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ABSTRACT

A thermochronologic study of blueschists and related high pressure rocks from a
subduction complex in west-central Baja California has provided constraints on the
timing of subductibn-related metamorphism and timing of subsequent uplift.
Subduction-related metamorphism of coherent blueschists occurred in late Early
Cretaceous time. One portion of the subduction complex was uplifted from a depth of
25 km to the surface of the Earth at an average rate of 0.1 mm/yr. The relatively slow
uplift rate and the lack of any higher temperature overprinting assemblages in the
coherent blueschists of the Western Baja terrane suggest that synsubduction uplift was
gradual and proceeded through a dynamic accretionary wedge characterized by low
geothermal gradients. An increase in uplift rate to 1 mm/yr during post-Miocene time
coincides with a change from a convergent to a transform plate boundary.

Ages and mineral assemblages for exotic blocks within serpentinite-matrix
melange indicate the blocks have experienced different P-T-t histories. Mid-Jurassic
epidote amphibolite facies blocks are likely derived from oceanic crust and associated
sediments that were metamorphosed durihg initiation of subduction. *®Ar/*°Ar analyses
of white micas from blueschist blocks indicate the blocks experienced subduction-related
metamorphism at approximately the same time as the coherent blueschists. However, age
spectra for white micas from blueschist blocks show evidence for varying degrees of
diffusional loss of 40Ar‘ suggesting that the blocks remained in portions of the
accretionary wedge where\temperatures were high eno‘ugh to cause partial outgassing of
the white micas. Mid-Jurassic amphibolite facies blocks from East San Benito Island
were partially overprinted b); blueschist facies mineral assemblages and represent an
intermediate type of block which records both events.

Results of isothermal, hydrothermal experiments on metamorphic hornblendes

support a previously reported estimate of the activation energy of 404, in hornblende



(~60 kcal/mol). However, phyllosilicate intergrowths and exsolution lamellae within
metamorphic hornblende result in extremely small diffusion domains which lead to lower
Ar retentivities and closure temperatures of 440°C, assuming a cooling rate of 5°C/Ma.
Preliminary results of thermal modeling of a subduction complex indicate that
the temperature-tirhe history of the accretionary wedge is strongly dependent on the
choice of the angle between the subducting plate and the overlying wedge and not

affected by low values (0.1 mm/yr) of the advection term.
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