GEOCHEMICAL FINGERPRINTING OF VOLCANIC AIRFALL DEPOSITS:

A TOOL IN STRATIGRAPHIC CORRELATION

by

Soumava Adhya

A Dissertation

Submitted to the University at Albany, State University of New York

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

College of Arts and Sciences

Department of Earth and Atmospheric Sciences

2009

ABSTRACT

Chemical fingerprints of volcanic airfall deposits obtained from high-precision electron microprobe analysis of glass and phenocrysts phases provide geochemical correlations with temporal precision unattainable by other methods. In this research electron microprobe analysis (EMA) techniques, to fingerprint chemically and correlate fresh and altered volcanic airfall deposits, have been utilized to test the value of this tool for future research on stratigraphic correlation. The following samples were chosen from within a variety of sedimentary rocks widely separated spatially and temporally:

- ~450 Ma old upper Middle Ordovician K-bentonites (altered volcanic airfall deposits) collected from eastern United States.
- Relatively fresh Pleistocene tuff from ~74 ka old Youngest Toba Tuff (YTT) eruption in Sumatra (Indonesia).
- Fresh Pleistocene volcanic ash from India, and Sulu Sea ODP cores.

This research confirms 14 K-bentonite correlations, of which 10 are reported for the first time, based on chemical compositions of apatite phenocrysts and melt inclusions in quartz phenocrysts. Significant K-bentonite research findings include:

- 1. Chemical correlation of Hounsfield K-bentonite and the Millbrig K-bentonite.
- 2. Several new chemical correlations of K-bentonite beds from within the Ordovician rocks in Taconic foreland basin.
- 3. Melt inclusion chemistry might be the more effective tool for differentiating closely spaced K-bentonites than that of apatite.

Biotite phenocrysts, melt inclusions in quartz and plagioclase phenocrysts, and glass shard chemistry of proximal and distal YTT ash successfully discriminate it with

other closely spaced ash layers. This research reports for the first time, the presence of melt inclusion bearing plagioclase from Pleistocene volcanic ash from India and correlates it chemically to the YTT. The Pleistocene ash from Sulu Sea ODP was not produced by YTT eruption.

The best discriminating elements observed are:

- 1. Toba biotites Mn, Ti, Cl, Mg and Fe.
- 2. Ordovician apatites Mn, Mg, Fe, Cl, and F (new finding).
- 3. Melt inclusions and glass shards Ca, Fe, Mg, Mn, Cl, Ti, K and Na.

Using a dual approach, i.e., glass as well as phenocryst chemical signatures, makes a better tool for differentiating or correlating vertically closely spaced or geographically widely spaced volcanic airfall deposits.

ACKNOWLEDGEMENT

I would like to thank my advisor John Delano for his support and understanding starting from the inception of the research proposal through its fruition in this dissertation. I would like to extend my sincerest appreciation to the committee members John (John Delano), Dr. Kidd (William Kidd), Brad (Braddock Linsley), and Chuck (Charles Ver Straeten) for their invaluable suggestions, helping me improve the dissertation, and guiding me through the entire process. I thank UAlbany and the Department of Earth and Atmospheric Sciences faculty-staffs and my colleagues for their help and support.

It would not be possible to complete this dissertation without my wife Sreeroopa's proactive encouragement and constant support in all possible ways. I thank her for believing in me during the times of my self-doubt, for motivating me during my low days, and for going through all the trials and tribulations of graduate student life with me – it was quite a journey. She deserves all the credits for completion of this dissertation.

This is a dream-come-true of three generations – my grand parents, my parents, my wife and I. I consider myself lucky for having them around me and thank them for shaping my dreams and aspirations. My mother taught me how to read and write and took care of my initial education going against many odds; my father taught me to think science – Ma, Baba thank you for everything you have done for me.

I would like to thank the stranger on the Calcutta public transportation bus (in 1984) who introduced me to the idea of going for a geology degree. Finally, I would like to dedicate this dissertation to the millions who never got the opportunity that I got.

iv

TABLE OF CONTENTS

CHAP	FER 1	INTRODUCTION	1
1.1	BACKO	GROUND INFORMATION	_1
1.2	EXPLA	TION OF TERMINOLOGIES	_3
1.3	NATUF	RE OF THE PROBLEM AND RESEARCH GOALS	_7
	1.3.1	The upper Middle Ordovician K-Bentonites	_7
	1.3.2	The Youngest Toba Tuff	<u>9</u>
CHAP	FER 2	SAMPLES: COLLECTION, LOCALITIES, AND	
STRAT	IGRAP	HIC SECTIONS	_10
2.1	INTRO	DUCTION	_10
2.2	THE UI	PPER MIDDLE ORDOVICIAN SAMPLE LOCALITIES	_11
	2.2.1	Central Pennsylvania Localities	_14
	2.2.2	Northern and Western Virginia Localities	_14
	2.2.3	Central Kentucky Localities	_15
	2.2.4	North-Western Georgia and St. Louis, Missouri Localities	_16
	2.2.5	Black River Valley, New York Localities	_17
	2.2.6	Mohawk Valley, New York Localities	_17
2.3	STRAT	IGRAPHIC POSITION OF THE UPPER MIDDLE ORDOVICIAN	1
K-I	BENTON	ITE SAMPLES	_18
	2.3.1	Central Pennsylvania	_20
	2.3.2	Northern and Western Virginia	_24
	2.3.3	Central Kentucky	_32
	2.3.4	North-Western Georgia and St. Louis, Missouri	_37

		2.3.5	Black River Valley, New York	_38
	2.4	THE Y	IT AND OTHER PLEISTOCENE SAMPLE LOCALITIES AND	
	STI	RATIGR	АРНҮ	<u>.</u> 39
		2.4.1	Proximal YTT Samples	39
		2.4.2	Distal YTT and Pleistocene Volcanic Ashes from India	_42
		2.4.3	Pleistocene Volcanic Ash from Sulu Sea	_44
СН	AP	FER 3	SAMPLE PREPARATION AND ANALYSIS	45
	3.1	INTRO	DUCTION	_45
	3.2	SAMPL	E PREPARATION AND ANALYTICAL TECHNIQUES	_51
		3.2.1	Sample Preparation Techniques	<u>51</u>
		3.2.2	Analytical Techniques	_56
	3.3	ACCUR	RACY, PRECISION, REPEATABILITY AND	
	RE	PRODUC	CIBILITY	_60
		3.3.1	Precision in terms of Repeatability and Reproducibility for Biotite	
		Analysi	S	62
		3.3.2	Precision in terms of Repeatability and Reproducibility for Apatite	;
		Analysi	s	<u> 66 </u>
		3.3.3	Precision in terms of Repeatability and Reproducibility for Rhyoli	tic
		Glass A	nalysis	_72
	3.4	DISCUS	SSION	. 80
СН	[AP]	FER 4	FINGERPRINTING THE YOUNGEST TOBA TUFF	81
	4.1	INTRO	DUCTION AND SIGNIFICANCE OF YTT ERUPTION	81
	4.2	RESEA	RCH GOAL	86

4.3	GEOCH	IEMICAL FINGERPRINTING	_87
	4.3.1	Proximal Toba Ash: Samples Description	_89
	4.3.2	Distal Toba Ash: Samples Description	_94
	4.3.3	Tephras from Sulu Sea: Sample Description	_97
	4.3.4	Biotite Chemistry	_99
		4.3.4.1 Discussion on Biotite Chemistry	_108
	4.3.5	Glass Chemistry	109
		4.3.5.1 Proximal YTT Glass Compositions	_110
		4.3.5.2 Comparison of Proximal YTT Glass with Distal Glass an	d
		Published Data	_117
		4.3.5.3 Discussion on Glass Chemistry	_130
4.4	QUAN	TIFYING GEOCHEMICAL SIMILARITIES AND	
DII	FFEREN	CES	132
4.5	CONCL	USIONS	137
CHAP	FER 5	FINGERPRINTING THE ORDOVICIAN MILLBRIG	
K-BEN	TONITH	<u> </u>	139
5.1	INTRO	DUCTION	_139
5.2	RESEA	RCH GOAL	143
5.3	GEOCH	IEMICAL FINGERPRINTING	_144
	5.3.1	Apatite and Melt Inclusion Chemistry of the Millbrig K-bentonite	<u>145 _</u>
		5.3.1.1 Geochemical Signature of the Millbrig Apatites	<u>147</u>
		5.3.1.2 Geochemical Signature of the Millbrig Melt Inclusions	_151
		5.3.1.3 Discussion on the Millbrig Geochemical Signature	_158

	5.3.2	Geochemical Comparison of the Millbrig, the Reedsville B-5 and the	
	Tazewe	ll @ 21.5m K-bentonites16	51
		5.3.2.1 Comparing Apatite Chemistry of the Millbrig, the Reedsville)
		B-5 and the Tazewell @ 21.5m K-bentonites16	53
		5.3.2.2 Comparing Melt Inclusion Chemistry of the Millbrig, the	
		Reedsville B-5 and the Tazewell @ 21.5m K-bentonites16	58
		5.3.2.3 Discussion on the Geochemical Comparison of the Millbrig,	
		the Reedsville B-5 and the Tazewell @ 21.5m K-bentonites17	'8
	5.3.3	Geochemical Comparison of the Millbrig and the Hounsfield	
	K-bento	nites18	30
		5.3.3.1 Comparing Apatite Chemistry of the Millbrig and the	
		Hounsfield K-bentonites18	3
		5.3.3.2 Comparing Melt Inclusion Chemistry of the Millbrig and the	;
		Hounsfield K-bentonites18	37
		5.3.3.3 Discussion on the Geochemical Comparison of the	
		Millbrig and the Hounsfield K-bentonites19	13
СНАРТ	TER 6	FINGERPRINTING AND CORRELATING THE UPPER	
MIDDI	E ORD	OVICIAN K-BENTONITES19)4
6.1	INTRO	DUCTION19)4
6.2	RESEA	RCH GOAL19)5
6.3	ESTAB	LISHING CHEMICAL EQUIVALENCE 19)6
6.4	COMPA	ARISON OF MELT INCLUSION CHEMISTRY20)1
	6.4.1	Preliminary Comparison of Melt Inclusions Chemistry from the	

	Mohawl	K Valley, NY	_201
	6.4.2	Detailed Comparison of Melt Inclusions Chemistry from the Moha	awk
	Valley,	NY	_207
	6.4.3	Preliminary Comparison of Melt Inclusions Chemistry from	
	NY and	PA	_215
	6.4.4	Detailed Comparison of Melt Inclusions Chemistry from	
	NY and	PA	_218
	6.4.5	Preliminary Comparison of Melt Inclusions Chemistry from	
	NY and	VA	230
	6.4.6	Preliminary Comparison of Melt Inclusions Chemistry from	
	NY, KY	and GA	_233
	6.4.7	Detailed Comparison of Melt Inclusions Chemistry from	
	NY, KY	and GA	_235
	6.4.8	Preliminary Comparison of Melt Inclusions Chemistry from	
	PA, VA	, KY and GA	_240
	6.4.9	Detailed Comparison of Melt Inclusions Chemistry from	
	PA, VA	, KY and GA	_243
6.5	COMPA	ARISON OF APATITE CHEMISTRY	_246
	6.5.1	Preliminary Comparison of Apatite Chemistry form NY, PA, VA,	
	KY and	GA	_246
	6.5.2	Detailed Comparison of Apatite Chemistry form NY, PA, VA,	
	KY and	GA	_254
6.6	DISCUS	SSION ON THE COMPARISON OF MELT INCLUSION AND	

APATITE CHEMISTRY OF UPPER MIDDLE ORDOVICIAN

K-E	BENTON	IITES	308
	6.6.1	Agreements or Disagreements Between Melt Inclusion and Apatite	;
	Chemist	try Regarding a Geochemical Match	308
	6.6.2	Similarities and Differences in Geochemical Signatures Revealed b	у
	Melt Inc	clusion and Apatite Chemistry	<u>311</u>
	6.6.3	Usability of Melt Inclusion and Apatite Chemistry in Discriminatin	ıg
	Closely	Spaced K-bentonites within a Section or K-bentonites with Similar	
	Chemica	al Signatures	<u>315</u>
6.7	CONCL	LUSIONS	<u>318</u>
6.8	FUTUR	E RESEARCH DIRECTIONS	322
REFER	ENCES		324
APPEN	DIX I:		
MOHAY	WK VAL	LLEY LOCALITIES AND STRATIGRAPHIC SECTIONS	_347
APPEN	DIX II:		
ELECT	RON MI	CROPROBE ANALYSES OF WORKING STANDARDS	363
APPEN	DIX III:	:	
ELECT	RON MI	CROPROBE ANALYSES OF TOBA BIOTITE	380
APPEN	DIX IV:		
GEOCH	EMICA	L ANALYSES OF TOBA GLASS PHASES	389
APPEN	DIX V:		
ELECT	RON MI	CROPROBE ANALYSES OF APATITES FROM MILLBRIG AN	D
OTHER	K-BEN	TONITES DISCUSSED IN CHAPTERS 5 AND 6	417

APPENDIX VI:

ELECTRON MICROPROBE ANALYSES OF MELT INCLUSIONS FROM
MILLBRIG AND OTHER K-BENTONITES DISCUSSED IN CHAPTERS
5 AND 6433
APPENDIX VII:
K-BENTONITE SAMPLES EXAMINED IN THIS STUDY LISTED BY LOCALITY
AND PRESENCE OF APATITE OR MELT INCLUSION BEARING QUARTZ
PHENOCRYSTS451
APPENDIX VIII:
KEY MOHAWK VALLEY, NY K-BENTONITES LISTED BY LOCALITY
CHEMICALLY FINGERPRINTED BY DELANO AND CO-WORKERS PRIOR TO
THIS STUDY BASED ON MELT INCLUSION CHEMISTRY 456
APPENDIX IX:
ELECTRON MICROPROBE ANALYSES OF MELT INCLUSIONS FROM UPPER
MIDDLE ORDOVICIAN K-BENTONITES DISCUSSED IN CHAPTER 6
APPENDIX X:
ELECTRON MICROPROBE ANALYSES OF APATITES FROM UPPER MIDDLE
ORDOVICIAN K-BENTONITES DISCUSSED IN CHAPTER 6490