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Abstract 

Increasing atmospheric CO2 levels within the past few centuries have led to many studies 

about the global carbon cycle.  An important aspect in balancing the modern global 

carbon budget revolves around a missing sink of carbon.  It is thought that the carbon 

accumulation in soil may be a significant component in this loss.  As changes in land use 

under natural conditions have increased over the years, it is not well understood how 

these changes may affect the soil carbon.  A useful technique in determining these 

changes are with the use of archived samples.  Within a Russian steppe preserve that has 

been protected since 1885, modern samples from three different land use plots (meadow 

steppe, planted forest, and tilled field) were compared to a 100-year-old archived sample 

of initial conditions in addition to archived samples from these same plots throughout the 

past 100 years.   It was hypothesized that there would be both increases and decreases in 

soil carbon in addition to physical changes in the soil.  Compared to the initial conditions 

of the pristine plot, organic carbon concentration decreased in the meadow steppe, 

remained about the same in the planted forest, and decreased in the tilled field.  The 

conversion to tilling showed the greatest amount of change in organic carbon 

concentration.  The organic carbon stock in the meadow steppe showed little change 

compared to the pristine stock.  The planted forest and tilled field showed a significant 

decrease in carbon stocks.  The bulk density in each land use plot increased in the upper 

half of the profile and decreased in the lower half compared to the pristine plot.  

Weathering has increased in each of the land use plots.  Overall, the change in land use 

had varying effects on Russian steppe soil, which was determined by using archived 

samples starting from initial conditions 100 years ago and at various points throughout 

that time.
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Introduction 

Since the industrial revolution, and especially within the past 100 years, 

atmospheric CO2 levels have been increasing more than any other time in history (Lal 

2004, Rustad et al. 2000, IPCC 1995).  Since 1750, the atmospheric concentration of CO2 

has increased by 31% due to fossil fuel combustion and land use change (IPCC 1995).  

Over this 100 year time, global emissions of carbon due to land use change and soil 

cultivation are estimated at 136 ± 55 Pg (Pg = petagram =10
15

 g = 1 billion tones) and 78 

± 12 Pg due to the depletion of soil organic carbon pools (Lal 2004, IPCC 2001).  The 

emission of CO2 has been a major concern to scientists due to its impact on the climate.  

This has lead to many studies to gain more knowledge on the global carbon cycle (Lal 

2004, Karl and Trenberth 2003, Guo and Gifford 2002, IPCC 2001, Falkowski et al. 

2000)   

 One concern in balancing the modern global carbon budget is a missing sink of 

carbon that cannot be accounted for (Prentice et al. 2000, Keeling 1997, Kerr 1992).  For 

the 1980‟s and 1990‟s, 1.9 ± 1.3 Pg C/yr and 2.3 ± 1.3 Pg C/yr, respectively, represented 

unknown sinks for the global carbon budget (Lal 2004, Prentice 2001).  Given that 75% 

of the terrestrial carbon inventory is contained in soils (Rhoades et al. 2000, Schlesinger 

1986, Houghton et al. 1985), it is thought that carbon accumulation in the soil may be a 

major component in this annual loss.  Since much of the world‟s soils have been or will 

be cultivated, being able to quantify changes in soil carbon due to changes in land use 

could be useful in better understanding the global carbon cycle (Brye et al. 2002, Guo 

and Gifford 2002, Mikhailova et al. 2000b, Ross et al. 1999).  This thesis focuses on one 

aspect of the global carbon cycle: how changes in land use affect soil carbon over time. 
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Some of the most fertile soil in the world is the Chernozem (Mollisol) soil of the 

Russian steppe (Torn et al. 2002, Dokuchaev 1949).  This area has in recent time 

undergone significant changes in land use over most of the area.  The effects on soil 

carbon due to these land use changes are not well understood (Torn et al. 2002, 

Mikhailova et al. 2000a,b).  During the past 100 years, agricultural Chernozems lost 

about 50 percent of their soil carbon in the top 1 m of soil (Lapenis et al. 2000).  Despite 

this substantial loss of soil carbon from cultivated land, in Russia alone, Chernozems 

occupy 6,586,470 ha and contain about 130 to 160 t ha
-1

 of organic matter in the top 20 

cm of soil (Mikhailova et. al 2000b.).  A large reservoir of carbon is contained in the 

mineral soils throughout the world.  Estimates fall between 1115 and 2200 Pg of carbon 

in the top 1 m of soil (Rustad et al. 2000, Trumbore 1997, Eswaran et al. 1993).  This 

overshadows the biomass of plants by about three fold (Bashkin and Binkley 1998, 

Houghton et al. 1987), which is estimated between 560 and 835 Pg C (Bernoux et al. 

2002, Bouwman 1990).   

In the Kamennaya Steppe National Park, near the town of Voronezh, the Dokuchaev 

Institute has protected an area of land for over 100 years.  This area contains pristine 

steppe, meadow steppe, planted forests and tilled fields.  Before the cutting of the 

meadow steppe, planting of the forests and tilling of the fields, the entire area was 

covered with natural steppe vegetation.  The land use of this area has been known since 

1892 (Torn et al. 2002).  By assessing these pieces of information together, a better 

understanding can be made about the effects of land use on weathering and soil carbon 

over time and more specifically, how total carbon, organic carbon and carbonate 

concentrations have been affected. 
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A common way to determine changes in land use over time is to compare modern 

samples of natural conditions to modern samples of different land uses in the area 

(Halvorson et al. 2002, Franzluebbers et al. 2000, Mikhailova et al. 2000b, Pulleman et 

al. 2000, Rodionov et al. 2001, Ross et al. 1999).  This is done with the assumption that 

no change in carbon has occurred in the natural conditions over the period of time that 

has passed after the change in land use or that natural changes have affected all land uses 

equally.  This assumption could lead to an inaccurate determination of change because it 

would not be known for certain whether just the change in land use caused the carbon 

concentrations in each land use plot to increase, decrease, or remain unchanged through 

time.  If the actual initial conditions, representing a baseline for comparison, were known 

for each of the land use plots, a more accurate determination of change through time can 

be made (Cerri et al. 2004, Bernoux et al. 2002, Scott et al. 2002).  This determination 

can be made with the use of archived samples.  Modern samples can be compared to 

archived samples taken prior to the change in land use as well as samples taken in times 

between initial conditions and modern time to determine how much change has occurred.  

One disadvantage to this method is that archived samples are not that common, or are 

only a few decades old, which may not be enough time to show clearly the effects of land 

use change (Shevtsova et al. 2003, Lapenis et al. 2000, Hussain et al. 1999).  The 

turnover time for organic carbon in soil is typically estimated on the order of a decade to 

a century (Trumbore 1997, Trumbore et al. 1996, Tate et al. 1995, Tate 1992, Jenkinson 

1990, O‟Brien 1984). 

Another problem that is encountered when trying to determine the changes in carbon 

concentration is that much of the research that has been done only concentrates on the top 
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layers of soil.  This could lead to an underestimate of soil carbon (Mikhailova et al. 

2000b, Davidson and Ackerman 1993). 

A paper by Torn et al. 2002 showed that no change in soil carbon had occurred in the 

pristine steppe of the Kamennaya Steppe preserve for at least the past 100 years.  An 

archived soil sample taken between 1895 and 1903 was compared to modern samples 

taken in 1997 to a depth of about 130 cm.  The modern samples were taken at the same 

site as the archived samples by using precise field notes.  The concentrations of carbon 

were similar between the archived and two modern pits.  The carbon stock concentrations 

in the top 20 cm and the total profile varied by less than 6%.  The soils contained 32-33 

kg C/m
2
.  One third of that was in the top 20 cm and two thirds below that level.  The 

difference in total nitrogen content or C:N ratio down the profile was not significant.  

Both the modern and archived soils had C:N ratios of 11 throughout the profile.  Also, 

both 
13

C and 
14

C data showed that only the upper layer (10 cm) of soil had fresh organic 

matter from photosynthesis during the past 40 years.  Below 10 cm, the organic matter 

has the deplete radiocarbon content of older, more recalcitrant material.  The increase in 

13
C/

12
C ratio with increasing depth of the 100 year-old-soil showed that this pattern was 

not caused by fossil fuel dilution but by local processes.  The shift in 
13

C from the 

archived to modern samples showed that little of the currently observed 
13

C pattern was 

due to the effect of fossil fuel emissions.  The data showed that these soils have a large 

reservoir of recalcitrant carbon.  It also showed that carbon stocks had not changed in the 

100 years between sampling. 

 What makes the present study unique is having archived samples throughout the 

past 100 years in each of the various land use plots.  Since it has been established that the 
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pristine steppe of the Kamennaya Steppe preserve has remained undisturbed in the past 

100 years, the change in carbon concentration can be shown in the meadow steppe, 

planted forest and tilled field using the archived sample from the pristine steppe as the 

baseline. Secondly, the progression of change in carbon concentration can be seen 

through time in each of the different land use plots. 

The objectives of this study are to observe how these different land uses have 

affected the soil carbon of this region relative to natural conditions over a period of about 

100 years.  It is hypothesized that there should be an increase in organic carbon 

concentration in the meadow steppe and planted forest and a decrease in the tilled field in 

comparison to the pristine area.  An increase in soil organic concentration is expected in 

the meadow steppe and planted forest because of the addition of new organic matter from 

the cut hay being left on the ground in the meadow steppe and from the maturing trees in 

the forest.  The organic carbon concentration in the tilled field is expected to decrease 

because of increased decomposition and leaching.  Secondly, compared to each other, the 

planted forest should have the highest carbon concentration followed by the meadow 

steppe, then the pristine steppe and finally the tilled field.  The planted forest should add 

more organic matter from litter and roots than the addition of organic matter by the cut 

hay in the meadow steppe.  Without the addition of organic matter as in the planted forest 

and meadow steppe, the pristine steppe should not change in concentration. The tilled 

field should have the lowest carbon concentration because of an increase in 

decomposition and leaching which will decrease the organic carbon concentration 

compared to the other three plots.  The bulk density should increase or remain about the 

same in the meadow steppe, decrease in the planted forest and increase in the tilled field 
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compared to the pristine area.  The meadow steppe could possibly see an increase in bulk 

density due to changes in the soil from the hay being cut as well as people walking on the 

land.  The roots in the planted forest may lead to a decrease in bulk density because of 

root growth over time.  The roots will cause spaces as the roots move through the soil as 

well as when the roots die.  In the tilled field, compaction is likely because of the soil 

disturbance and deterioration from the tilling.  Carbon stocks (the amount of carbon) are 

expected to increase in the meadow steppe, increase or remain about the same in the 

planted forest and decreased in the tilled field compared to the pristine stock.  If the 

carbon concentration and/or the bulk density increase great enough, the carbon stock in 

the meadow steppe and planted forest should increase.  The tilled field will probably be 

dominated more by the decline in carbon concentration than by an increase in bulk 

density.  Finally, it is expected that the carbonate concentrations, used as an indicator for 

weathering, will decrease due to an increase in precipitation in combination with natural 

weathering processes. 
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Soil Formation 

Soil formation is the natural development of horizons in a profile (Donahue et al. 

1977).  The development is evident as organic matter accumulates, colloids are 

transported downward in the profile, and zones of clay, carbonate, iron oxide, humus, 

and/or gypsum accumulation develop.  Russian soil scientists proposed that soil 

formation is the result of climate and living matter acting upon soil material on a given 

relief over a period of time.  There are five factors of soil formation, parent material 

(passive), climate (active), biosphere (active), topography (passive), and time (neutral). 

 Rocks on the surface of the earth are weathered until enough of the essential 

elements become available to support lower forms of plant life.  A process is then in 

place causing a buildup of organic matter, organic acids, and an increase in water 

retention.  This process will cause the weathering of the rock to increase, which will lead 

to the formation of soil layers.  Through time, mobile minerals and organic particles near 

the surface will be leached downward and some of them will be deposited a few inches 

below the surface.  In a few hundred years, the leached surface soil layers and the 

accumulation layer in the subsoil may be well developed and contrasting in many 

characteristics.  The kind of soil that develops depends in part upon the kind of rock 

present.  Soils derived from limestone parent rock (half carbonates; half clays, silts, and 

sands) may develop loams or clay loams of high natural fertility. 

 Climate is the dominant factor in soil formation.  The two main influences are 

precipitation and temperature.  Some direct effects of climate on soil formation include 

salt accumulation due to insufficient rainfall, acidification due to intense weathering and 

leaching, and erosion and deposition in unstable landscapes.  Moisture is important 

because a soil is said to be “formed” when it has detectable layers of accumulated clays, 
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organic colloids, carbonates, or soluble salts that have been moved downward by water.  

An indirect effect of climate is through its action on vegetation.  In humid climates 

forests are the dominant vegetation.  The soil profile that develops in a forest has many 

more horizons than one that develops under grass.  Semiarid climates such as the Russian 

steppe encourage only prairie grasses, and a deep, dark, uniform, surface soil results.  

Arid climates supply only enough moisture for sparse, short, plains grasses.  In areas 

where temperature is high, weathering is mainly chemical decomposition and occurs 

most of the time.  In contrast, weathering in cold climates can be enhanced by physical 

disintegration by the formation of ice (frost wedging). 

 The biosphere influences soil development in many ways.  The most direct 

influence plants and animals have on soil development are the contents and distribution 

of organic matter, soil acidity, and the bulk density.  Variations of this development due 

to vegetation differences can be seen frequently at the tree-grass boundary in Minnesota, 

Illinois, and Missouri, as well as most of the regions in the western half of the United 

States.  Forest soils can contain more horizons, which usually include a well developed B 

horizon, have a more highly leached surface layer, and less decomposed organic matter at 

the surface compared to soils that were developed under grass vegetation.  Grassland 

soils near the tension zone of forests typically have a deep (30 cm or more), dark A 

horizon under which are weakly developed subsurface layers.  The B horizon can be very 

thin or absent.  In large numbers, burrowing animals such as moles, gophers, earthworms 

and ants, can have a key part in soil formation.  Continuous mixing within the soil profile 

will lead to the formation of fewer soil horizons.  The functions of microorganisms in soil 
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development are the decomposition of organic matter and the production of weak acids 

that dissolve minerals more readily than water.   

 Topographic influences on soil formation are closely linked to the water and 

temperature effects of an area.  If the climate and parent materials are similar, a 

comparison among different topography can be seen.  Steep hillsides on average will 

have thin A and B horizons due to rapid runoff, which doesn‟t leave much time for the 

water to penetrate through the profile, and because of heavy erosion of the surface.  A 

gently sloping hillside usually will display a deeper profile, abundant vegetation, and a 

higher content of organic matter.  These features are primarily the result of differences in 

water movement through the soil.  Depressions can contain soils with a large accretion of 

organic matter.  This is because runoff waters converge from the surrounding elevated 

areas.  This promotes high production of vegetation and high moisture content that can 

slow decomposition of the biomass.   Organic soils like peat are formed when the soil 

surface is wet for many months of the year.  A depression may become a salt marsh if the 

accumulating waters have dissolved salts from the nearby soils.  Depending on the salt 

concentration, this can cause the growth of unique tolerant vegetation or no vegetation at 

all. 

The length of time that it takes for a soil to develop horizons is associated with 

varying degrees of contribution from the previous four factors of soil formation.  The rate 

of soil development is the effect of time in addition to parent material, climate, biosphere, 

and topography.  Horizons tend to develop faster under warm, humid, forested conditions 

where there is enough water to move colloids, allow significant organic matter to 

decompose, and to weather minerals.  A recognizable soil profile may develop within 200 
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years under ideal conditions, or may be prolonged to several thousand years if conditions 

are considerably less favorable.  The main factors that slow down soil profile 

development include low rainfall, resistant parent material, very steep slopes, cold 

temperatures, and mixing by animals and humans.  

Organic matter is an active and important portion of soil.  Only about 1 to 5 

percent organic matter is usually found in the top 25 cm of most cultivated soils.  Even 

that small amount can change the physical, chemical and biological properties of the soil.  

Organic matter improves soil quality because it increases cation exchange capacity, 

increases porosity, improves water and air interactions, and reduces erosion by wind and 

water.  Most of the nitrogen in soils comes from organic matter as do large percentages of 

the phosphorous, sulfur, boron, and molybdenum.  To maintain soil productivity, organic 

matter must be replenished as it mineralizes.  
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Site Descriptions 

The following site description is a summary as interpreted by Torn et al. 2002 due 

to some references being written in Russian.  The area studied was the Central 

Chernozem Region of Russia, about 200 km east of Voronezh (Figure 1).  Soil samples 

were collected from within the Dokuchaev Institute located in the Kamennaya Steppe 

National Park (Figure 2).  The park is about a 5,000 ha watershed, isolated by the Chigla 

and Talovaya rivers.  Within the preserve, the elevation is 200 m with gradual relief and 

has a mean annual temperature of 6.4
o
C.  There has been an increase in average annual 

precipitation in the past 100 years from about 430 mm to 520 mm.  The majority of this 

increase has been due to an increase in winter precipitation.  The water table drops from 2 

m below the surface in April to 5 m below the surface in mid winter.  As with 

precipitation, the mean annual water table height has also increased over the past 100 

years from about 7 m below the surface to about 3 m below.  Since 1950 the wind speed 

has dropped from about 6 m/s to 3 m/s with an average wind speed of 4.5 m/s (Sentsova 

2002).  The grasslands in the area have been referred to as meadow steppe or Kamennaya 

steppe.  The parent material of the Kamennaya region is brown-yellow carbonate loess 

and clay thought to have been deposited ~4,500-6,000 years ago during the mid-

Holocene.  Prior to protection, fields in this region were periodically grazed and burned. 

Vegetation was not managed (i.e., nothing was seeded) or tilled. Since establishment in 

1882-1885, the preserve areas have been protected from tillage, grazing, and other land 

management changes that are now prevalent in the region.  Fire frequency has been 

reduced in the region and the preserve since 1900. Dokuchaev implemented the planting 

of forest windbreaks (hedgerows) on the borders of fields in the Dokuchaev Institute area. 
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The preserve sites are characterized as moist Tipchak (fescue or feathergrass) 

steppe, analogous to the tall grass prairie of North America. Tipchak steppe was 

historically widespread in Russia, covering about 1.5 x 10
6 

km
2
. The vegetation is mainly 

herbaceous perennials with some encroachment of woody perennials. The dominant 

species inside the preserved steppe area were Festuca sulcata with Knautia arvensis 

(height 45-85 cm), Veronica spicata (15-20 cm) and Sedum acre (2-5 cm). Above-ground 

plant biomass is 100-120 g dry wt/m
2
. All of the plant species identified from 1970 to 

1992 use C3 photosynthesis and no large changes in relative species abundance have been 

documented. Pollen analysis of the archived soil confirms that historic plant species also 

employed C3 pathways. Therefore, the 
13

C signature of plant inputs is expected to be 

roughly -27‰, and there is no evidence for historical change in the isotopic content of 

plant inputs.  
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Methods 

A summary of the methods and data available as described in the proceeding 

section are shown in Figure 3.  Archived monolith HRSC 1900 (historic Russian soil 

collection 1900) (Figure 4) was taken sometime between 1895 and 1903.  For ease, the 

sample year will be considered to be 1900.  This archive is the reference sample 

representing the pristine, initial conditions of the study region prior to any land 

conversion.  This monolith was labeled „Kamennaya Steppe, Talovaya preserve.‟  The 

preserve is 24 ha in two areas, preserve #1 and #2, located 0.7km apart. 

 Starting in 1882 within a section of preserve #1, seasonal hay removal had been 

done yearly until 1912, after which hay was then cut and left on the ground.  The other 

section of preserve #1 where monolith HRSC 1900 was taken as well as most of preserve 

#2 remained pristine.  The land use referred to as the meadow steppe, has continued to 

undergo seasonal hay cutting that is left on the ground.  In 1908, a forest was planted to 

serve as a windbreak in the preserve #1, by tilling the land and planting acorns.  The 

planted forest measures 116 m wide and is a mix of 50% white oak (Quercus alba L.), 

30% birch (Betula bena), 20% elm (Ulmus americana), less than 1% of red maple (Acer 

rubrum) and ash (Fraxinus L.).  The land use referred to as the tilled field, continued to 

undergo seasonal hay cutting without hay removal between 1912 and 1920, at which time 

the field was then tilled for the first time.  Since 1920, the field has continued to be tilled.  

Just prior to the first tilling in 1920, a monolith was collected in this land use plot and 

archived.  Since the tilled field land use plot was still under the same land use as the 

meadow steppe in 1920, the archived sample taken prior to tilling can be used as an 

additional archived sample in the meadow steppe.  The tilled field was planted with 

wheat (Triticum estivum) which is cut (only about 5-10 cm of stalk remains), collected 
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and then plowed at the end of each growing season. The tilled field is separated from the 

meadow steppe by the planted forest. 

In 1947, a monolith was collected within the planted forest, and archived. In 

1970, a monolith was collected within the meadow steppe, and archived.  All archived 

monoliths were stored air dried, in dust proof wooden boxes in a horizontal position 

(Torn et al. 2002).  In 1995, sub samples were taken from each archived monolith by 

removing a vertical slice (approximately 5 x 2.5 cm) of the profile from the right-hand 

side of the monolith (Torn et al. 2002, Lapenis et al. 2000). 

 In 1997, one soil pit was sampled in the pristine area of preserve #1 and one pit in 

preserve #2.  The sample taken in preserve #1 (HRSC 1997) was in the vicinity of 

archived monolith HRSC 1900 (Torn et al. 2002).  In 1998, the meadow steppe, planted 

forest, and tilled field (Figure 5), were also resampled.  Two pits were dug in each of the 

different land use types.  Pits 2 and 3 (Figure 6a), were dug in the meadow steppe, pits 4 

and 6 (Figure 6b), were dug in the planted forest, and pits 9 and 10 (Figure 6c), were dug 

in the tilled field.  These samples were also taken in close proximity to the sampling 

location of their respective archived monoliths.  To be as precise as possible when 

resampling, detailed field notes were used to find the locations where the archived 

monoliths were taken.  Figure 7 and Table I shows the different land use plots and the 

locations of the modern sampling. 

The sampling of the modern soil pits was done by digging down to a depth of 2 

m.  Beginning at the bottom of the pit, a rectangular channel the entire thickness of the 

chosen depth interval was collected.  Two separate sets of samples were taken; one went 
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to Lawrence Berkeley National Laboratory, Berkeley, CA and the other to The University 

at Albany, NY.   

The samples sent to Lawrence Berkeley National Laboratory were oven dried at 

60
o
C for 48 hours.  Large identifiable plant material was removed from the soil before the 

sample was passed through a 2 mm sieve.  The samples were then ground with metal 

bards on a roller mill for one week followed by grinding with a mortar and pestle.  

Carbonate removal for the analysis of organic carbon was done by hydrochloric acid 

fumigation as described in Harris et al. 2001 with slight modifications to the method.  

Total carbon and organic carbon concentrations were analyzed using a Carlo Erba NA 

1500 Carbon and Nitrogen analyzer interfaced with a Micro Optima Mass Spectrometer. 

Both the modern and archived samples sent to The University at Albany were 

stored in plastic bags and kept cool or refrigerated until being oven dried at 70
o
C.  They 

were then passed through a 2 mm sieve.  The total carbon concentration of the soil was 

measured with a Carlo Erba EA1110 CHN Elemental Analyzer.  Approximately 25 mg of 

air dried sample was used in the total carbon analysis.  Sample weight did not affect 

reproducibility.  Total carbon concentration had values of 70.38 ± 1.63% for the quality 

control sample, 1.78 ± 7.57% for the standard reference sample, and an average relative 

standard deviation of 2.32% for 11 sets of triplicates.  The triplicates were three separate 

analytical runs from the same soil sample that were run in sequence. 

Soil core samples of known volume were taken at various depth intervals and 

dried to calculate the bulk density of the modern pits (Table II).  Bulk Density data was 

not available for the archived samples from each of the different land use plots.   The 

bulk density for HRSC 1900 is assumed to be the same as in the modern samples taken in 
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1997 due to there being a close match in horizons and carbon concentration (Torn et al. 

2002).  Carbon stocks were calculated by depth interval using a weighted carbon 

concentration, interval depth, and bulk density.  Volumes were summed to a depth of 20 

cm, 50 cm and 100 cm to express carbon contents in kg/m
2 

(Table III). 

This study utilized two data sets.  Data set 1 (Table IV), consisted of total and 

organic carbon concentrations for the modern samples (pits 2, 3, 4, 6, 9, 10) and organic 

carbon concentrations only, for HRSC 1900.  Organic carbon was measured directly by 

treating samples with hydrochloric acid to remove carbonates prior to analysis.  This data 

set was obtained from Margaret S. Torn and Asmeret Berhe from Lawrence Berkeley 

National Laboratory, Berkeley, CA.  

Data set 2 (Table V), consisted of total carbon and estimated carbonate 

concentrations for both modern samples (pits 2, 3, 4, 6, 9, 10) and archived samples 

collected in the meadow steppe in 1970, the planted forest in 1947, and the tilled field in 

1920.  Carbonate estimates were obtained from Andrei G. Lapenis from The Department 

of Geography and Planning, University at Albany, NY.  To estimate carbonate 

concentration a total digest was done on all samples.  The samples were digested by 

microwave-assisted hydrofluoric acid digestion (EPA method 3252).  Samples were then 

analyzed on a Varian Vista ICP.  Using the calcium and magnesium (the two primary 

cations in carbonate loess, the parent material of this soil) concentrations from the total 

digest, in addition to exchangeable calcium and magnesium, an estimate of carbonate 

concentration was calculated.  This carbonate estimate was then subtracted from the total 

carbon concentration to give an estimate of organic carbon concentration because organic 

carbon was not analyzed directly in this data set. 
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      The soil depth of 0 cm corresponds to the top of the mineral layer and increasing 

depth was indicated positively.  The modern samples were collected at depth intervals 

from the top of the mineral soil down to about 115 cm for data set 1 and down to about 

145 cm for data set 2.  The archive samples were collected at intervals from the top of the 

mineral soil down to about 100 cm. 

Of the two modern sample pits dug in each of the three land use plots, one of the 

two pits was chosen to represent that particular land use, pit 2 in the meadow steppe, pit 6  

in planted forest, and 10 in the tilled field.  One representative pit was chosen because the 

sampling depths between the two pits did not correspond to each other and therefore were 

not averaged together.  In addition, the variability among the two pits should be 

consistent therefore choosing one pit should not make a difference when used in 

comparisons. To assess variability within land use types, data from the two pits were 

plotted together versus depth for each different land use (Figure 8 and Table VI).  To 

facilitate comparison between the pits, the depth intervals were combined by averaging, 

to provide the best match. 

Data set 2, along with HRSC 1900 from data set 1, were used in the comparisons 

of the different land use types.  The smaller sampling depth intervals in the modern 

samples in data set 2 (Table V) possibly give a more accurate account of carbon present 

in the varying sections of the profile compared to the larger sampling depth intervals in 

data set 1 (Table IV).  This is not necessarily the case in all soils.  Depending on the 

variability of the soil, larger depth intervals may also provide the results similar to 

smaller depth intervals. 
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 Although, directly measured concentrations would be preferred for use in a data 

set as opposed to using estimated concentrations, in this particular study the measured 

organic carbon from data set 1 was questionable because the organic carbon 

concentration was higher than the total carbon concentration, in the upper part of the 

profile (Figure 9).  The main reason for this is due to the method used.  The method is 

moderately accurate in addition to there being compounded experimental error. 

 To check the similarity between carbon concentrations of the modern samples of 

data set 1 and data set 2, organic carbon (Figure 10), and total carbon (Figure 11) 

concentrations were plotted.  To make a better comparison between the two data sets, 

depth intervals from data set 2 were combined to correlate more to the respective depths 

in data set 1 (Table VII).  The organic carbon profiles for data set 2 follow a more typical 

trend than those for data set 1.  In each case, data set 2 has a higher organic carbon 

concentration than data set 1 in the upper part of the profile and a lower concentration in 

the bottom part of the profile.  The total carbon concentrations of data set 2 are greater 

than those of data set 1, with the exception of the interval in the meadow steppe from 

about 62-82 cm depth.  The difference is particularly distinct in Figure 11b.  The unusual 

trends with depth in data set 1 further support the use of data set 2. 
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Results 

For each of the three land use plots, samples from the two modern pits yielded 

similar organic carbon concentrations at most depths (Figure 8).  Slight differences were 

seen in each plot.  In the meadow steppe (pits 2 and 3), the largest difference between the 

two plots was found between the depths of 45-80 cm.  In the planted forest (pits 4 and 6), 

a small difference was seen down the entire profile with a maximum difference at about 

10 cm.  In the tilled field (pits 9 and 10), the greatest difference was at around 40 cm. 

 A threshold was identified at the point where the carbonate concentration 

increased rapidly with increasing depth (Figures 12-17). Above the threshold, the 

carbonate concentration was around 0.5 % with little variation in both the modern and 

archived pits.  In the modern pits, the thresholds of carbonate concentration were similar 

to each other and fell between the ranges of 63-73 cm depth with a variation of only a 

few cm.  The exception to this was in the tilled field where the threshold of pit 9 was 88 

cm depth.  The thresholds in the archived samples were also similar to each other and fell 

between the ranges of 43-48 cm with a variation of only a few cm (Figures 15, 16, 17).  

In the archived pits, there were slight variations in carbonate concentration down the 

profile.  In particular around 60 cm where the tilled fields archive decreased rapidly.  

Over time, all the thresholds moved farther down the profiles and showed a decrease in 

carbonate concentrations (Figures 18 and 19).  The concentration of carbonate in the 

meadow steppe (pit 2) below the threshold was less than in the planted forest (pit 6) and 

the tilled field (pit 10).  

Above the threshold, the total concentration of carbon is dominated by organic 

carbon and this feature changes abruptly below the threshold (Figures 12-17).  This is 
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shown in both the modern and archived pits.  Below the threshold, the organic carbon 

concentration continues to decrease in contrast to the total carbon concentration which 

increases greatly due to the increase of carbonate concentration.  For the modern pits, the 

concentration of organic carbon and total carbon plot closer together than for the archived 

pits.  For both the modern and archived pits, the trend of the organic carbon concentration 

decreases down the profile at a generally consistent rate.  The total carbon decreases 

steadily down the profile until reaching the threshold where is increases rapidly.  In the 

tilled field (pits 9 and 10) this pattern is not followed within the first 40-45 cm.  Instead, 

the carbon concentrations in this interval remain about the same with little variation. 

The organic carbon concentration of the three modern pits was plotted along with 

archived sample HRSC 1900 versus depth (Figure 20).  In the first 30 cm of the modern 

pits, the planted forest (pit 6) had the highest carbon concentration followed by the 

meadow steppe (pit 2) and the lowest in the tilled field (pit 10).  The reference pit, 

archived sample HRSC 1900, had the highest carbon concentration in the first 10 cm and 

then plotted close to the planted forest (pit 6) for the majority of the profile.  In the tilled 

field, pit 10 has little variation in the organic carbon concentration to about 35-40 cm 

before decreasing down the profile.  In the planted forest, pit 6 and archived sample 

HRSC 1900 decreased in organic carbon concentration rapidly in the first 20 cm.  In the 

first 10 cm, the planted forest (pit 6) has about twice the concentration as the tilled field 

(pit 10).  From about 30-40 cm, all the pits converge together before the tilled field (pit 

10) decreases more than the others and continued with the lowest concentration down the 

profile.  Below the first 40 cm, the meadow steppe (pit 2),the planted forest (pit 6), and 

archived sample HRSC 1900 plot close to each other for the remainder of the profile.  
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With the exception of the upper 40 cm of the tilled field (pit 10), the organic carbon 

concentration of archived pit HRSC 1900 follows the same general trend as the modern 

samples as the depth increases down the profile. 

To see the changes in organic carbon concentration over time for each land use 

plot, the archived pits and modern pit were plotted together versus depth (Figures 21, 22, 

23).  In the meadow steppe (Figure 21), archived sample HRSC 1900 had the highest 

organic carbon concentration in the first 25-30 cm, followed by modern pit 2, then the 

archived sample from 1970, and finally the archived sample from 1920.  Below 20 cm, 

pit 2 and archived sample HRSC 1900 plot close to each other and follow the same 

general trend.  Archived samples from 1920 and 1970 also follow this trend, but remain 

lower in concentration except around 40 cm, where pit 2, the 1970 archived sample, and 

archived sample HRSC 1900 converge.  At around 95 cm, the 1920 archived sample 

converges with the other plots.  Archived sample HRSC 1900 has the greatest decrease in 

organic carbon concentration in the upper 20 cm.  There is not much change between 

these pits since 1970.  There was a very large decrease in organic carbon concentration 

down to about 25 cm in the 1920 archive compared to the archive HRSC 1900.  Below 

this depth, the 1920 archived sample remains at about half the concentration of archived 

sample HRSC 1900 until around 80 cm. 

In the planted forest (Figure 22), modern pit 6 and archived sample HRSC 1900 

plot close together and follow the same trend down the entire profile. Around 30 cm, the 

1947 archived sample begins to follow the same trend.  The 1947 archived sample has 

almost half the concentration of organic carbon than the other two pits to about 10 cm, 

and maintains the lowest concentrations throughout the profile.  Pit 6 and archived 
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sample HRSC 1900 decrease in organic carbon concentration at a much faster rate then 

the 1947 archived sample.  At a depth of about 80 cm, all the plots come together for the 

remainder of the profile. 

In the tilled field (Figure 23), archived sample HRSC 1900 has the highest 

organic concentration in the upper 30 cm, followed by modern pit 10, and then the 1920 

archived sample.  Archived sample HRSC 1900 has about twice as much organic carbon 

concentration as the other two pits until about 10 cm.  The 1920 archived sample has the 

lowest concentration until about 90 cm where all three plots converge.  The trends are 

relatively similar after about 40 cm, in particular pit 10 and the 1920 archived sample.  

For the first 40 cm, modern pit 10 has little variation in organic carbon concentration. 

Overall, the modern pits had a greater concentration of organic carbon than the 

archived samples from their respective land use plots.  The planted forest had the greatest 

difference of organic carbon concentration between its modern pit and corresponding 

archive.  Archived sample HRSC 1900 had the greatest concentration in the uppermost 

part of the profiles and in some cases farther down the profiles as well.  The organic 

carbon concentrations for all of the pits decreased down the profile and were at low 

concentration of about 0.5% or less at the bottom of the profile. 

The bulk density in the pristine plot steadily increases with depth (Figure 24).  

The bulk densities of the modern land use plots also increase with depth but more slowly 

and over a shorter range compared to the pristine plot.  In the upper 50 cm, the modern 

plots have a higher bulk density than the pristine plot.  The bulk densities in the top 20 

cm fall in the range of 0.5-0.8 (g/cm
3
) and 0.8-0.9 (g/cm

3
) in the pristine and modern 

plots respectively.  The tilled field has the highest bulk density in the first 10 cm, 
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followed by the meadow steppe, then planted forest and finally the pristine plot.  The 

bulk density for both the meadow steppe and planted forest increase in the first 35-40 cm, 

whereas the tilled field remains about the same.  The meadow steppe and planted forest 

follow the same general trend down the length of the profile. 

The total carbon stocks in the upper 20 cm of the modern plots decreases in order 

from the meadow steppe (10.50 kg/m
2
), to planted forest (10.45 kg/m

2
), to tilled field 

(9.19 kg/m
2
) (Figure 25).  The organic carbon stocks in the upper 20 cm of the 1900 

pristine plot and the modern plots decreases in order from the 1900 pristine plot (10.10 

kg/m
2
), the meadow steppe (9.75 kg/m

2
), planted forest (9.66 kg/m

2
), and tilled field 

(8.27 kg/m
2
) (Figure 26).  Compared to the pristine organic carbon stock, the meadow 

steppe, planted forest and tilled field show changes of -3.5%, -4%, and -18% 

respectively.  The organic carbon stocks in the upper 50 cm of the 1900 pristine plot and 

modern plots range in order from the meadow steppe (21.48 kg/m
2
), to the 1900 pristine 

plot (20.97 kg/m
2
), to planted forest (20.54 kg/m

2
), and the tilled field (19.82 kg/m

2
) 

(Figure 27).  Compared to the pristine organic carbon stock, the meadow steppe, planted 

forest and tilled field saw changes by +2.5%, -2%, and -5.5% respectively.  The total 

carbon stocks in the modern plots down to 1 m range in order from the highest in the 

meadow steppe (40.22 kg/m
2
), to planted forest (36.64 kg/m

2
), and tilled field (34.67 

kg/m
2
) (Figure 28).  The organic carbon stocks in the 1900 pristine plot and modern plots 

down to 1m, decreased in order of  the meadow steppe (31.42 kg/m
2
), the 1900 pristine 

plot (30.99 kg/m
2
) planted forest (27.96 kg/m

2
), and tilled field (26.88 kg/m

2
) (Figure 

29).  Compared to the pristine organic carbon stock, the meadow steppe, planted forest 

and tilled field saw changes by +1%, -10%, and -13% respectively.  The top 20 cm, 
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contained one third of the organic carbon and about a quarter of the total carbon in the 1 

m profiles. 
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Discussion 

Carbon Concentration 

The similarity of the replicate modern pits (Figure 8) indicates limited variability 

within the area of each land use type where the samples were taken, which made it  

possible to choose one pit to be representative for each land use plot.  The variation that 

is shown could be due to slight natural variability and the association with the location of 

the pit to the surrounding area (i.e. Pit 2 is closer to the planted forest, Figure 7). 

The low concentration of carbonates in the upper part of the profile shows that the 

majority of carbonates have been weathered away in this part of the profile (Figure 19).  

The similarity in the carbonate concentrations in the upper 45 cm of the modern and 

archived samples show that little additional weathering of carbonates has taken place to 

this depth over time likely because the carbonates were already weathered away prior to 

the sampling of the archived samples.  The downward progression of weathering is 

shown by a deepening in the carbonate thresholds in the modern profiles compared to the 

thresholds of the archived profiles.  In addition, the concentrations of carbonates have 

decreased in the modern samples below the thresholds of the archived samples.  

Weathering processes are responsible for the downward movement of the carbonate 

threshold (Schlesinger 1997).  The rate of downward movement was likely increased by 

the increase in precipitation of this region.  Variations in carbonate concentration may in 

part be related to the carbonate concentration being estimated using total digest data as 

well as slight natural variability.  The cause of the unusual trend of carbonate 

concentration in the 1920 archived sample below about 65 cm is not known but may be 

due to an irregularity in the profile formation in that particular location. 
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Organic carbon is the primary form of carbon in the upper profile above the 

carbonate threshold (Figures 12-17).  In both the archive and modern plots, there is a 

general decreasing trend in organic carbon concentration throughout the profile to about 

0.5% or less at 1 m depth.  The highest concentration of organic carbon is at the top of 

the profile because that is where most new organic matter is introduced into the soil 

(Raich and Nadelhoffer 1989).  Also, with depth, less and less organic matter is present 

because of its limited mobility in the soil (Buol et al. 1980).  In modern tilled field pits 9 

and 10, the decreasing trends in carbon concentration are not seen until below 40-45 cm 

due to the effect of mixing caused by tilling.  Below the carbonate threshold, the organic 

carbon concentration continues to decrease whereas the carbonate and total carbon 

concentrations increase.  There is a noticeable separation between the organic and total 

carbon concentrations because of the increase in carbonate concentration.  The total and 

organic carbon concentrations in the modern samples plot closer together compared to the 

plots of concentrations of the archived samples due to the decrease in carbonate 

concentration over time.  This is further evidence that carbonate has been weathered 

away throughout the profile.  The decrease in total carbon concentration with depth is a 

combination of both weathering and the decrease in organic carbon concentration. 

 

Meadow Steppe 

 

Twenty years of hay cutting, substantially decreased the organic carbon 

concentration down to 80 cm.  This would be expected because of the removal of 

aboveground biomass during each growing season up until 1912.  Also, the hay removal 

will allow more precipitation to infiltrate the soil because the biomass will not uptake as 
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much of the precipitation, in addition to more precipitation making it to the ground.  This 

will lead to the leaching of organic matter as well as quicker decay.  After 1912, the 

organic carbon concentration probably began to increase since the hay that was cut was 

left on the ground.  This would allow for some of the biomass to return to the soil.  Over 

the next 50 years, the organic carbon concentration increased and continued to increase 

slightly for the next additional 18 years after that (Figure 21).  One possible reason for 

this increase in carbon concentration is most likely that the 68 years of leaving the hay on 

the ground caused an accumulation of carbon throughout the profile.  The crop removal 

resulted in a large decrease in organic carbon concentration that did not fully recover to 

initial conditions by 1998.  The 1970 archived sample and modern pit 2 sample were not 

taken in the exact same plot as the 1920 archived sample.  After 1908, the forest was 

planted between these sampling areas.  There may have been an effect from this causing 

an accumulation of carbon within the top 70 cm.  Finally, it is also possible that because 

of the distance between sampling sites, there could have been slight variations in the soil 

that may have added to this increase although this was probably minimal contribution.  

Below 20 cm, the concentrations were similar to the original conditions of the pristine 

steppe. 

 

Planted Forest 

 

Prior to the establishment of a new forest plantation, there can be considerable 

effects on soil carbon due to site preparation (Johnson 1992).  Within the first 39 years of 

being planted, the organic carbon concentration in the forest decreased by about half 

compared to the pristine plot (Figure 22).  The main contributing factors to this decrease 
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were probably the crop removal that started in 1882 up to 1908, followed by tilling, in 

preparation for the planting of acorns.  Smethurst and Nambiar 1990 found about a 40 % 

decrease in soil carbon over three and a half years with a windrow and plough 

preparation.  As in the meadow steppe, the crop removal prior to 1908 would cause the 

organic carbon to decrease due to the removal of biomass and increased decomposition 

and leaching.  This decrease would be magnified because of the tilling, which has also 

been shown, leads to a decrease in organic matter (Cambardella and Elliot 1992, Tiessen 

and Stewart 1983, Haas et al. 1957, Jenny 1941).  As a constantly new supply of organic 

matter is introduced into the soil from leaf matter, carbon is being decomposed.  Turner 

and Lambert 2000 found that plantation growth does not offset the net decline in soil 

organic carbon for at least nine years and possibly more than twenty. 

Within the next 41 years, the organic carbon concentration increased to a level 

almost identical to the initial conditions shown by archived sample HRSC 1900.  Soil 

carbon usually increases substantially where former agricultural sites are reverted to 

forests or where newly developing soil undergoes afforestation (Johnson 1992).  Many 

studies that have taken place over long periods of time (> 50 years) have shown these 

results (Bashkin and Binkley 1998, Jenkinson 1991, Lugo et al. 1986, Jenkinson 1970, 

Wilde 1964).  An increase is expected once the forest has been established for a long 

enough period of time, due to the introduction of new organic matter from the 

decomposition of litter and root matter (Raich and Nadelhoffer 1989).  As the trees grow, 

the belowground root mass will increase.  An increase in root mass will increase the 

uptake of water and hold the soil together which will decrease the amount of leaching and 
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erosion of the soil.  As organic carbon inputs from various sources begin to exceed the 

processes of outputs, soil organic carbon will begin to increase in concentration. 

 

Tilled Field 

 

For 30 years prior to 1912, the tilled field area underwent seasonal hay removal 

followed by 8 years of seasonal cutting of hay that was left on the ground.  The crop 

removal caused a decrease in organic carbon for reasons previously discussed which can 

be seen from the archived sample taken in 1920 (Figure 23).  The initial decrease was 

probably slightly larger than what is seen in 1920 because organic carbon was most likely 

added to the soil between 1912 and 1920.  This can not be proven for sure since there are 

no archived samples between 1900 and 1920.  The same year that the 1920 archived 

sample was taken, annual tilling of the field began for wheat production.  Since this area 

underwent a change in land use prior to tilling, the archived sample taken in 1920 

essentially represents the new starting condition to which modern pit 10 can be 

compared. 

Over the next 68 years, the organic carbon concentration increased.  From 30-40 

cm and below 70 cm, the increase in organic carbon concentration was restored to the 

conditions of the pristine steppe.  Below the tilling depth (40 cm), the organic carbon in 

modern pit 10 followed the same general trend as the pristine plot.  The increase in 

organic carbon concentration from 1920 to 1998 is somewhat of an anomalous result.  

Many studies have shown that cultivation of grasslands have led to a loss in soil organic 

matter (Burke et al. 1995, Cambardella and Elliot 1992, Johnson 1992, Burke et al. 1989, 

Aguilar et al. 1988, Tiessen and Stewart 1983, Haas et al. 1957, Jenny 1941).  In the 
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Great Plains and Corn Belt regions of the Central United States, conversion of native 

ecosystems to agricultural lands has significantly reduced the organic matter from soils 

across these regions (Barnwell et al. 1992, Campbell 1978, Wilson 1978, Haas et al. 

1957).  Reasons for this loss are plant residue inputs are decreased while outputs such as 

erosion and decomposition through physical mixing are increased, soil aggregates are 

degraded, and finally there is enhanced contact of litter and inter-aggregate organic 

matter with decomposing organisms (Robles and Burke 1997, Burke et al. 1995, Doran 

and Werner 1990, Tivy 1987, Elliot 1986, Anderson and Coleman 1985, Tiessen et al. 

1982, Van Veen and Paul 1981).  Based on the land use history in this plot, it should 

follow that the organic carbon should undergo these same types of processes, leading to a 

decrease in organic carbon concentration. 

The most probable reason that the tilling did not further decrease the organic 

carbon concentration is the planting of the adjacent forest as a windbreak.  Windbreaks 

have been used for many years because of the benefits that they provide (Kuhns 1998, 

Kort 1988, Sutherland 1986, Howe 1986, Gade 1978).  These benefits include reducing 

soil erosion, improving moisture by trapping snow, and increasing crop yield (Kuhns 

1998, Howe 1986, Russell and Grace 1979, Gade 1978, Bates 1911).  In the early 1900‟s 

this area was drier and more susceptible to erosion by wind and water (Torn et al. 2002, 

Ivanov 1991).  Erosion removes vast amounts of soil (including organic carbon) each 

year especially in agricultural land causing a reduction of productivity (Kuhns 1998, 

Pimentel et al. 1995, Myers 1993, Lal and Stewart 1990).  Wind and water erosion will 

reduce the quality of the soil by decreasing infiltration rates, water-holding capacities, 

nutrients, organic matter, soil biota and soil depth (Pimentel et al. 1995, Troeh et al. 
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1991, El-Swaify et al. 1985, Office of Technology Assessment 1982).  With the decrease 

in infiltration rate and water capacity, the amount of runoff will increase leading to a 

decrease in soil moisture (Kuhns 1998).  In this particular case, wind is the main form of 

erosion.  The land in this area is relatively flat so water erosion is less important to the 

removal of organic carbon.  Repeated tilling removes vegetation that can act as a 

protective cover to help reduce erosion (Pimentel et al. 1995).  As the forest windbreak 

matures and trees grow taller and thicker, the amount of erosion would decrease.  This 

growth would provide protection from wind as well as allow for the trapping of snow.   

For the past 100 years, the precipitation in this area has increased, most of which 

occurred in the form of snow (Torn et al. 2002, Ivanov 1991).  In areas that receive a 

significant portion of precipitation from snowfall, the trapping of snow can be important.  

The additional moisture from trapped snow, can aid in crop growth during dry years 

(Agriculture and Agri-Food Canada 2003). 

The decrease in soil erosion and the increase in soil moisture resulting from the 

protection of the windbreak will lead to a higher crop yield.  Crop protection can lead to 

as much as a 44% increase in crop yield (Kuhns 1998).  An increase in crop yield would 

give rise to more organic matter being added to the soil and increasing organic carbon 

concentrations.   

Another consideration besides the crop yield itself is the type of crop.  After 1920, 

the natural grass vegetation was replaced with wheat as the new cover crop.  The change 

from grass vegetation to wheat vegetation may have influenced the crop yield as well as 

the amount of organic matter that would be added to the soil. 
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These preceding factors could have overshadowed the effects of tilling, and as a 

result led to an increase in organic carbon concentration in the tilled field rather than an 

expected decrease. 

In the upper 40 cm of the profile, the organic carbon concentration was relatively 

constant.  This is the result of mixing due to tilling and the depth at which the 

concentration remains constant is representative of the tilling depth.  Below this depth, 

there is a decrease in organic carbon.  This decrease is partially due to the crop removal 

over time not contributing much new organic carbon to the soil.  Also, the increase in 

precipitation over the past 100 years could be a contributing factor.  Although the bulk 

density has increased over time, the fresh tilling of the soil could lead to a temporary 

decrease in bulk density.  This temporary decrease in bulk density could allow for better 

infiltration of water which would cause an increase in leaching. 

 

Carbon Stocks 

 

A change in carbon stocks can be influenced by a change in land use or land cover 

(Guo and Gifford 2002, Bolin and Sukumar 2000).  With the additional consideration of 

time, the effects on carbon stocks of these changes can vary in magnitude (Scott et al. 

2002, Jenny 1980, Syers et al. 1970).  Many studies have been done investigating the 

effects of different land use changes on carbon stocks (Guo and Gifford 2002, Scott et al. 

2002, Neill and Davidson 1999, Scott et al. 1999, Lal et al. 1998, Johnson 1992).  Since 

there was no total carbon data for the pristine plot, only the total carbon stocks of the 

modern land use plots could be compared to each other.  In the top 20 cm of the profile, 

the meadow steppe and planted forest had about the same content of total carbon while 
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the tilled field had about 12% less (Figure 25).  To a depth of 1 m there was a more 

distinct difference.  Compared to the meadow steppe which had the highest total carbon 

content, the planted forest and tilled field contained about 9% and 14 % less total carbon 

respectively (Figure 28).  The top 20 cm contained a quarter of the total carbon in the 1 m 

profiles.  This is because there is more carbonate in the lower half of the profile that is 

being taken into account whereas carbonate is not as big an influence in the top half of 

the profile.  The greater differences between the three land use plots down to 1 m are a 

result of the differences in total carbon concentration and bulk density. 

In the top 20 cm, the organic carbon stock has decreased in each land use plot 

compared to the pristine plot.  The largest decrease was in the tilled field by about 18%.  

The meadow steppe and planted forest plots decreased by less than 5% (Figure 26).  The 

organic carbon stock down to 1 m gave different results.  Compared to the pristine plot, 

the meadow steppe increased by less than 2% while the planted forest and tilled field 

decreased by 10% and 13% respectively (Figure 29).  Overall, the most significant 

change in carbon stocks compared to the pristine plot was in the tilled field.  The planted 

forest showed only a slightly significant change in organic carbon stock down to 1 m.  

Estimates based on ecosystem modeling, have shown that at least half of the organic 

matter in the top 0-20 cm after disturbance are in fast-cycling carbon pools (Trumbore et 

al. 1996, Townsend et al. 1995, Schimel et al. 1994, Davidson and Ackerman 1993).   

Given that the majority of organic matter is added in the upper section of a soil profile, it 

is understandable that the top 20 cm contained one third of the overall organic carbon in 

the profile.  This agrees with results found in the pristine plot by Torn et al. 2002. 

 



 34 

Bulk Density 

 The bulk density in each land use plot increased compared to the pristine plot.  

The most likely reason for this increase in the meadow steppe was probably the continued 

cutting of the hay.  Since the area would be traveled on to remove the hay, it would make 

sense that the ground would become more compact.  The planted forest was expected to 

decrease because of the continued growth of roots leaving spaces in the soil.  Increased 

precipitation and the added weight of the trees as the forest matures could be possible 

reasons for the bulk density increase.  Another consideration could be the type of 

undergrowth vegetation.  The soil may have become more compacted because of smaller 

root systems and increased precipitation.  Although the bulk density in the planted forest 

did increase, in the top 20 cm, it had the smallest increase in bulk density compared to the 

other two land use plots.  The bulk density in the tilled field was expected to increase.  

This is mainly due to the temporary decrease in bulk density as a result of tilling causing 

the soil to be more easily compacted.  Over time, the increased precipitation, soil 

degradation, and the tilling process would cause this compaction. 

 

Meadow Steppe 

 

The meadow steppe showed an increase in organic carbon stock compared to the 

pristine plot, as well as having a larger stock than the planted forest and tilled field in the 

first 1 m of soil.  Although earlier land use consisted of hay removal from 1882 until 

1912, which most likely led to a decrease in organic carbon, after 1912 hay was allowed 

to remain on the ground after being cut.  This most likely led to an accumulation of 

organic carbon for various reasons.  First, by allowing the cut hay to remain on the 
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ground, it will start to decompose and contribute new organic matter to the soil.  Another 

source or organic matter is from the remaining stalks.  Once the hay has been cut, the 

stalks that are still planted in the ground will die and decompose.  This will also cause the 

roots to decompose.  Since grasslands have a large root mass, this addition is important to 

the input of soil organic matter. Finally, the bulk density has increased in the top half of 

the profile compared to the pristine plot.  This, in addition to a rising organic carbon 

concentration, would result in a greater carbon stock. 

 

Planted Forest 

 

The planted forest had a slightly significant loss in organic carbon stock compared 

to the pristine plot in the first 1m of soil.  It also had a lower concentration than the 

meadow steppe but a larger concentration than the tilled field.  It is commonly thought 

that afforestation, especially after conversion from degraded soils, will act as a carbon 

sink (Lal 2004, Perruchoud et al. 2000, Bouma et al. 1998, Dixon et al. 1994, Johnson 

1992).  Previous studies have shown varying results in the organic carbon stock in 

planted forests (Kelly and Mays 2005, Hooker and Compton 2003, Guo and Gifford 

2002, Johnson 1992).  A decrease in soil organic carbon concentrations were found by 

Knoepp and Swank 1997 and Hamburg 1984.  Increases were found by Hooker and 

Compton 2003, Richter et al. 1999, and Jenkinson 1991, 1970. No Changes were found 

by Trettin et al. 1999.  Johnson et al. 1988 found both no change as well as an increase.  

Finally, Guo and Gifford 2002 found a decrease and no change in soil organic carbon.   

The types of tree species as well as the previous land use are influential in the 

resulting carbon stock (Turner and Lambert 2000, Turner and Kelly 1977).  Pastures 
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converted under pine plantations showed a decrease in soil carbon stocks while under 

broadleaf or naturally regenerated secondary forests carbon stocks were unaffected (Guo 

and Gifford 2002).  In a forest dominated by mixed oak with previous agricultural land 

use, soil carbon content increased at a rate of about 0.542 Mg C ha
-1

yr
-1

 (Hooker and 

Compton 2003).  In 100 red pine plots of varying age planted on former agricultural land 

showed an increase in soil organic matter (Wilde 1964). 

There are several reasons that a decrease in organic carbon stock in the planted 

forest was seen compared to the pristine plot.  Prior to planting, the land underwent hay 

removal followed by tilling.  This disturbance from the establishment of the plantation 

may have led to a loss in soil organic carbon.  Site preparation and tree planting can 

disturb soil structure, breaking up soil aggregates and can lead to carbon leaching as well 

as an increase in decomposition (Guo and Gifford 2002, Turner and Lambert 2000).  This 

initial disturbance would only lead to a deficit in carbon stocks, that would increase the 

amount of carbon needed to be accumulated to return to the original level.  After the 

forest is planted, carbon content will increase due to inputs of organic matter from litter 

and root turnover (Turner and Lambert 2000) possibly leading to restoration of initial 

conditions. 

The main reason for the overall carbon loss in the planted forest is most likely due 

to the lower root production in the forest compared to the pristine grassland (Guo and 

Gifford 2002, Cerri et al. 1991).  In tussock grasslands in New Zealand, up to 50% of the 

carbon input can be from roots (Tate et al. 1995, Meurk 1978).  The distribution of soil 

organic carbon in the top meter of soil is deeper in grasslands than in forests (Guo and 

Gifford 2002, Jobbagy and Jackson 2000, Tate et al. 1995).  Although there may be a 
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higher content of organic matter in the form of litter in forests, it is more susceptible to 

decomposition and is not distributed far down the soil profile (Guo and Gifford 2002, 

Tate et al. 1995, Tate et al. 1993).  The input of organic matter from tree roots is not as 

great of an influence as grass roots due to a slower annual turnover of dying tree roots, 

and could therefore lead to a decrease in soil organic carbon (Guo and Gifford 2002, Post 

and Kwon 2000). 

Since there was a similar concentration of organic carbon in the pristine plot and 

the modern sample from the planted forest (Figures 20 and 22), bulk density also 

contributed to the overall decrease in carbon stock in the planted forest.  In the top 50 cm 

of the profile, the bulk density of the planted forest was greater than the pristine plot and 

thus led to a higher carbon stock (Figure 24).  The pristine plot in the lower 50 cm was 

greater in bulk density than the planted forest and by a greater margin than the difference 

seen in the upper 50 cm.  This led to an overall greater carbon stock in the pristine plot 

(Figure 27). 

Grasslands contain a higher portion of stable organic matter throughout the profile 

which supplies plant nutrients, increases cation exchange and water holding capacities 

(Guo and Gifford 2002, Tate and et al. 1995, Anderson 1991, Miller and Donahue 1990).  

Soil under the snow tussocks in New Zealand was wetter than in the forest which favored 

organic carbon accumulation (Tate and et al. 1995).  The preserve area has over the years 

increased in precipitation, most of which was in the form of snow (Torn et al. 2002, 

Ivanov 1991). 

 

Tilled Field 
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The tilled field had the greatest and most significant loss of organic carbon in the 

first 1 m of soil compared to the pristine plot, meadow steppe, and planted forest.  Many 

studies have been done showing that cultivation reduces the soil organic matter storage of 

soils (Miller et al. 2004, Haas et al. 1957, Hide and Metzer 1939, Jenny 1941, 1933, 

Alway 1909).  Schlesinger 1984 estimated that globally 0.8 x 10
15

g C/yr may be lost 

from cultivated soils.  When tillage occurs it allows for the soil organic matter to become 

incorporated into conditions that allow for more rapid decomposition (Halvorson et al. 

2002, Doran 1980).  These include greater moisture content, aeration, leaching of soluble 

organic carbon, and exposure of stable adsorbed organic matter by the break up of 

aggregates (Schlesinger and Andrews 2000, Gregorich et al. 1998, Six et al. 1998, Elliot 

1986).  Halvorson et al. 2002 found that in comparison to other tilling methods, no-till 

techniques had the greatest amount of accumulation of soil organic matter in the top 15 

cm.  It has also been shown that the use of no-till techniques used on previously 

cultivated land could restore soil organic matter (Schlesinger and Andrews 2000, 

Campbell et al. 1999, Wood et al. 1991, Dick 1983). 

An increase in the rate of decomposition is not the only case that can lead to a loss 

in soil organic carbon.  The opposite may also contribute.  Tilling soil can lead to erosion, 

crusting, compaction, reduction in water infiltration capacity and water/air imbalance 

leading to anaerobiosis.  Soil degradation can result in lower biomass productivity by 

depleting nutrients, increasing soil acidity, and causing a build up of salts in the root zone 

(Lal 2004). 

The disturbance of belowground biomass may also have contributed to the loss in 

organic carbon.  Belowground biomass is an important part of total soil organic carbon 
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and carbon dynamics in grassland soils (Slobodian et al. 2002, Gale and Cambardella 

2000, van Ginkel and Gorisson 1998).  A study by Slobodian et al. 2002 showed that 

within prairie grassland, belowground biomass was significantly higher than in a 

cultivated field. Also the density of plants in the prairie was greater than in the cultivated 

field.  Root systems in prairie grasslands are more developed compared to annual crops 

due to the perennial nature of grassland species as well as having a longer growing 

season and not having their roots disturbed by tillage (Slobodian et al. 2002, Acton 

1991).  

The bulk density and carbon concentration were an important factor in 

determining the carbon stocks of the meadow steppe and planted forest.  Although the 

bulk density in the tilled field increased from 1900 to 1998 just as the meadow steppe and 

planted forest did, the carbon concentration was significantly lower in the tilled field than 

in the other land use plots.  The difference in carbon concentration was enough to cause 

the carbon stock in the tilled field to remain significantly less than the carbon stocks in 

the other land uses. 
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Conclusions 

Over the time period of 100 years, there was both a gain and a loss of organic 

carbon concentration in the first 1 m of soil after a pristine steppe underwent three 

different types of land use conversions that included a meadow steppe, planted forest, and 

tilled field.  Each land use showed an initial decrease in organic carbon concentration 

followed by an increase through time.  Compared to the initial concentration of the 

pristine plot, the meadow steppe decreased, the planted forest remained about the same, 

and the tilled field decreased in organic carbon concentration.  The conversion to tilling 

showed the greatest amount of change in organic carbon concentration with lesser change 

in the meadow steppe and planted forest. 

The bulk density in each of the land use plots increased in the upper half of the 

profile compared to the pristine plot and decreased in the lower half.  Overall, each land 

use plot showed varying degrees of increase and decrease compared to each other. 

The organic carbon stocks in the meadow steppe showed little change compared 

to the pristine stock.  The planted forest and tilled field showed a significant decrease in 

carbon stock. 

Throughout the 100 years of land conversion, weathering has increased in each of 

the different land use plots. 

Among the three land use plots, the land use that best sequestered carbon was the 

planted forest.  The organic carbon concentration in the planted forest in 1998 was almost 

the same as the pristine plot.  The concentration in 1998 was about twice the organic 

carbon concentration in the planted forest in 1947.  The least favorable land use for 

sequestering carbon was the tilled field.  Although the organic carbon concentration in 

the tilled field actually increased after tilling began in 1920, compared to the meadow 
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steppe and planted forest this concentration was much less.  As of 1998, the tilled field 

did not reach organic carbon concentrations that were relatively similar to that of the 

pristine plot as much as the meadow steppe and tilled field did.  For this reason, the tilled 

field sequestered the least amount of carbon.  A land use change that was not directly 

looked at in this study was the hay removal (1882-1912) on the land use plots prior to 

their conversion.  Although this is a land use change from pristine conditions, this was 

not a land use conversion that was explicitly investigated.  A point to note is that this may 

have led to the greatest decrease in organic carbon concentration versus the meadow 

steppe, planted forest, and tilled field.  Additional archived samples would be needed in 

order to show this to be true for certain. 

Based on the results of this study, future speculation leads to a continual increase 

in organic carbon concentration in all the land use plots.  The planted forest is expected to 

show the greatest increase.  As the forest matures, more organic matter will be available 

to be incorporated into the soil.  The meadow steppe may continue to increase but on a 

much slower scale than that of the planted forest. It may take a few decades to a century 

to return to the initial conditions of the pristine plot if it indeed fully recovers.  The tilled 

field may show an increase in organic carbon concentration but may be limited as to the 

extent.  As the planted forest continues to mature, the influence it has as a windbreak on 

the tilled field may also increase or at least remain at its current level.  Crop yield and soil 

moisture content may continue to increase as a result.  Although an increase in organic 

carbon concentration may result because of the influence from the maturing of the 

planted forest, eventually a limit will probably be reached. 
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Further studies and improvements are needed to be done.  In this study, changes 

in soil carbon were able to be detected, but analyzing for organic carbon directly and 

sampling at consistent depth intervals could provide for a more refined analysis.  

Additional types of soil classes and different kinds of land uses need to be incorporated, 

as well as using deeper profiles in order to get a more complete analysis on the changing 

global carbon cycle.  Also studying different regions of the world may show varying 

results in the same types of soil and land use combinations.  The use of archived samples 

will greatly aid in this process. 

The results of this study did not necessarily directly answer whether or not the 

sequestration of carbon in soil is a component of the missing carbon sink, it did show that 

soil carbon plays an important role in the global carbon cycle.  The effects on soil carbon 

will vary in response to land use changes in different parts of the world.  This study gives 

another piece of information about the effects of land use changes on the global carbon 

cycle in the Central Chernozem Region of Russia.
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Table I Location and coordinates of the modern soil pits sampled in each land use.  The locations of 

the pits are relative to the planted forest.  There are no coordinates available for pit 9 (tilled field) 

and no data available for pit 10 from the tilled field (not included). 

Sample Pits Location  Coordinates 

      

Pit 2 (Meadow Steppe) 110 m east of planted forest  51 01 55.0 N  40 43 45.0 E 

      

Pit 3 (Meadow Steppe) 115 m east of planted forest  51 01 53.4 N  40 43 46.3 E 

      

Pit 4 (Planted Forest) 

25 m inside planted forest, east 

side  51 01 53.4 N  40 43 46.3 E 

      

Pit 6 (Planted Forest) 

25 m inside planted forest, west 

side  51 01 50.2N  40 43 32.1 E 

      

Pit 9 (Tilled Field) 78 m from planted forest     

 



 55 

 

Table II Bulk Density of the modern soil pits and the archived pristine soil pit at various sampling 

depths.  Soil cores were taken (used to calculate bulk density) for the modern pits at particular 

sampling depths within each particular land use.  The bulk densities of the pristine pit HRSC 1900 

are assumed values from samples taken in 1997. 

Sample Depth (cm) Bulk density (g/cm3) 

  

Pit 2 (Meadow Steppe)  

15 0.87 

30 0.98 

50 0.92 

63 1.00 

80 1.10 

130 1.14 

  

Pit 3 (Meadow Steppe)  

15 0.77 

35 0.95 

70 0.93 

90 1.03 

120 1.05 

  

Pit 4 (Planted Forest)  

15 0.83 

40 0.90 

60 0.98 

85 0.88 

110 0.96 

  

Pit 6 (Planted Forest)  

20 0.80 

40 0.99 

60 0.92 

95 1.04 

115 1.07 

  

Pit 9 (Tilled Field)  

15 0.98 

40 0.98 

60 0.89 

82 1.05 

110 1.10 

  

Pit 10 (Tilled Field)  

15  

35 0.89 

55 0.97 

80 0.98 

110 1.11 
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Sample Depth (cm) Bulk density (g/cm3) 

  

HRSC 1900 (Pristine) 

0-5 0.52 

5-12 0.68 

12-20 0.73 

20-36 0.86 

36-50 0.85 

50-65 1.12 

65-78 1.17 

78-100 1.23 

100-120 1.24 

120-134 1.32 

 



 

5
7
 

Table III Total carbon stocks and organic carbon stocks at various depth intervals from each land use type. Carbon stocks are summed to depth 

intervals of 0-20 cm, 0-50 cm, and 0-100 cm.  There were no total carbon stock values for the archived site HRSC 1900 because data was lacking to 

calculate the carbon stock. 

 Total Carbon (kg/m2)    Organic Carbon (kg/m2)   

          

Depth interval 

(cm) 
HRSC 

1900 

Meadow 

Steppe 

Planted 

Forest 

Tilled 

Field  
HRSC 

1900 

Meadow 

Steppe 

Planted 

Forest 

Tilled 

Field 

          

0-20  10.50 10.45 9.19  10.10 9.75 9.66 8.27 

0-50  23.78 22.64 22.07  20.97 21.48 20.54 19.82 

0-100  40.22 36.64 34.67  30.99 31.42 27.96 26.88 
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Table IV Data set 1 concentrations of carbonate, total carbon, and organic carbon at various 

sampling depth intervals from pits in each of the different land uses.  The carbonate concentrations 

in the modern samples (Pits 2, 3, 4, 6, 9, 10) were calculated from the difference of total carbon and 

organic carbon concentrations.  Only organic carbon concentrations were available for the archived 

pristine site HRSC 1900. 

Depth interval (cm) Carbonate (%) Total Carbon (%) Organic Carbon (%) 

    

Pit 2 (Meadow Steppe)    

0-10 -0.61 4.91 5.53 

10-25 0.04 5.51 5.47 

25-35 0.11 4.11 4.00 

36-50 0.27 3.62 3.36 

50-70 0.10 2.77 2.67 

70-80 2.01 3.71 1.70 

80-100 0.06 1.89 1.82 

100-120 0.38 2.23 1.85 

    

Pit 3 (Meadow Steppe)    

0-15 -0.65 5.22 5.87 

15-30 0.23 5.31 5.08 

30-45 -0.11 3.85 3.96 

45-55 0.21 3.44 3.23 

55-70 0.10 3.00 2.90 

70-80 0.27 3.26 2.99 

80-90 0.68 2.78 2.10 

90-100 0.07 2.39 2.32 

100-120 -0.01 1.72 1.72 

120-140 -0.21 1.21 1.42 

    

Pit 4 (Planted Forest)    

0-15 -1.06 4.87 5.94 

15-35 -0.56 3.63 4.20 

35-48 0.04 2.94 2.90 

48-73 0.06 2.34 2.28 

73-90 -0.80 1.65 2.45 

90-110 -1.48 0.75 2.23 

    

Pit 6 (Planted Forest)    

0-20 -1.83 3.14 4.97 

20-35 -1.16 3.69 4.85 

35-45 0.05 3.74 3.70 

45-60 -0.03 2.90 2.93 

60-80 0.62 2.83 2.22 

80-100 0.93 3.01 2.07 

100-115 0.17 2.59 2.41 
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Depth interval (cm) Carbonate (%) Total Carbon (%) Organic Carbon (%) 

    

Pit 9 (Tilled Field) 

0-10 0.42 4.38 3.96 

10-25 0.12 4.37 4.25 

20-50 0.17 4.00 3.83 

50-70 0.11 2.46 2.35 

70-95 -0.06 1.38 1.45 

95-110 1.25 2.33 1.08 

    

Pit 10 (Tilled Field)    

0-15 0.25 4.28 4.03 

15-28 0.16 4.26 4.10 

28-49 0.12 4.18 4.06 

47-68 -0.13 2.73 2.87 

68-96 1.25 2.50 1.26 

96-115 0.95 2.33 1.38 

    

HRSC 1900 (Pristine)    

0-5   10.53 

5-12   8.15 

12-20   5.97 

20-36   4.59 

36-50   3.82 

50-65   3.17 

65-78   1.72 

78-100   0.77 

100-120   0.47 

120-135   0.51 

 



 60 

Table V Data set 2 concentrations of carbonate, total carbon, and organic carbon at various sampling 

depth intervals from pits in each of the different land uses.  Carbonate concentrations and organic 

carbon concentrations are estimated for both the modern soil pits (Pits 2, 3, 4, 6, 9, 10) and archived 

soil pits (meadow steppe 1970, planted forest 1947, tilled field 1920).  Carbonate concentrations were 

calculated form a total digest and the organic carbon concentrations were the difference of the total 

carbon concentrations and the carbonate concentrations. 

Depth (cm) Carbonate (%) Total Carbon (%) Organic Carbon (%) 

    

Pit 2 (Meadow Steppe)    

0-3 0.52 7.71 7.20 

3-6 0.51 7.37 6.86 

6-15 0.45 6.92 6.47 

15-25 0.47 5.75 5.29 

25-30 0.55 5.09 4.54 

30-38 0.52 4.60 4.08 

38-48 0.58 4.09 3.51 

48-58 0.57 3.74 3.17 

58-68 0.54 3.24 2.70 

68-73 0.61 2.65 2.04 

73-78 0.57 2.34 1.77 

78-95 1.38 2.43 1.04 

95-125 1.86 2.52 0.65 

125-145 1.80 2.24 0.44 

    

Pit 3 (Meadow Steppe)    

3-6 0.50 7.50 7.00 

6-10 0.51 7.54 7.02 

10-20 0.52 6.59 6.06 

20-30 0.54 5.39 4.84 

30-40 0.53 4.48 3.95 

40-50 0.57 4.28 3.71 

50-55 0.56 4.04 3.48 

55-65 0.56 3.50 2.94 

65-75 0.77 3.85 3.08 

75-80 1.24 3.52 2.27 

80-95 1.97 3.00 1.03 

95-105 2.00 2.77 0.77 

105-115 2.30 2.55 0.25 

115-145 2.22 2.30 0.08 
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Depth (cm) Carbonate (%) Total Carbon (%) Organic Carbon (%) 

    

Pit 4 (Planted Forest) 

0-3 0.52 8.63 8.10 

3-6 0.48 6.98 6.50 

6-10 0.51 5.63 5.12 

10-20 0.55 4.96 4.41 

20-30 0.39 4.65 4.26 

30-40 0.53 3.94 3.41 

40-47 0.53 3.69 3.16 

47-52 0.46 3.19 2.74 

52-62 0.50 2.68 2.18 

62-67 0.64 2.76 2.12 

67-72 0.92 2.36 1.44 

72-83 1.75 2.71 0.96 

83-93 2.10 2.59 0.49 

93-118 2.07 2.34 0.27 

118-138 1.91 2.12 0.21 

    

Pit 6 (Planted Forest)    

3-6 0.49 9.42 8.94 

6-10 0.50 9.04 8.54 

10-20 0.53 7.32 6.79 

20-30 0.42 5.34 4.92 

30-39 0.49 4.82 4.33 

39-43 0.52 4.52 4.00 

43-48 0.47 4.34 3.88 

48-58 0.53 3.88 3.35 

58-67 0.55 3.11 2.57 

67-77 1.36 3.05 1.69 

77-101 1.94 3.03 1.09 

101-115 2.21 2.94 0.74 

115-130 2.36 2.64 0.28 

    

Pit 9 (Tilled Field)    

0-3 0.50 5.13 4.63 

3-6 0.52 5.13 4.62 

6-15 0.46 4.89 4.43 

15-26 0.46 4.90 4.44 

28-36 0.46 5.30 4.83 

36-51 0.46 4.92 4.45 

51-63 0.52 3.00 2.48 

63-70 0.58 2.60 2.02 

70-80 0.61 1.75 1.15 

80-95 0.60 1.45 0.85 

95-120 2.21 2.60 0.39 

120-140 2.34 2.57 0.23 
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Depth (cm) Carbonate (%) Total Carbon (%) Organic Carbon (%) 

    

Pit 10 (Tilled Field) 

0-3 0.50 5.05 4.55 

3-6 0.50 4.72 4.23 

6-15 0.56 4.98 4.43 

15-25 0.50 4.80 4.30 

25-30 0.48 4.96 4.48 

30-40 0.50 5.02 4.52 

40-46 0.54 3.76 3.23 

46-56 0.54 3.06 2.52 

56-69 0.53 2.54 2.01 

69-85 1.68 2.92 1.24 

85-100 2.22 2.85 0.63 

100-130 2.34 2.41 0.07 

130-140 2.23 2.26 0.03 

    

Meadow Steppe (1970)    

0-5 0.46   

5-10 0.46 6.60 6.14 

10-15 0.49 5.83 5.35 

15-20 0.56 5.31 4.75 

20-25 0.46 4.78 4.31 

25-30 0.54 4.93 4.39 

30-35 0.44 4.38 3.95 

35-40 0.48 4.45 3.97 

40-45 0.51 4.15 3.64 

45-50 0.55 3.55 3.00 

50-60 0.90 3.40 2.50 

60-70 2.03 3.52 1.49 

70-80 2.49 3.28 0.79 

80-90 2.55 3.10 0.55 

90-100 2.51 2.95 0.44 

    

Planted Forest (1947)    

0-5 0.63 4.65 4.03 

5-10 0.50 4.37 3.86 

10-15 0.58 4.30 3.72 

15-20 0.56 4.08 3.51 

20-25 0.58 4.01 3.43 

25-30 0.57 3.71 3.14 

30-35 0.56 3.57 3.01 

35-40 0.57 3.21 2.65 

40-45 0.56 2.86 2.31 

45-50 0.69 2.75 2.06 

50-60 1.40 3.11 1.71 

60-70 1.95 3.10 1.15 

70-80 2.56 3.32 0.77 

80-90 2.74 3.27 0.52 

90-100 2.61 3.24 0.62 
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Depth (cm) Carbonate (%) Total Carbon (%) Organic Carbon (%) 

    

Tilled Field (1920)    

0-5 0.23   

5-10 0.33 4.17 3.84 

10-15 0.31   

15-20 0.29   

20-25 0.30   

25-30 0.27 3.08 2.80 

30-35 0.37 3.15 2.78 

35-40 0.33 2.72 2.39 

40-45 0.48 2.37 1.88 

45-50 1.09 2.73 1.65 

50-60 1.62 2.58 0.96 

60-70 1.97 2.58 0.61 

70-80 1.43 1.98 0.55 

80-90 1.42 1.60 0.18 

90-97 0.95 1.49 0.54 
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Table VI Averaged organic carbon concentrations in data set 2 at combined depth intervals in the 

modern pits from each of the different land uses.  The organic carbon concentrations shown were 

combined and averaged from various depth intervals within each pit to best match the corresponding 

pit from that particular land use. 

Depth interval (cm) Organic Carbon (%) 

  

Pit 2 (Meadow Steppe)  

0-6 7.03 

6-30 5.43 

30-38 4.08 

38-48 3.51 

48-73 2.64 

73-78 1.77 

78-95 1.04 

95-145 0.55 

  

Pit 3 (Meadow Steppe)  

3-6 7.00 

6-30 5.98 

30-40 3.95 

40-50 3.71 

50-75 3.17 

75-80 2.27 

80-95 1.03 

95-145 0.37 

  

Pit 4 (Planted Forest)  

0-3 8.10 

3-6 6.50 

6-10 5.12 

10-20 4.41 

20-30 4.26 

30-40 3.41 

40-47 3.16 

47-67 2.35 

67-72 1.44 

72-93 0.72 

93-118 0.27 

118-138 0.21 
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Depth interval (cm) Organic Carbon (%) 

  

Pit 6 (Planted Forest) 

3-6 8.94 

6-10 8.54 

10-20 6.79 

20-30 4.92 

30-39 4.33 

39-48 3.94 

48-67 2.96 

67-77 1.69 

77-101 1.09 

101-115 0.74 

115-130 0.28 

  

Pit 9 (Tilled Field)  

0-3 4.63 

3-6 4.62 

6-15 4.43 

15-26 4.44 

28-36 4.83 

36-51 4.45 

51-70 2.25 

70-95 1.00 

95-120 0.39 

120-140 0.23 

  

Pit 10 (Tilled Field)  

0-3 4.55 

3-6 4.23 

6-15 4.43 

15-25 4.30 

25-30 4.48 

30-46 3.88 

46-69 2.26 

69-100 0.94 

100-130 0.07 

130-140 0.03 
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Table VII Averaged total carbon and organic carbon concentrations of the modern representative 

pits from data set 2 at combined depth intervals from each of the different land uses.  The carbon 

concentrations shown were combined and averaged from various depth intervals within each 

respective pit. 

Depth interval (cm) Total Carbon (%) Organic Carbon (%) 

   

Pit 2 (Meadow Steppe)   

0-15 7.34 6.84 

15-25 5.75 5.29 

25-38 4.85 4.31 

38-48 4.09 3.51 

48-68 3.49 2.93 

68-78 2.50 1.91 

78-95 2.43 1.04 

95-125 2.52 0.65 

125-145 2.24 0.44 

   

Pit 6 (Planted Forest)   

3-20 8.59 8.09 

20-30 5.34 4.92 

30-43 4.67 4.17 

43-58 4.11 3.61 

58-77 3.08 2.13 

77-101 3.03 1.09 

101-115 2.94 0.74 

115-130 2.64 0.28 

   

Pit 10 (Tilled Field)   

0-15 4.92 4.40 

15-30 4.88 4.39 

30-46 4.39 3.88 

46-69 2.80 2.26 

69-100 2.88 0.94 

100-130 2.41 0.07 

130-140 2.26 0.03 
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Figure 1  Map of Russia showing the Kamennaya Steppe Preserve where the Dokuchaev Institute is 

located.  The gray shading represents the historic range of steppe.  From Torn et al. (2002). 
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Figure 2  Kamennaya Steppe National Park.
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Figure 3  Summary of the types of data available for data set 1 and data set 2 in each land use.  Total and organic are analyzed forms of carbon 

concentration.  Est. carbonate is an estimated carbonate concentration based on a total digest analysis.  Estimated organic is the difference between 

total carbon and est. carbonate.  The dates are years in which samples were taken or a treatment was done on the land use.
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Figure 4  Archived monolith HRSC 1900.  The letters a and b indicate the top and bottom half of the 

monolith, respectively.  From Torn et al. (2002).
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Figure 5  The meadow steppe (a) planted forest (b) and tilled field (c) in 1998. 

(a) 

(b) 

(c) 
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Figure 6  The meadow steppe (a) planted forest (b) and tilled field (c) soil pits in 1998.

(a) 

(b) 

(c) 
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Figure 7  The relative locations of the modern (1998) soil pits within each land use.  The white represents the meadow steppe.  The green represents the 

planted forest.  The yellow represents the tilled field. 
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Figure 8  Organic carbon concentrations of two modern samples from the meadow steppe (a) planted 

forest (b) and tilled field (c) plotted against the midpoint of sample depth. 
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Figure 9  Total and organic carbon concentrations from data set 1 from the meadow steppe (a) 

planted forest (b) and tilled field (c) plotted together against the midpoint of sample depth. 
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Figure 10  Analyzed and estimated organic carbon concentrations from data sets 1 and 2, 

respectively from the meadow steppe (a) planted forest (b) and tilled field (c) plotted together against 

the midpoint of sample depth. 
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Figure 11  Analyzed total carbon concentrations from data sets 1 and 2, respectively from the 

meadow steppe (a) planted forest (b) and tilled field (c) plotted together against the midpoint of 

sample depth. 
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Figure 12  Modern total, organic, and carbonate concentrations from pit 2 (a) and pit 3 (b) in the 

meadow steppe plotted against the midpoint of sample depth.  The carbonate threshold represents 

the point where the carbonate concentration increases rapidly with increased depth. 
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Figure 13  Modern total, organic, and carbonate concentrations from pit 4 (a) and pit 6 (b) in the 

planted forest plotted against the midpoint of sample depth.  The carbonate threshold represents the 

point where the carbonate concentration increases rapidly with increased depth. 
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Figure 14  Modern total, organic, and carbonate concentrations from pit 9 (a) and pit 10 (b) in the 

tilled field plotted against the midpoint of sample depth.  The carbonate threshold represents the 

point where the carbonate concentration increases rapidly with increased depth. 
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Figure 15  Archived total, organic, and carbonate concentrations from the meadow steppe plotted 

against the midpoint of sample depth.  The carbonate threshold represents the point where the 

carbonate concentration increases rapidly with increased depth. 
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Figure 16  Archived total, organic, and carbonate concentrations from the planted forest plotted 

against the midpoint of sample depth.  The carbonate threshold represents the point where the 

carbonate concentration increases rapidly with increased depth. 
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Figure 17  Archived total, organic, and carbonate concentrations from the tilled field plotted against 

the midpoint of sample depth.  The carbonate threshold represents the point where the carbonate 

concentration increases rapidly with increased depth. 
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Figure 18  Archived (a) and modern (b) carbonate concentrations plotted against the midpoint of 

sample depth.  The carbonate threshold represents the point where the carbonate concentration 

increases rapidly with increased depth. 
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Figure 19  Archived and modern carbonate concentrations plotted against the midpoint of sample 

depth.  The carbonate threshold represents the point where the carbonate concentration increases 

rapidly with increased depth. 
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Figure 20  Archived pristine and modern organic carbon concentrations plotted against the midpoint 

of sample depth. 
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Figure 21  Archived and modern organic carbon concentrations from the meadow steppe plotted 

against the midpoint of sample depth. 
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Figure 22  Archived and modern organic carbon concentrations from the planted forest plotted 

against the midpoint of sample depth. 
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Figure 23  Archived and organic carbon concentrations from the tilled field plotted against the 

midpoint of sample depth. 
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Figure 24  Archived pristine and modern bulk densities plotted against the midpoint of sample depth. 
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Figure 25  Modern total carbon stocks in the top 20 cm of soil in the different land use types. 
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Figure 26  Archived pristine and modern organic carbon stocks in the top 20 cm of soil in the 

different land use types. 
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Figure 27  Archived pristine and modern organic carbon stocks in the top 50 cm of soil in the 

different land use types. 
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Figure 28  Modern total carbon stocks in the top 100 cm of soil in the different land use types. 
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Figure 27  Archived pristine and modern organic carbon stocks in the top 100 cm of soil in the 

different land use types. 


