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ABSTRACT

The Bay of Islands Ophiolite Complex forms a discon-
tinuous belt of highly allochthonous mafic and ultramafic
massifs in southwestern Newfoundland. The North Arm Mountain
Massif contains the only significant exposures of sedimentary
rocks overlying the ophiolite and also contains the most ex-
tensive exposures of Plutonic rocks in the Bay of Islands
Complex. Mapping has shown that sedimentary rocks, here
named the Crabb Brook Grbup, rest with a pronounced erosional
unconformity on ophiolitic rocks. Lithologic,paleontologic,
facies, structural, and tectonic relationships indicate that
this Group was deposited on the back of the ophiolite alloch-
thon as it was being obducted onto the early Paleozoic Conti-
nental Margin. These sedimentary rocks may correlate with
others associated with ophiolites in the Northern Appalachians
which, as yet, are of unknown age and affinity. Regional
tectonic and paleogeographic relationships in Western New-
foundland allow evaluation of the obduction process and models
are developed to explain features which are common to many
obducted ophiolite bodies. Many features observed in the
plutonic complex of the North Arm Massif are inconsistent
with models of ophiolite generation which involve small
multiple magma chambers and in many cases are contrary to
the notion that the majority of la&ered plutonic rocks were
formed by differential settling and accumulation. A combina-

tion of field, structural, ang petrographic relationships indicate



that the bulk of the North Arm Plutonic section formed as a
result of in situ nucleation and crystal growth on the bounding
surfaces of a continuously evolving, chemically zoned, steady

state magma chamber.



-- To those whose attention has never been called
to the former changes in the earth's surface
which geology reveals to us, the position of
land and sea appears fixed and stable. . . . .

In every century the lands in some parts (of
the Globe) are raised and in others depressed,
and so likewise is the bed of the sea.

Sir Charles Lyell, 1875, p. 253

Sunset over Sandy Pond on the

North Arm Mountain Massif
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1:6 Organization of the Text

This chapter is self-explanatory. Chapter II includes
a brief discussion of the regional geological setting of
the ophiolite bodies of the Bay of Islands. Chapter III
contains descriptions and interpretation of sedimentary
rocks now overlying the Bay of Islands Ophiolite of North
Arm Mountain and their regional significance in the
Northern Appalachians. Chapter IV includes a discussion
of mechanisms of emplacement of these ophiolite bodies,
and a general discussion of the initiation of subduction
zones and the constraints on the type of ocean in which
the Bay of Islands was formed. Chapter VV includes des-
criptions and interpretations of structures and lithologies
contained within the residual ultramafic component of the
ophiolite. Chapter VI and VII deal with the structure,
lithology, and petrography of the plutono-magmatic com-
ponent of the ophiolite, in particular, the coarse-grained
plutonic rocks. Interpretations as to the size, shape,
and longevity of the subaxial magma chamber that produced
the Bay of Islands plutonic section are made, and a
refined model for the plate accretion process at an oceanic
spreading center is presented.

Some chapters contain repetitive information and figures
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as they have been written as working preprints for future
publications. Additional publications (with coileagues

as acknowledged) that are already in press or published,
and that directly result from this study are presented in

the appendices.
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