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ABSTRACT

The collision between India and Asia began between 40 and 55 million years ago.
At that time southern Tibet was at an elevation very near sea level; the Tibetan plateau
today has an area of over 700,000 km2 and an average elevation of ~5000 m and is
underlain by continental crust with a thickness of 65-75 km. During the collision India
has continued to move northward relative to Siberia at ~5 cm/year. The tectonic
mechanisms by which the continued convergence has been accommodated within Asia
have varied considerably in both time and space. This dissertation concerns rocks from
three distinct areas, southern Tibet, central Nepal, and the southern Bengal Fan, and
relates geochronologic data from these rocks to the tectonic history of the India-Asia
collision in southern Tibet and the eastern Himalaya.

In the area of Tibet around Lhasa thermochronologic data from plutons of the
Gangdese batholith suggest that the cooling histories of these rocks have varied
considerably since 40 Ma. These cooling histories can be linked to the unroofing of
these rocks and, in some cases, to the uplift of the surface of the earth relative to sea
level. In two plutons, Quxu and Pachu, there exists evidence for brief (< 1 million
years) episodes of rapid unroofing (> 4 mm/year) at approximately 18 Ma and 14 Ma,
respectively. Excepting significant tectonic denudation by normal faulting, for which
there is no evidence, these rates of unroofing could not have been maintained without
substantial relief. Therefore, the results from Quxu indicate that the southern margin of
the Tibetan plateau had begun to be a prominent topographic feature by the early
Miocene. The episodic nature of the unroofing of these plutons indicates that the uplift
of the southern Tibetan plateau varied in both space and time.

40Ar/39Ar dating of detrital K-feldspar and muscovite from the southern Bengal
fan (ODP Site 116) also illustrates the episodic nature of the uplift and erosion of the
Himalaya and southern Tibet. Four to 13 K-feldspars and muscovites were dated from
each of seven stratigraphic levels which represent the past 18 million years of
sedimentation. In every level at least one K-feldspar and one muscovite had minimum
40Ar/39Ar apparent ages equal to the stratigraphic age. Because we can rule out the
possibility of a volcanogenic origin for this material and because of the paucity of deep
crustal rocks in the source area, these results indicate that many distinct portions of the
provenance area of the Bengal fan have experienced rapid erosion (> 5mm/year) during
the past 18 million years.

U-Pb dating of a granite which cross-cuts a fault near Mt. Everest indicates that

this fault was active prior to 20 + 1 Ma. This struture has been interpreted to be the



result of gravitaional collapse of a high-standing Tibetan plateau and, under this
interpretation, this result suggests significant uplift of the southern Tibetan plateau by
the Early Miocene. The isotopic results from this sample suggest a closure temperature
of Pb in monazite of ~720-750 °C, significantly higher than previous estimates.

There are ‘a series of N-S trending grabens in southern Tibet which have been
interpreted to be the result of the Tibetan plateau spreading under its’ own weight. The
Nyaingentanghla mountain range bounds one of these grabens; thermochronologic data
from this range suggest that this graben began forming before 5 Ma and perhaps before
10 Ma. This suggests that the southern Tibetan plateau achieved an elevation and crustal
thickness similar to its present day values by the end of the Miocene.

40Ar/39Ar dating of the Manaslu granite together with the new appreciation of the
behavior of Pb in monazite suggests the Manaslu granite is composed of a group of
isotopically diverse batches of magmas which coalesced over a brief period of time at
~20 Ma. Thermochronologic data from rocks of the Greater Himalayan Crystallines and
the Lesser Himalaya Formations, south of the Manaslu granite, indicate a profound
thermal disturbance centered on the Main Central Thrust at the end to the Miocene.,
This disturbance is interpreted to be the result of the passage of hot fluids through the
MCT zone at about this time. These fluids reamained at peak conditions between
500,000 and 1 million years. The fluids are thought to be a result of thrusting of hot
hanging wall rocks of the Main Boundary Thrust over colder footwall rocks, inducing
dehydration in the latter. This is essentially the same model which has previously been
suggested for the production of the High Himalaya granites, such as the Manaslu granite,
by dehydration of the footwall of the MCT.

The data presented here do not favor tectonic models for the Tibetan plateau in
which the uplift proceeds at an even pace nor those in which most of the uplift takes
place in the past 5 million years. The available data do permit models in which much of
the convergence in the Oligocene is acccommodated by continental escape, the Miocene
is dominated by crustal thickening of the Tibetan plateau, through distributed
shortening, and the past 5 million years have included E-W extension, continental

escape, crustal thickening, and incipient plate re-orginization.
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