -3.970 -2.084
1926.02 1025 -4.103 -2.366
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