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ABSTRACT

More than 20 bentonites occur in the Middle Ordovician black shales of the Utica Formation that
outcrop along tributaries to the Mohawk River in New York State. Pristine melt inclusions within quartz
and apatite phenocrysts are commonly found in at least 40% of the bentonites. Constraints on magmatic
processes can be obtained by examining the major-, minor- and trace-element variations among different
melt inclusions in quartz and apatite phenocrysts from individual bentonites. The melt inclusions in
apatite range in composition from rhyodacitic to rhyolitic, while those in quartz are high-silica rhyolites.
Most bentonites within the Middle Ordovician sequence in New York contain melt inclusions with 5-6
wt.% K,O (high-K). However, the bentonites within a restricted stratigraphic interval (approximately 30
m thick) that occurs in the C. americanus graptolite zone contain melt inclusions with 2-3 wt.% K,O
(low-K). These inclusions typically have higher MgO, CaO, MnO, TiO, and FeO abundances relative to
the high-K glasses. Commonly in this 30 m restricted interval, bentonite layers display bimodal
distributions of elemental abundances. In some cases, one of the groups of inclusions within the bimodal
bentonites appears to be chemically identical to melt inclusions within other bentonites in this interval.
The bimodal bentonites could be composed of the air-fall components of two different eruptions. Another
possibility is that the bimodality reflects zoned magma chambers. The two different models may hold

important implications for the interpretation of bentonite correlations.
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CHAPTER1 INTRODUCTION

1.1 Terminology and Study of Paleozoic K-bentonites

Bentonites are the chemically-alterated remains of volcanic air-fall deposits. When preserved in
sedimentary rocks, théy are considered to be ideal time planes for correlation, because explosive eruptions
distribute ash over wide geographic areas and the ash is deposited instantaneously in geologic time (Kay,
1935; Huff, 1983; Sarna-Wojcicki et al., 1987). Considerable progress has been made in correlating
bentonites between different outcrops of Ordovician shales and Limestones of New York State (Delano et
al., 1994; Mitchell et al., 1994).

The term bentonite is associated with a clay-rich rock containing phenocrysts of volcanic origin,
such as melt inclusions, euhedral quartz and zircons, biotite and apatite phenocrysts (Fisher and
Schminke, 1984). The late Ordovician bentonites of the eastern half of North America are often referred
in the literature as K-bentonites (Schirnick, 1990; Delano et al., 1990, 1994). K-bentonites are rich in the
clay mineral kaolinite. This study will use the term ‘bentonite’ to describe a clay-rich layer that can be
recognized by the presence of volcanic phenocrysts, because the overall dominant clay mineral was not
determined for the bentonites discussed in this study.

Volcanic ash is composed of glass and volcanic phenocrysts. Over time, the glass and chemically
unstable phenocrysts become diagenetically altered to illite and smectite-rich clays. This process produces
major changes in the bulk composition due to the open-system behavior of elements during diagenesis
(Delano et al., 1990). Therefore, the bulk composition of the bentonite may not represent the original
bulk composition of the ash. Because diagenetic processes may be very different depending on the host
rock composition, the bulk composition is an unreliable “fingerprint™ of the bentonite. Schirnick (1990)
discovered pristine, rhyolitic glass inclusions in chemically-resistant phases (e.g., quartz, apatite and
zircon) in Ordovician bentonites of New York State. These glasses have been hermetically-sealed in
quartz and apatite and represent unaltered samples of the magmatic liquid from which the host mineral

grew (Roedder, 1984). Delano et al. (1994) demonstrated that a host bentonite can be confidently
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characterized based on the compositions of the glass inclusions. Thus, bentonites can be confidently

identified at different outcrops and correlated between these outcrops.

1.2 Geological and stfatigraphical background

The Upper Middle Ordovician K-bentonites of the north eastern United States are presumably the
remnants of volcanic eruptions associated with the Taconic Orogenic event. During the Taconic Orogeny,
an eastward dipping subduction zone developed beneath an approaching volcanic arc (Rowley & Kidd,
1981). The eastern margin of the North American continent evolved from a passive margin to a deep
foreland basin into which the black graptoliferous shales of the Utica Formation were deposited. These
black shales grade into the interbedded limestone and shale of the Dolgeville Formation. The Denmark,
Sugar River and Rust Formation represent platform carbonates which were deposited contemporaneously
with, and to the west of, the deep water foreland basin sediments (Figure 1; Mitchell et al., 1994).

Most of the bentonites in this study were collected within the Utica Formation. The Utica
Formation, which consists of about 300 m of flat-lying black, often calcareous, shales, is overlain by the 5-
100 meters of the Trenton Group limestones starting with the King’s Falls Limestone. Additional
bentonite samples were collected from the undeformed Denley member of the Denmark Formation near
Carthage, New York. A trocholite bed, a stratigraphically condensed interval, marks the contact between
the Sugar River Limestone and the overlying Denley member. This lithologic contact can be traced for
approximately 130 km, from the Black River Valley, southeastward to the Mohwak River Valley
(Lehmann et al. 1995). Mitchell et al. (1994) established a relatively precise stratigraphic framework for
the Utica Formation based on the correlation of graptolite zones. Since graptolites are not found within
the platform carbonates of the Denley Formation, correlations between the eastern Utica Formation and
the Denly Formation have been difficult to establish. Bentonites have been used to establish a more
precise correlative framework between these two formations (Mitchell et al.,, 1994). More detailed
information about the stratigraphic units are given in Lehmann et al. (1995), Goldman et al. (1994) and

Mitchell et al. (1994).
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Figure 1. Chronostratigraphic cross section of late to Middle and early Upper Ordovician strata exposed
along the Mohawk Valley, NY (modified from Mitchell et al., 1994), showing temporal and facies
relations together with a sequence stratigraphic interpretation. Horizontal lines are the stratigraphic level
of 15 correlated K-bentonites. Arabic numbers are special fingerprinted K-bentonites discussed by
Mitchell et al., 1994. Areas with vertical lines represent hiatus.
1.3 Purpose of this Study

The purpose of this study was to: (a) establish detailed stratigraphic correlations among
Ordovician bentonites within a complicated 30 m thick interval in the Utica Formation in order to provide
much needed detail to the chronostratigraphic framework that had previously been constructed in the
Mohwak Valley; (b) correlate bentonites from this interval to bentonites occurring in the western Platform

carbonates of the Black River Valley; and (c) characterize the chemical diversity of melt inclusions in a

unique group of bentonites which occur in a 30 m stratigraphic interval of the Utica Formation.
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Bentonites have been “fingerprinted” and correlated based on the composition of glass inciusions

in chemically-resistant phenocrysts. These glass inclusions are not only important for stratigraphic
correlation, but also provide information about the compositions of the magma that were erupted during
the Taconic Orogeny. ‘Compositional variations among the melt inclusions within single bentonite layers

may provide information pertaining to the evolution of these ancient magma chambers.



CHAPTER2 SAMPLE LOCATION AND NOMENCLATURE

Late Ordovician bentonites are regionally distributed throughout the eastern half of North
America (Huff, 1983; Cisne et al., 1982, Samson et al. 1988; Delano et al., 1990). Samples of bentonites
were collected from outcrops along tributaries to the Mohawk River in Montgomery County and Herkimer

County and along the Deer River Valley in Lewis County, New York (Figure 2.1).

QUEBECK

ONTARIO

W. Canada Creek
E. Canada Creek

Hudson River

Figure 2.1 Locality map of outcrops in New York State used in this study; solid black squares represent
the sampling location and the attached numbers the outcrop name: 1 = Deer River; 2 = Chuctanunda
Creek; 3 = Flat Creek; 4 = Canajoharie Creek; 5 = Nowadaga Creek; 6 = North Creek tributary at Myers
Road. Modified after Mitchell et al. (1994).
2.1 Canajoharie Creek, Flat Creek, Chuctanunda Creek

Bentonite samples along Canajoharie Creek, Flat Creek and Chuctanunda Creek all occur within

the upper C. americanus and in the O. ruedemanni graptolite zone (Mitchell et al., 1994) of the Utica

Formation.
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The Canajoharie Creek locality (Figure 2.2) is located in the Wintergreen Park, 1-2 km south of

the town of Canajoharie, 50 km west of Albany, and the Flat Creek section (Figure 2.3) is located S km to
the east of Canajoharie Creek. In both sections, approximately 30 bentonites are exposed in black shales
of the Utica Formatioxi. At Canajoharie an unconformable contact exists between the Utica Shale and the
King Falls Limestone at the level of the pond below the waterfall. This contact is found at Flat Creek 4 m
below an interval covered by Quaternary alluvium. Bentonites in these two localities are easily accessible
by walking along the creek bed. The Chuctanunda bentonites (Figure 2.4) occur in a road cut along US
5S in Montgomery County, NY, approximately 1.8 km west of Route 30, and 1.3 km southwest of the
town of Amsterdam. Eleven bentonites occur in this 20 m thick outcrop. These bentonites are also easily
accessible along the road cut. The geographic positions of these outcrops, marked with filled circles, are

shown in Figure 2.5.1 and 2.5.2.

; <— Can@64.5

g < Cm@635
<— Can@61.9

¥ < Can@583
B < Can@57.8

Figure 2.2 Photograph of the black shales of the Utica Formation that outcrops at Canajoharie Creek.
Arrows and labels show the position of individual bentonites.



Figure 2.3 Photograph of the black shales of the Utica Shale that outcrops at Flat Creek. Arrows and
labels show the position of individual bentonites.

[ Chuc @ 392

Figure 2.4 Photograph of the black shales of the Utica Formation that outcrops at Chuctanunda Creek.
Arrows and labels show the position of individual bentonites.
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Figure 2.5.1 Map showing location of Canajoharie Creek and Flat Creek bentonites. Canajoharie @
14.5, Canajoharie @ 55.2, and Canajoharie @ 85.9 are the locations of bentonites sampled along
Canajoharie Creek at 14.5, 55.2, and 85.9 meters respectively above the King Falls Formation (Figure
2.6). Flat Creek @ 24.5, Flat Creek @ 47.4, and Flat Creek @ 70 are the locations of bentonites sampled
along Flat Creek at 24.5, 47.4, and 70 meters above the Kings Falls Formation.
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Figure 2.5.2 Map showing location of Chuctanunda Creek bentonites. All bentonites between 33.0 and
55.3 meters above the King Falls Formation were sampled at this location along the Chuctanunda Creek.
The bentonites are easily recognizable in the outcrops because they erode faster than the
surrounding black shales, causing a pronounced reentrant along a stratigraphic horizon. The bentonites
are also recognized by the distinct orange staining below the reentrant, which is produced during
weathering of sulfides within them (see Figure 2.2). These bentonites are usually less than 15 cm thick,
and are typically between two and three centimeters thick. Figure 2.6 shows the stratigraphic column of
Canajoharie Creek, Flat Creek and Chuctanunda Creek sections. The horizontal lines within columns
represent bentonites and the adjacent numbers represent their stratigraphic height above the contact
between the Utica Formation and the Kings Falls Formation. The covered section above Flat Creck @ - 4
m is indicated by a X. In the text, bentonites are named after both their location and their position in the
stratigraphic column. For example, Canajoharie @ 84.7 refers to the bentonite at Canajoharie Creek at
84.7 m above the datum. In this case, the datum is the contact between the Utica Formation and the

underlying King Falls Formation.



10

g K-bentonite located in
Dolgeville Flat measured section (m) above datum
. % Sample with inclusion-bearing
Formation Creek _ 27 quarty
. N = <& Sample lacks crystals
. . - - g ' S 1 th . 1 . % .
Canajoharie - ~ a;i‘;i‘%ie e with inclusion-bearing
Creek 0 Sax{:ple with apatite, but no
NV *—178.0 mceiusions ]
X unexposed interval
2 70'0_ 0. ruedemanni Zone
: - C. americanus Zone
T W
55.
*—=149.5
66;7?%.: 65.5 45 4+* 474 46 .4-6%
“Be—61.9 i
55.2 [ 1372
23
*—]31.2 3.0
Flat Creek
Member *—124.5
Utica Shale
26.7 %
4.0 6.0 |
23.0 B 4.5 PR
14 51163 yam Y Chuctanunda
—r]12.0 3 ' Creek
9.0
10 m
0.0~ —----- - ——————— -
! ! Kings Falls Limestone

Figure 2.6. Stratigraphic columns of the Utica Formation at Canajoharie Creek, Flat Creek, and
Chuctanunda Creek. Modified after Delano et al. (1994). Dashed lines connecting sections represent the
boundary between the O. ruedemanni and C. americanus graptolite zones.
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2.2 Deer River
The bentonites from the Deer River location were collected and provided by Dr. John W. Delano
and were first described by Chenoweth (1952). They occur in the Denley limestone member of the

Denmark Formation that outcrops along the Deer River in Lewis County, New York, 2 km south of the

town of Carthage (Figure 2.7).
44°00'N
KILOMETER
0 1
T s—

43°52'30"N -
7543 W 75°30' W

Figure 2.7. Map showing the approximate position of the bentonite sample locality at Deer River. Deer
River at 13 and 19.2 m are the locations of bentonites sampled along the Deer River at 13 and 19.2 meters
respectively above a Trocholite bed in the Camp Member.

Figure 2.8 shows the stratigraphic position of these bentonites. A Trocholite bed in the Camp Member of

the Denley Formation is used as the datum for stratigraphic height. Deer River @ 19.2 represents a

bentonite that occurs 19.2 meters above the Trocholite bed.
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Figure 2.8. Stratigraphic column of the Denmark Formation at Deer River location. Stratigraphic data
from J.W. Delano (unpublished).
2.3 Nowadaga Creek and North Creek tributary at Myers Road

Bentonites from Nowadaga Creek and North Creek tributary at Myers Road are shown in Figure
2.1. A detailed sample locality description is given in Mitchell et al. (1994). The bentonite samples were
collected by J.W. Delano. Bentonites sampled for this study are Nowadaga ‘B0’ and Myers Road ‘“MC2’.
Nowadaga ‘B0’ and Myers Road ‘MC2’ are also known as the “Manheim” and “Countryman” K-

bentonite (Mitchell et al., 1994).
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CHAPTER3 PETROGRAPHY

Melt inclusion-bearing quartz phenocrysts (Figure 3.1.1 & 3.1.2) occur in approximately 40% of
the Upper Ordovician Strata from the Mohawk valley. Apatite phenocrysts with glass inclusions (Figure
3.2.1 & 3.2.2) are rare, occurring in ~ 10 % of bentonites. The glass inclusions are of great interest
because they represent pristine samples of magmatic liquid from which the host minerals grew. The
unstable glass inclusions have been preserved for 450 Ma because they have been sealed within the
chemically resistant phases, quartz and apatite. Quartz phenocrysts typically vary from beta-form
euhedral to anhedral crystals. Shattered quartz crystals containing glass inclusions are also common.
They often contain inclusions of sanidine, plagioclase, apatite, zircon, and sulfide in addition to melt
inclusions. These minerals are typical of high silica rhyolites and indicate their presence in the magma at
the time of quartz growth. Apatite typically occurs as stubby crystals approximately 110 pm in length,
with crystal faces rarely recognizable. Apatite appears bluish in plane-polarized light. Some apatites
contain inclusions of other minerals such as oxides, sulfides, quartz, monazite, or feldspar.

Glass inclusions are more abundant in quartz than in apatite phenocrysts, and range from being
glassy to completely devitrified. Glass inclusions in quartz range in size from < 10 to 100 um in
diameter, whereas glass inclusions in apatite tend to be slightly smaller, ranging in diameter from 10-50
pum. Most glass inclusions are subrounded to rounded, but some display signs of faceting. Approximately
10 % of the melt inclusions in quartz phenocrysts for this study have an exsolved volatile phase (i.e.,
bubble), whereas no bubbles have been observed in glass inclusions in apatite phenocrysts. Vapor bubbles
in glass inclusions are generally < 10 % of the inclusion volume. Although most of the inclusions in
quartz are glassy, many have suffered post-entrapment crystallization (Figure 3.3). They range from
being slightly crystalline, appearing speckled, to being completely crystalline, appearing opaque in
transmitted light.

Hanson (1995) described the morphology of melt inclusions in quartz phenocrysts within

Devonian bentonites. He classified inclusions in four different types. These same types have been
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observed in the Ordovician bentonites. Most Ordovician quartz crystals contain type one (inclusions
elongated parallel to the C-axis), two (oriented along one of the three crystallographic axes) and three
(parallel to edges of triangular crystal faces), but rarely type four (parallel to the triangular crystal faces)
has been observed. The crystal on the right in Figure 3.1.1 contains three type four inclusions. Detailed
observations and chemical analyses of these types of melt inclusions found in quartz phenocrysts may
provide insight into the timing of entrapment or the morphological changes experienced by the melt with

time.
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Figure 3.1.2 A backscattered electron image of a melt inclusion in a quartz phenocryst from Flat @ 78.0.
The black is epoxy, the gray is quartz and the light gray is the glass inclusion. Note the scale bar in the
bottom right is 100 pm.
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Figure 3.2.1 Photomicrograph of a melt inclusion in an apatite phenocryst from Canajoharie @ 84.7.

Figure 3.2.2 A backscattered electron image of a melt inclusion in an apatite phenocryst from
Canajoharie @ 84.7. The black is epoxy, the gray is apatite and the dark gray is the glass inclusion. Note
the scale bar in the bottom right is 100 pm.



Figure 3.3 Photograph of crystallized melt inclusions in quartz phenocrysts from Canajoharie @ 87.4.

17
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CHAPTER 4 SAMPLE PREPARATION AND ANALYSIS

4.1 Sample Preparation

1-2 kg of beﬁtonite sample was wet sieved, and the size fraction greater than 105 pm was
retained. After drying, this fraction was passed through a Frantz Isodynamic magnetic separator to
concentrate quartz and apatite crystals. Apatite was separated using bromoform. The light fraction was
then treated with concentrated HCl and HNO; to remove carbonates, sulfides and clays adhering to the
crystals, then resieved. Samples were placed in immersion oil, and hand-picked using tweezers under a
binocular microscope. Crystals containing melt inclusions were further inspected at 400x in a
petrographic scope. Only melt inclusions with no crystals were individually mounted in epoxy and then
ground and polished for electron microprobe analysis. Crystallized inclusions were treated separately as

described below.

4.2 Experimental melting of crystallized inclusions

Crystallized melt inclusions were prepared for analysis using the techniques described by Hanson
(1995). Quartz crystals containing devitrified inclusions were cleaned in trichloroethylene to remove oil
and placed in platinum foil pouches. The pouches were gently closed and then held in an one-atmosphere
furnace for 14 days at a temperature of 1075 °C. The experiments were quenched in air by rapid removal
from the furnace. The melted inclusions were again immersed in oil and examined under high
magnification. Only inclusions containing no visible crystals were prepared for electron microprobe

analysis.

4.3 Electron Microprobe Analysis
Electron microprobe analyses were performed at the Rensselaer Polytechnic Institute using a
JEOL 733 superprobe. The high-precision electron microprobe technique described by Hanson et al.

(1996) was used to analyze major (Al,Os, SiO,, FeO, Ca0, Na,0, K,0), minor (Cl, TiO,), and trace-
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elements (MgO, MnO). If possible one melt inclusions of at least 12 crystals per bentonite at one site
were analyzed. During an analytical session, three groups of five elements were analyzed in separate
steps. The first package of elements included Na, K, Al, Si and Fe. At a beam current of 5 - 20 nA, five
20 second analyses wére performed on each inclusion to monitor the Na-loss. Na-loss during exposure to
the electron beam was corrected for using a technique modified from Nielson and Sigurdsson (1981),
which is described in detail in Hanson et al. (1996). After this set of analyzes, the second package of
elements (Mg, Ti, Al, Cl, Fe) was analyzed for 180 seconds at a beam current of 45 nA. Under the same
analytical conditions the third and final package of elements (Mg, Ca, Al, Mn, Fe) were analyzed. The Al
abundances determined from the first set of analyses is used as a normalizing element.

During the experimental heating, the crystallized glass inclusions are diluted by SiO, due to
melting of the host phenocryst. This results in a proportional decrease in all of the other elemental
abundances. This dilution can be corrected for by normalizing all of the data to the A1;O; abundance of
the originally entrapped melt. We have no way, however, of determining independently the original Al-
content. Hanson et al. (1995 and 1997 in prep.) determined an average of 11.8 wt. % Al,O; in 102 non-
crystalline glass inclusions in quartz phenocrysts from 23 different Ordovician and Devonian bentonites.
In order to correct for Si-addition all experimental data have been normalized to 11.8 wt.% Al O;.
Because all inclusions do not actually contain 11.8 wt. % Al,0;, the normalized data is an estimate of the
actual abundances and hence the accuracy is not perfect. The total range in Al,O; observed so far is 11.0
to 12.3 wt.% within the average being around 11.8. Inclusions normalized to 11.8 wt.% Al,O; are
referred in the text with an asterix (e.g., FeO*).

A set of three working standards was analyzed before every session to monitor the precision and
reproducibility of analyses from one analytical session to another. The working standards were hydrous,
rhyolitic melt inclusions from separate, unrelated, compositional distinct eruptive events (Hanson et al.,
1996). The result of 24 analyses on each of the three working standards (Figure 4.1) not only
demonstrates the analytical precision and reproducibility of data, but also the ability to unambiguously

distinguish different rhyolitic glass compositions.
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Figure 4.1. Results of 24 replicate analyses of rhyolitic glass inclusions in quartz that were used as
working standards during this study. These data were acquired during the collection of element packages
#2 and #3 (Hanson et al., 1996) and analyzed once before each analytical session.
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CHAPTER S5 STRATIGRAPHIC CORRELATION OF BENTONITES BASED ON MELT
INCLUSION COMPOSITION

The bentonites examined in this study were collected from the broad basin sequence of the
Trenton Group, exposéd in the Mohwak and Black River Valleys of central and north-western New York
State. Many long and continuous sections of the Trenton Group are very well exposed between
Canajoharie, New York, and Lake Ontario. There are thought to be no unconformities or significant
diastems in the Trenton Group, which represents a period of perhaps 8 my of continuous carbonate
deposition (Titus, 1989).

Chronostratigraphic horizons in sedimentary sequences can be produced by geological
instantaneous events such as explosive volcanic eruptions (Kay, 1935; Huff, 1983; Sarna-Wojcicki et al.,
1987). Individual bentonite layers can be confidently identified and distinguished based on the
compositions of glass inclusions within their phenocrysts. Although a number of geochemical
correlations have already been established in the Mohwak river sections by Delano and coworkers (1994),
the stratigraphic goal of this study was to provide very detailed correlations in a smaller, more
complicated interval. This particular 30 m interval (Figure 5.1) is of interest because it contains
bentonites with melt inclusions of a curious, never-before seen composition. This is described in detail in
chapter 6. A further goal of this study was to attempt to correlate this 30 m interval to the bentonites that
occur in the platform carbonate sequence that outcrops along the Deer River to the northwest. A
correlation between the Mohawk and Black River Valleys is important because there are few
biostratigraphic features common to both the black shaies of the Utica Formation and the platform

carbonates of the Denmark Formation.

5.1 Canajoharie @ 65.5 m - Flat Creek @ 49.5 m
The composition of pristine melt inclusions in quartz phenocrysts from Canajoharie @ 65.5 m
(Appendix A.4.1) and Flat Creek @ 49.5 m (Appendix B.3.1) are shown in Figure 5.2 a, b, ¢, and d. The

compositions of these melt inclusions suggest that these two bentonites are equivalent. There appears to
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be two, chemically-different groups of inclusions in quartz from this bentonite (Figure 5.4), and they can
be best recognized in their TiO, and Cl content. Group I is distinguished from group II by a higher
concentration in TiO,, and Cl. The TiO, -concentration in Group I is > 0.16 wt. % and Cl-concentration
is > 0.12, whereas in Group II, TiO, -concentration is < 0.12 wt. % and Cl-concentration is < 0.11. These
two groups can be recognized at both Canajoharie @ 65.5 and Flat Creek @ 49.5. Both bentonites are
identical in containing these two groups.

Experimentally-melted crystallized inclusions have also been analyzed from both bentonites.
These data are shown in Figure 5.3 and in Appendices A.4.2 and B.3.2. Here again the melt compositions
are indistinguishable. The composition of both the pristine and experimentally melted inclusions support
the chemical equivalencies of these bentonites. The two groups observed among the pristine inclusions
are also observed among the crystallized inclusions (Figure 5.4 b). Group I has a higher concentration in
Cl and TiO, than Group II. Although the majority of pristine melt inclusions belong to group I and the
majority of the remelted inclusions to group II, both groups are represented. The chemical signatures of
both the crystalline and non-crystalline inclusions strongly suggest that these bentonites represent the
same eruption. This correlation is parallel to a correlation previously established between Canajoharie @
84.7 and Flat Creek @ 70 (see Figure 5.1) by Delano et al. (1994) and therefore this correlation is
reasonable.

All bentonites were included in the calculation of a melt inclusion chemistry-based correlation
matrix, for which similarity coefficients (= di g ) (Borchardt et al., 1972) were calculated for all
combination of bentonites. The similarity coefficient is an average of the relative abundances of melt
inclusions in two different bentonites. The equation used in this study are based on the equations used by
Borchardt et al. (1972). The equation #1 in Borchardt et al. (1972) is a strict comparison of mean
abundances for all elements, and therefore blind to any real compositional ranges that are characteristic
for the bentonite. Keeping this in mind it is useful under special circumstances (e.g., Canajoharie @65.5
and Deer River @ 19.2) to compare the two groups in Canajoharie @ 65.5 separately (i.e., identify each

group separately in the matrix).
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Figure 5.1. Stratigraphic column of the Utica Formation at Canajoharie Creek, Flat Creek, and
Chuctanunda Creek. Continuos lines between two sections indicate correlation based on the geochemistry
of the melt inclusions. See also Delano et al. (1994) for the first bentonite correlations in this area.
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Figure 5.2. Plot of (a) MnO vs. CaO, (b) Cl vs. MgO, (¢) TiO, vs. FeO, and (d) Na,O vs. KyO in glassy
melt inclusions in quartz phenocrysts from a bentonite correlated from Canajoharie @ 65.5 m (open
circles) to Flat Creek @ 49.5 m (open triangles). Analytical precision as in Figure 4.1.
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Figure 5.3. Plot of (a) MnO* vs. CaO¥*, (b) C1* vs. MgO*, (¢ TiO,* vs. FeO*, and (d) Na,O* vs. K,0*
in glassy melt inclusions in quartz phenocrysts from a bentonite correlated from Canajoharie @ 65.5 m
(open circles) to Flat Creek @ 49.5 m (open triangles). All of these melt inclusions were crystallized and
were experimentally melted in a one-atmosphere furnace. Analytical precision as in Figure 4.1.
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For those bentonites that show a continuos range (trend rather then individual groups), one needs to use
the standard deviation for comparing the “similarity of trends” among different bentonites. Borchardt et
al. (1972) used typically one bulk analysis for each bentonite to establish their comparison, whereas this
study has a much richér data-set. The parameter “gi” of Borchardt et al. (1972) is not of any help in this
study either for several reasons (e.g., analytical uncertainty is the least of the problems in this study, but
was the greatest concern to Borchardt et al. (1972)). As well the coefficient of ‘0.33” in the denominator
is irrelevant, since it was merely defined by Borchardt et al. (1972) as being the maximum analytical error
(i-e., 33 %) that would be permitted into the elements used for their similarity coefficient. Therefore, a
small variation on Equation #1 of Borchardt et al. (1972) is suggested in order use a similarity coefficient
in this study. The following equation gives equal weighting to (a) comparison of means and to (b)

comparison of standard deviations (Delano, 1997 pers. communication).

n
2 M; + D))
i=1
diag~= , for ‘n’ elements
2n
Xia
where M; = ~==-em-- , where X; > X;a (i.e,, M;<1) for ‘X;” = mean abundances of i
Xip
Xip
OF  mmememee ,where X;, > Xjz (i.e, M;<1)
Xia
Cia
where D; = ---mu-- , where 0;5 > oja (i.e., D;<1) for ‘c;” = standard deviation of element i
Cip
Cip
10) G— ,whereop > o (i.e,D;<1)
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Since each element ‘i’ has two parameters being used in which a perfect correlation will have (M; + D))
for each element equaling 2, the dominator becomes “2n’.

The first criterion is given by the standard deviation of the working standards (see chapter 4) in

this study: TiO, = 0.01‘, FeO = 0.035, MnO = 0.007, MgO = 0.006, CaO = 0.03, K,0 = 0.04, Na,0 = 0.2

and Cl = 0.008. If standard deviation of one bentonite is greater than the given criterion then the above

equation has been used for determine the similarity coefficient. If the standard deviation is less than the

given criterion then

d (s, = ZMi/n (= Equation #1 of Borchardt et al. (1972)) has been used.

Finally, Table 1 - 3 are the results of this data compilation for analyses from pristine melt
inclusions in quartz and apatite phenocrysts and from experimentally remelted inclusions in quartz
phenocrysts. Bentonites believed to be correlated yield similarity coefficients greater than 0.750.
Therefore, the d (o ) criterion suggesting correlation is = 0.750. Hence, Canajoharie Creek @ 65.5 (I),
Flat Creek @ 49.5 (I) are not only correlated visually by comparing the chemistry in diagrams (Figure
5.2), but as well by their similarity coefficient (= 0.845 in Table 1). The same is applied to Canajoharie
Creek @ 61.9, Flat Creek @ 47.4 and Chuctanunda Creek @ 46.4.

Difficulties for defining d (4 5, appear with the similarity coefficient of experimentally remelted
inclusions (Table 2). Correlations defined by the similarity coefficient in pristine melt inclusions
(indicated with ‘*’ in Table 2) cannot be positively identified with the similarity coefficient of
experimentally remelted inclusions. At this stage of the study no explanation is available for this
occurrence and therefore the similarity coefficient for experimentally remelted inclusions in quartz

phenocrysts is not a criterion to determine a stratigraphic correlation.
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5.2 Canajoharie @ 63.5 m, Flat Creek @ 47.4 m and Chuctanunda @ 46.4 m

The composition of pristine and experimentally melted inclusions in quartz phenocrysts from
Canajoharie @ 63.5 (Appendix A.3.1), Flat Creek @ 47.4 (Appendix B.2.1) and Chuctanunda @ 46.4
(Appendix C.1.1) are shown in Figure 5.5 and Figure 5.6 a, b, ¢, and d.

Although the inclusions from these three bentonites are generally very similar in their chemical
composition, there are subtle chemical differences. Chuctanunda @ 46.4 can be distinguished from
Canajoharie @ 63.5 and Flat Creek @ 47.4 by the TiO, and FeO abundances among the melt inclusions
(Figure 5.5. ¢). Chuctanunda has a low and a high TiO, group (~ 0.8 wt.% and ~ 1.5 wt.%) and FeO
group (up to 0.8 wt.% and ~ 1.4 wt.%), whereas the data from Canajoharie and Flat Creek lie between
these two groups. The similarity coefficient (Table 1) for these bentonites on the other hand suggests that
these layers are correlation. Here, the strongest correlation is indicated between Flat Creek @ 47.4 and
Chuctanunda @ 46.4 with a similarity coefficient of 0.810.

Although the pristine inclusions from Canajoharie and Flat Creek appear similar, the crystailized
inclusions are chemically-different. The melted inclusions from the Canajoharie bentonite display a wider
range in MgO* than the bentonite in Flat Creek or at Chuctanunda. The difference among all three
bentonites is best identified in their Na,O* and K,0O* compositions (Figure 5.6. d). The Alkalis clearly
demonstrate the difference between these three bentonites.

Schirnick (1990) correlated Canajoharie @ 63.5 with Flat Creek @ 47.4 bentonite based on melt
inclusion composition and zircon morphology. Because Canajoharie @ 63.5 and Flat Creek @ 47.4 are
both two meters below the correlated bentonite described in chapter 5.1, it might be expected that these
bentonites are equivalent, but the compositions of the melt inclusions of these two layers in this study
contradict this conclusion. This contradiction highlights the need for extreme caution in assuming

bentonite correlations using relative stratigraphic positions.
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Figure 5.5. Plot of (a) MnO vs. CaO, (b) CI vs. MgO, (c) TiO, vs. FeO, and (d) Na,O vs. K;O in melt
inclusions in quartz phenocrysts from bentonites at Canajoharie @ 63.5 m (open squares) to Flat Creek @
47.4 m (open down triangles) and Chuctanunda @ 46.4 m (crosses). Analytical precision as in Figure
4.1.
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Figure 5.6. Plot of (a) MnO* vs. CaO*, (b) CI* vs. MgO*, (c) TiO,* vs. FeO*, and (d) Na,O* vs. K,0*
in melt inclusions in quartz phenocrysts from bentonites at Canajoharie @ 63.5 m (open squares) to Flat

Creek @ 47.4 m (open down triangles) and Chuctanunda @ 46.4 m (crosses).

All of these melt

inclusions were crystallized and were remelted in a one-atmosphere furnace. Analytical precision as in
Figure 4.1.
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5.3 “Test for chemical variability within Flat Creek @ 47.4”
Flat Creek @ 47.4 m was sampled at various locations along a 45 meter transect of the outcrop
(Figure 5.7) to search for petrographic differences or differences in the composition of inclusions in the
same layer. Melt inclﬁsions in quartz from two of the five samples have been analyzed (Appendices B.2.2
and B.2.3) and compared to previous data. These two were chosen because they appeared to be
petrographically different from the other samples and from the previously-collected samples of this
bentonite. These samples contained smaller phenocrysts (200 pm vs. 500 pm), are richer in quartz
phenocrysts, and had generally more inclusions (both pristine and crystallized) than the other three
samples. The compositions of these inclusions, however, showed no obvious differences (Figure 5.8).
Data points lying outside the group contained bubbles and are therefore chemically different from the ones
with no bubbles (bubbled inclusions will be discussed in chapter 6.3). It seems, that the bentonites are

“well mixed” at the km-scale and the cm-scale.
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Figure 5.7. Locations (letters) and widths (number in parenthesis) of Flat Creek @ 47.4 m along the
outcrop (see Figure 2.5.1). Sample side “A” was 40 cm wide and was located 9.5 meters to the west of
sample “B”. X’s represent locations of samples from the bentonites above Flat Creek @ 47.4.
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5.4 Canajoharie @ 61.9 m and Chuctanunda @ 42.0 m
The composition of pristine melted inclusions in quartz phenocrysts from Canajoharie @ 61.9
(Appendix A.2) and Chuctanunda @ 46.4 (Appendix C.2) are shown in Figure 5.9 a, b, ¢, and d. The
chemical composition 'of the inclusions from these two bentonites is very similar. It is most likely that
these melt inclusions compositions are the same, but more data from Chuctanunda @ 42.0 are needed in

order to make a firm conclusion.
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Figure 5.8. Plot of (a) MnO vs. CaO, (b) Cl vs. MgO, (c) TiO, vs. FeO, and (d) Na,O vs. K,O in glassy
melt inclusions in quartz phenocrysts from bentonites at Flat Creek @ 47.4 m (open down triangles), Flat
Creek @ 47.4 m ‘C’ (squares with a cross in the center) and Flat Creek @ 47.4 m ‘E’ (filled circles).
Analytical precision as in Figure 4.1.
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Figure 5.9. Plot of (a) MnO vs. CaO, (b) Cl vs. MgO, (c) TiO, vs. FeO, and (d) Na,O vs. K,O in glassy
melt inclusions in quartz phenocrysts from bentonites at Canajoharie @ 61.9 m (open circles) and
Chuctanunda @ 42.0 m (open triangles). Analytical precision as in Figure 4.1.
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5.5 Deer River @ 19.2 and Canajoharie @ 65. 5 m

The Trentonian paleontology and stratigraphy have been the subject of detailed studies by Titus
(1989, 1992). Titus studied variations in the trimeric columnals (one of the plates that form the stems of
crinoids) of the crinoid genus Ectenocrinus through a sequence of nearly 100 m of the lower, middle, and
upper Trenton Limestone. These columnals display both temporal and spatial patterns of variation. Titus
(1989) pointed out that, the biostratigraphy is only of value if the outcrops have been correctly correlated.
One of the first investigators who attempted to correlate between outcrops in this region was Kay (1937),
who used biostratigraphic constraints and bentonite patterns to argue that the Denley Limestone is a time-
stratigraphic unit (Kay, 1953). Chenoweth (1952) extended these correlations from the Black River
Valley into the Mohawk River Valley on the basis of faunal assemblages and bentonite patterns. Later
Delano et al. (1994) and Mitchell et al. (1994) established a stratigraphic framework for the Taconic
foredeep based on the compositions of glasses preserved in quartz phenocrysts within bentonites and on
graptolite biostratigraphic units. Outcrops in the Utica Shale in the Mohwak Valley have become the
standard graptolite biostratigraphy for the upper Middle Ordovician of Eastern and midcontinental North
America (Goldman et al., 1994). Graptolites are rare or absent in the Trenton Group, but bentonites are
relatively numerous. Stratigraphically separate bentonite beds can be readily distinguished and correlated
between geographically separate localities. By precise correlation of bentonites using glass composition,
Delano et al. (1994) and Mitchell et al. (1994) have been able to compare these two correlation
techniques. Additional bentonites have been sampled between the Mohawk River Valley and the Deer
River Valley in order to add detail to this stratigraphic framework.

Only two bentonites have been found at the Deer River locality and only one of these contains
quartz phenocrysts with melt inclusions. The compositions of melt inclusions from this bentonite (Deer
River @ 19.2) are displayed in Appendix D.1.1 and D.1.2. The compositions of these inclusions are most
similar to those from Canajoharie @ 65.5 (Figure 5.10 a, b, ¢, d and Figure 5.11 a, b, ¢, d). As previously
mentioned (see 5.1) two chemical groups can be discerned within the pristine melt inclusions at

Canajoharie @ 65.5. The Deer River inclusions appear to be chemically identical to the group II



38
inclusions from Canajoharie @ 65.5. This is as well confirmed by the similarity coefficient in Table 1
(0.842). No inclusions from Deer River @ 19.2, however, belong to group I from Canajoharie @ 65.5.
The compositions of remelted inclusions from those two bentonites are also quite similar. The only
element within the reﬁlelted inclusions that distinguishes the two bentonites is MgO. The Deer River
bentonite shows a greater variation in MgO* (~ 0.08 - 1.4 wt. %) than the Canajoharie bentonite (mostly
~ 0.03 - 0.2 wt. %; see also Figure 5.11. b). On the basis of these data, no definite correlation can be

made, even though the compositions are strikingly similar.
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Figure 5.10. Plot of (a) MnO vs. CaO, (b) Cl vs. MgO, (c) TiO, vs. FeO, and (d) Na,O vs. K,O in glassy
melt inclusions in quartz phenocrysts from the bentonites at Canajoharie @ 65.5 m (open circles) and
Deer River @ 19.2 m (crosses). Analytical precision as in Figure 4.1.
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Figure 5.11. Plot of (a) MnO* vs. CaO*, (b) CI1* vs. MgO*, (¢) TiO,* vs. FeO*, and (d) Na,O* vs. K,O*
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Deer River @ 19.2 m (crosses). All of these melt inclusions were crystallized and were experimentally
melted in a one-atmosphere furnace. Analytical precision as in Figure 4.1.
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5.6 Nowadaga ‘B0’ (Manheim) and Myers Road ‘MC2’ (Countryman)

The chemical compositions of melt inclusions in apatite phenocrysts, as well those in quartz can

be used for correlating K-bentonites. In Figure 5.12 a, b, ¢, d (Appendix E.1 and E.2) data of melt

inclusions in apatite phenocrysts from Nowadaga ‘B0’ and Myers Road ‘MC2” are shown. Previous work

(analysis on pristine melt inclusion in quartz phenocrysts - Mitchell et al., 1994; apatite analysis - Samson

et al., 1995) has shown that Myers Road ‘MC2’ is similar to, but distinct from, Nowadaga ‘B0’. Figure

5.12 a, b and c show their similarity, but in Figure 5.12 d the difference is clearly resolved by the high

KO values (9-11 wt. %) for the Myers Road ‘MC2’ (open diamonds) compared to the 4-6 wt. % K,O of

the Nowadaga ‘B0’ bentonite.

5.7 Conclusions

1.

The bentonites of the Utica Formation at Canajoharie @ 65.5 m and Flat Creek @ 49.5 m have been
correlated by the chemical composition of both pristine and experimentally melted inclusions in
quartz phenocrysts.

Two chemically separate groups have been identified within the chemical composition of Canajoharie
@ 65.5 m and Flat Creek @ 49.5 m bentonites. These groups are represented in both the pristine and
the experimentally melted inclusions. Only one of these two groups has been identified at the Deer
River @ 19.2 m melt inclusions. Therefore, no definite correlation can be made from the Deer River
bentonite to the Canajoharie and Flat Creek bentonite.

Melt inclusions from Canajoharie @ 63.5 m, Flat Creek @ 47.4 m and Chuctanunda @ 46.4 m are
very similar in their chemical composition, but there are subtle chemical differences.

The chemical compositions from Canajoharie @ 61.9 m and Chuctanunda @ 42.0 m seem to be
equivalent. More data are needed to confirm this correlation.

Melt inclusion composition in apatite phenocrysts from the Nowadaga ‘B0’ and Myers Road ‘MC2’

bentonite confirms that these two bentonites are chemically distinct from each other.
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Figure 5.12. Plot of (a) MnO vs. CaO, (b) Cl vs. MgO, (¢) TiO, vs. FeO, and (d) Na,O vs. K,O in melt
inclusions in apatite phenocrysts from the bentonites at Myers Road ‘MC2’ (open diamonds) and

Nowadaga ‘B0’ (solid circles). Analytical precision as in Figure 4.1.
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CHAPTER 6 GEOCHEMISTRY

6.1 Melt inclusion composition

The glass iﬂclusions within apatite phenocrysts from the Ordovician bentonites range in
composition from rhyodacites to high silica rhyolites. Most glasses in quartz phenocrysts have 5-6 wt.%
KO (referred to as ‘high-K’ in the text) and 2-3 wt.% Na,O. These high-K inclusions typically contain
< 0.2 wt.% MgO. The melt inclusions from the stratigraphic sequence at Canajoharie Creek within the
specific studied 30 m interval are chemically distinct from glasses in the other bentonites within the
Ordovician strata of New York (Figure 6.1 a). Specifically, these inclusions have distinctive abundances
of K,O. Several bentonites contain melt inclusions with distinctly lower KO abundances (2-3 wt.%,
referred as ‘low-K") (e.g., Canajoharie @ 84.7 m, @ 61.9 m, @ 63.5 m). In addition, these inclusions
typically contain higher abundances, of MgO, CaO, MnO, TiO, and FeO relative to the high-K
inclusions, suggesting that these melts are less evolved in nature. Some of the low-K bentonites display a
wide range in composition {Canajoharie @ 63.5 m and Canajoharie @ 61.9 m) and some display bimodal
distributions as of minor and trace elements, as for example at Canajoharie 67.0 m and Canajoharie
65.5 m (Figure 6.1 a). These distinctive bentonites occur in a restricted stratigraphic interval
(approximately 30 m thick) in the upper C. americanus graptolite zone of the Utica Formation (Mitchell
et al., 1994), and have not been observed in any other part of the Ordovician strata. The glass inclusions
in apatite phenocrysts from the 30 m interval at Canajoharie, like the melt inclusions in quartz, range
from low-K rhyolite to high-K rhyolites (Figure 6.1 b). However, these inclusions in apatite display a
much wider range in SiO,. This is discussed below. In the Myer’s Road ‘MC2’ bentonites, which is not a
member of the 30 m section, glass inclusions in apatites are ultrapotassic with K,O contents varying from

6 to 11 wt.% and ranging from 67 to 73 wt. % in SiO, (Appendix E.1). This is discussed in section 6.4.



44

(@) (b)
12.0 120 g
[ i e O
10.0 - Precision ] 10.0 i Precision ]
8.0f ] 8.0f ]
X [ ] & i ]
B 1 B ol ]
(=) 1 < o @ 1
v )
. 4.0} .
X
+ ] ! Y -
v ] 2.0 X
0.0 [ I T SN SN S T VU SO W WS S S S S N S S T ] 0.0 N PEENER RS PREEE I ST SR ST S N S S R ]
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
MgO wt.% MgO wt.%

¢ Canajoharic @ 14.5m; + Canajoharic @ 61.9m; O Canajoharie @ 63.5m; 7 Canajoharie @ 65.5 m;
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Figure 6.1 a, b Plots of electron microprobe results from melt inclusions in quartz phenocrysts (a) and
apatite phenocrysts (b) from Bentonites of the Mohawk Valley. The box in all diagrams represents the
analytical precision and reproducibility of the analyses. Each symbol represents an analysis of a single
inclusion and each group of symbols represents a bentonite layer.
6.2 Comparison of melt inclusions in quartz and apatite phenocrysts

Figure 6.2 a, b represents the results of analyses of 23 different inclusions in quartz and 15
inclusions in apatite phenocrysts from the Canajoharie Creek @ 84.7 m (Appendices A.6.1 and A.6.2).
The glass inclusions in quartz phenocrysts from Canajoharie Creek @ 87.4 m display little chemical
variation and are identical within analytical precision, whereas the melt inclusions in apatite phenocrysts
from this particular bentonite vary by a factor of approximately 2 in MgO, MnO, FeO, and TiO,. Melt

inclusions in apatites compositionally overlap, within analytical uncertainty, those in quartz phenocrysts,

but often define a larger compositional range (Dannenmann et al., 1996).
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It seems that the quartz phenocrysts in these bentonites entrapped melt of more constant
composition. A similar relationship between melt inclusions in quartz and apatite phenocrysts has been
observed by Hanson (1995) in Devonian bentonites from New York State. Since the compositions of melt
inclusions in quartz aﬁd apatite phenocrysts are so similar, it seems unlikely that they represent different
eruptive events (Hanson, 1995). It is more likely that melt inclusions are samples of (a) compositionally-
zoned magma chamber or (b) were entrapped at different times during the evolution of a magma chamber
as suggested by Hanson (1995). In these scenarios, the quartz would have (a) crystallized within a

restricted region of a zoned chamber, or (b) crystallized during an abrupt event during evolution of the

magma chamber.
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Figure 6.2 a, b Comparison of 23 melt inclusions in quartz phenocrysts (open squares) to 15 melt
inclusions in apatite phenocrysts (crosses) from the bentonite layer at Canajoharie @ 84.7 m.
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Apatite phenocrysts entrap a wider range in melt composition, and hence contain valuable
information regarding the magma evolution or zoning (Figure 6.3). Spulber and Rutherford (1983)
conducted hydrothermal experiments on Kilauea oceanic tholeites at Pg,q= 1 kb and at different
temperatures. As the femperature decreased, the SiO, content in these melts increases, as expected. P,Os
content also increases until the melt becomes saturated with apatite (Green and Watson, 1982). With
decreasing temperature apatite progressively crystallizes removing P,Os from the melt. Apatite
crystallizes following the saturation surface. Since apatite starts to crystallize around 63 wt.% and quartz
is not seen until 67 wt.%, apatite crystallizes long before quartz and, correspondingly, melt inclusions in
apatite provide a wider range (rhyodacite to high-silica rhyolite) in melt composition. It is not implied
here that the bentonite inclusions represent highly fractionated basalts, only that apatite phenocrysts exist

over a wider range in SiO,-content than quartz phenocrysts.

Kilauea basalt glasses at Py, .,= 1 kb pressure
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Figure 6.3 Residual melt chemistry for experiments on Kilauea basalts at Pg,iq = 1 kb pressure. Data
from Spulber and Rutherford (1983).
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6.3. Vapor bubbles

Non-crystallized glass inclusions in quartz phenocrysts may contain bubbles; these vapor bubbles
are generally < 10 % of the inclusion volume. As mentioned in chapter 5.3, data points lying outside
normal compositional groups of melt inclusions from a single bentonite are often inclusions that contain
bubbles. In this study, bubbles are observed in inclusions from Canajoharie @ 67.0, Canajoharie @ 63.5,
Flat Creek @ 31.2, Flat Creek @ 47.4 ‘C’ & ‘E’ and Chuctanunda @ 46.4. The bubble-bearing
inclusions of these bentonites all show the same characteristics (Figure 6.4). It is assumed that the
deviation in the sum of the major oxides from 100 % is an approximate measure of volatile content in the
glass inclusions (Anderson, 1973; Beddoe-Stephens et al., 1983; Rutherford et al., 1985; Devine et al.
1995; Hanson et al., 1996). Typical oxide totals of the bubble bearing inclusions are near to 100 %,
suggesting that the glasses have lost their volatiles. Less than 2 years are required for H,O in a 50 um
diameter inclusion of rhyolitic melt at the center of a 2 mm diameter quartz crystal to reach 95%
reequilibration with external melt at 800 ° C (Qin et al., 1992). Thus, melt inclusions have enough time
to vesiculate in the magma chamber.

Figure 6.4 and Figure 6.5 are a comparison of melt inclusions with bubbles (solid circles) and
without bubbles (open diamonds) from the bentonite layer at Chuctanunda @ 46.4. The bubble bearing
inclusions generally contain more Al,O3, MnO, K,0 and Na,O and less TiO,, FeO, MgO and SiO, than
the melt inclusions without bubbles. Bubbles may contain the vapor lost from the melt. If H,O is lost,
then SiO, will precipitate on the inclusion wall of the host quartz crystals (Webster, 1991) and produces a
relative increase in Al,O; and everything else in the glass. The SiO, content increases with the increasing
volatile content from increased dilution of melt with SiO,. The reason for this is that the liquidus is
suppressed in the melt-quartz system by dissolved volatiles. Due to H,O loss, inclusions could reach the
liquidus and crystallize quartz and possibly other phases. In order to determine the original elemental
abundance the bubble bearing melt inclusion data has to be normalized to 11.8 wt. % Al,0;. This
normalization will lower the data to an estimation of the actual abundances (see Figure 6.4 open red

circles).
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Figure 6.4 Plot of (a) MnO vs. Ca0O, (b) Cl vs. MgO, (¢) TiO, vs. FeO, and (d) Na,O vs. K,O in melt
inclusions in quartz phenocrysts from the bentonite at Chuctanunda @ 46.4 m. Melt inclusions with
bubbles are presented by solid circles and without by open diamonds. Red open circles are melt inclusions
with bubble data normalized to 11.8 wt. % Al,O;. Seetext for explanation.
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6.4 Ultrapotassic Inclusions
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Schirnick (1990) observed

heterogeneous inclusions of ultrapotassic

Figure 6.5 Plot of Al,O; vs. SiO, in melt inclusions in
quartz phenocrysts from the bentonite at Chuctanunda
@ 46.4 m. Melt inclusions with bubbles are presented by
solid circles and without by open diamonds.

content in quartz phenocrysts. The
heterogeneity in these inclusions is not
necessarily visible in transmitted light microscopy: Only under backscattered electron image have
chemically different domains been observed. The chemistry of these inclusions not only differs in the
K,O composition, but in other elements as well (e.g., poor in Na,O and Ca0). Phenomena like the above
have not been observed in the Myer’s Road ‘MC2’ bentonite. If the ultrapotassic content reflects the true
composition of these melts and they are not heterogeneous, than a possible explanation might be found in
their relationship to the Tectonic setting.

Ninkovich and Hays (1972) observed that potash versus silica increases with increasing depth of
underlying earthquakes. They studied the relationship between the chemical composition of volcanic
rocks and the depth of intermediate and deep focus earthquakes in the Benioff zone (where melts are
generated) and they concluded that the contents of volcanic rocks from Batu Tara (north of the island
Flores, Indonesia) and Muriah (northern coast of Java) are about 10.5 wt.% in KO and 69 wt.% in SiO,.

These rocks are from volcanoes whose underlying earthquakes reach depths between 200 and 300 km
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(Hamilton, 1979). Volcanoes with similar distances to the Benioff Zone (100-150 km) have an increase in
potassium and other incompatible elements in a direction towards the collision near Timor, and,
furthermore, show an increase of potassium with increasing distance from the Benioff Zone (Van Bergen
et al., 1989, 1993). Vén Bergen et al. (1992) observed at Batu Tara a progressive increase in potassium
and incompatible trace element concentrations away from the trench. Since a broadly similar scenario to
the tectonic setting during the Taconic Orogeny is present in the Banda Sea region and the ultrapotassic
magmas of the Eastern Sunda Arc lie between the 200 and 300 km -depth Benioff zone, the magma
containing ultrapotassic melt inclusions in apatite crystals from Myer’s Road ‘MC2’ possibly came from
around the same depth as the magma from Batu Tara or Muriah. But it has to be considered that previous
work in relating the chemical variations of potassium to the Benioff Zone has been based on bulk-rock

geochemistry. No detailed study exists so far for ultrapotassic content within the glass composition.
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CHAPTER 7 DISCUSSION

Many melt inclusions in different bentonite layers at the outcrop at Canajoharie show a wide and
bimodal distribution 'of elemental abundances. There are several possible explanations for this
observation, for example: These bentonite layers may be composed of two or more distinct eruptions,
erupted through multiple previous deposited ash layers; they are composed of a single eruption from a
large heterogeneous (i.e., zoned) magma chamber, influenced by partial melting or wall rock assimilation
etc.. In this study the case of muliple eruptive events and the case of a heterogeneous magma chamber are

closer examined.

7.1 Multiple eruptive events

It is easy to imagine that two or more eruptive events might occur within a small enough time
period that their air fall components would be preserved in the same layer, especially if, during this time,
the sedimentation rate is low (Hanson 1997, in preparation). Hanson et al. (1997, in preparation)
suggested that a Devonian bentonite within the Central Appalachian Basin is a composite of two air-fall
components from different eruptive events. One component was preserved at all six localities, while the
other was found at only three of these six localities, suggesting that one of these eruptions was distributed
over a wide area whereas the other eruption was only more locally preserved.

In chapter 5.1 Canajoharie @ 65.5 is correlated with Flat Creek @ 49.5, which occurs 3 km to
the west. Figure 5.4 indicates that two different groups of inclusions occurs in this layer, which could be
interpreted as two eruptive events preserved in the same layer. The melt inclusions from the Deer River
bentonite, 140 km north of the Canajoharie Creek locality (see Figure 5.9), contain inclusions that are
chemically identical to one of the groups at Canajoharie @ 65.5 and Flat Creek @ 49.5. If two eruptive
events are indicated by these groups, then the Deer River bentonite only contains evidence for one of these

eruptive events.
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7.2 Heterogeneous magma chamber
The processes that give rise to compositional variations in silicic magma chambers have been a
prominent topic in igneous petrology and the subject of considerable debate (Smith, 1979, Hildreth, 1979).
It is generally acceptéd that crystal fractionation is the dominant mechanism generating zonation in
closed-system magma chambers. Open-system processes, such as assimilation of wall rock and recharge,
also contribute to the development of zoning. Trends produced by crystal fractionation can also be
produced by partial melting, but the processes are difficult to distinguish. Partial melting is controlled by
the chemistry of solid phases being added to the melt and is considered to occur at significant depths in
the mantle whereas fractional crystallization is a crustal phenomenon.

Island arc volcanics are very often related to fractional crystallization. On the basis of
major- and trace-element chemistry and isotopic analyses it has been concluded that most of the andesites
cannot be primary mantle melts but are derived from fractional crystallization (Ewart, 1982). After Ewart
(1982), a typical Harker variation diagram for a rhyolite-andesite-basalt suite shows the smooth patterns
of increasing Al,O3, MgO, FeO, CaO, and TiO, content or decreasing Na,O and K,O content relative to
the SiO, content. These patterns indicate a relatively orderly fractionation relationship among all
members of the suite. Normally a Harker diagram is based on a function of SiO, because there is
considerably more variation in SiO, content than in MgO content. Since in the earlier melt inclusion
analyses SiO, has not been analyzed, the Harker diagram is based on a function of MgO content for the
Mohawk valley section. Figure 7.1 shows the oxides content (measured in weight percent) of melt
inclusions in quartz phenocrysts from the Mohawk valley bentonite at Canajoharie Creek and the result of
the experimental glass data from Kilauea Tholeiites (Spulber and Rutherford, 1983). Na,O and K,0

content decreases and CaO, FeO, TiO, increases relative to MgQ, which is typical for island arc magmas.
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Figure 7.1. Harker MgO content variation diagram for glass data from Canajoharie Creek Bentonites and

experimental glass data of Kilauea basalts at different temperatures from Spulber & Rutherford (1983).
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Another common chemical technique for distinguishing rock suites that involve fractionation is

the AFM diagram, a ternary plot of total content of alkalis (Na;O + K,0) versus total FeO and MgO
contents. Within a rock suite the trend of rock compositions on this diagram will depend on one or more
mineral phases being femoved from initial parent by liquid fractionation. Figure 7.2 is such a AFM-
diagram on which Canajoharie Creek melt inclusion data and the data from Spulber & Rutherford (1983)

is plotted.

FeO

Primary
basalts

AV4 \/

Na,O+K, O MgO

Figure 7.2. AFM diagram showing the calc-alkalic trends, including the low-K series, the calc-alkaline
series, and the high-K shoshonite series. Approximate compositional ranges for basalt, andesite, dacite,
and rhyolite are shown, as is the field of compositions for primary, mantle derived basalts. The colored
symbols are as in Figure 7.1, melt inclusion data from bentonites at Canajoharie Creek and the
experimental of Spulber & Rutherford (1983). This graph is modified after Blatt & Tracy, 1995.
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The glass data from Canajoharie Creek is trending towards the low-K series. After Blatt & Tracy (1995)
the low-K series are dominated by basalts and basaltic andesites. They represent initial stages of mantle
melting beneath an island arc with subsequent fractionation of these initial melts. Even though the AFM
diagram divisions are determined for whole rock analyses, it can be inferred that these bentonites evolve
from a low-K series.

Most likely the case of fractionation cannot be applied for this study, because one would expect a
systematic increase in the elemental abundances. Figure 5.2 c is an example showing only an increase in
the TiO, abundances, but no increase in FeO. In the case of crystal fractionation there would be an
enrichement in FeO. Another argument against liquid fractionation is that the proportion of crystals
(phenocrysts) to glass in some rhyolites is so small that the compositional variations in the liquid cannot

have resulted from fractionation of crystals (Hildreth, 1981).

7.3 Zoning and Mixing

Chemical variations in ash flows represent chemical variations within individual magma bodies.
Zoned eruptive sequences is a possible explanation for the different compositions seen in the Canajoharie
Creek glass data. The following paragraph is a brief summary about typical features of zonation as
observed by Smith (1979) and Hildreth (1981).

Zonation may be the result of diffusion-convection-controlled differentiation mechanisms which
develop along the temperature gradient which results from the establishment of volatile gradients. These
further lead to gradients in melt structure, which, together with the other factors (stress & thermal region,
crustal composition, crystallization history, magma chamber geometry, parental magma composition,
eruptive drawdown, and organization), appear to control the relative enrichment or depletion of elements
in the non-convecting, highly differentiated roof portion of the magma chamber. All pyroclastic eruptions
exceeding 1 km?® are compositionally zoned and many much smaller ones show pronounced zonations as
well. Erupted parts of magma chambers range from nearly uniform rhyolitic composition to strongly

contrasting basalt-rhyolite compositions. Many large ash-flow sheets exhibit either a small compositional
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gap (1% to 4% SiO, ) or a transition from rhyolite to rhyodacite. With depth, magma columns become
hotter, more mafic and more phenocryst-rich. There are pre-eruptive gradients in T, Fo, , major and trace
element and isotopic composition, volatiles (H,O, Cl, F) and in types, abundance and composition of
phenocrysts. A zoned magma column may be vertically layered with abrupt transitions between zoned
subunits. Wide compositional gaps are common at all levels of SiO, - concentration and must have
developed within a magmatic system (sometimes reflecting simultaneous tapping of two chambers or
arrival of new basic magma triggering eruption. Small-volume systems tend to show stronger
compositional contrasts than large-volume systems.

As mentioned above, small compositional gaps (1% to 4% SiO, ) or a rapid transition from
rhyolite to rhyodacite can be observed for zoned magma chambers. Compositional gaps are observed in
glasses of the Canajoharie Creek bentonites at 65.5 m and 67.0 m. At Canajoharie at 61.9 m and 63.5 m
a transition from rhyolitic to rhyodacitic melt inclusion compositions have been observed. Figure 7.3 is a
comparison of melt inclusions in quartz phenocrysts from Canajoharie Creek bentonites to melt inclusions
from three well-studied, chemically zoned ash flow sheets from the southwest Nevada Volcanic field
(Vogel & Aines, 1996). Vogel & Aines (1996) demonstrated that analyses of melt inclusions in feldspar
and quartz phenocrysts, glass matrix and pumice fragments from the same ash flow are mostly of the
same chemical composition. The pumice fragments in these ash flow sheets have been previously
interpreted to represent eruptions from chemically zoned magma bodies (Hildreth, 1981). Glass data from
the Canajoharie bentonites follow the compositional trend of the three ash flow sheets from the southwest
Nevada volcanic field (represented by the solid black symbols). This observation, along with the
occurrence of small compositional gaps and a rapid transition from rhyolitic to rhyodacitic composition,
suggests that the melt inclusions from these bentonites come from a chemically zoned magma chamber.

Figure 7.4 is a enlargement from Figure 7.3. Two trends can be observed. Trend #1 is
represented by the high-K group (see chapter 6), and trend #2, represented by the low-K group and mostly
by melt inclusions from Canajoharie @ 65.5 and Canajoharie @ 84.7. This low-K trend can be seen in

Figure 6.1 a. Mixing with more mafic magma would serve as an explanation of the origin of the
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observed trend #2. Small amounts of mixing within an inhomogenous magma chamber could provide
enough changes in the chemical environment of a magma chamber, so that large-scale mixing of two

discreet magma types is not required to produce these differences.
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Figure 7.3 Bivariate plot of the molecular proportion of Na/Ti vs. K/Ti for the melt inclusions in quartz
phenocrysts data of Canajoharie Creek (symbols as in Figure 7.1) and melt inclusions from chemically
zoned ash flow sheets from the southwest Nevada Volcanic Field (Topopah Spring Tuff (solid black
triangles), Rainer Mesa Tuff (solid black circles) and Ammonia Tanks Tuff (solid black squares)) (Vogel

and Aines, 1996).
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Figure 7.4 Enlargement of lower part of Figure 7.3. Data of the melt inclusions from the Southwest
Nevada Volcanic Field are not included. Numbers represent different trends observed in these data.
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The main conclusions reached as a result of this analytical study of melt inclusions in quartz and

apatite phenocrysts of Ordovician bentonites from the Utica and Denmark Formations are the following:

1. Ofthe approximately 26 layers sampled and examined within the 30 m interval in the black shales

of

the Utica Formation, 11 of these were bentonites that contained melt inclusion-bearing quartz

phenocrysts. Of the 2 layers collected in the carbonates of the Denmark Formation, only one layer

contained melt inclusion-bearing quartz phenocrysts.

2. Pristine glassy inclusions have been identified in quartz and apatite phenocrysts within Ordovici

an

bentonites. Devitrified inclusions have been identified in quartz phenocrysts and were experimentally

melted in a one-atmosphere furnace. These types of inclusions have been used for fingerprinting

different ash layers.

3. Within the 30 m interval only one additional correlation can been added between the outcrops

at

Canajoharie Creek and Flat Creek. A correlation between bentonites within this interval to bentonites

occurring in the western Platform carbonates of the Black River Valley has not been estabished.

4. Major-, minor-, and trace elements from the analyzed melt inclusions within the 30 m interval show

generally bimodal distribution or a transition from rhyolite to rhyodacite.

5. Difficulties in correlating bentonites in this particular studied area are possible due to individual

bentonite layers being composed of the products of two or more distinct eruptions or being compos

of eruptions from heterogenous (zoned) magma chamber.

ed
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Flat Creek
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