APPENDIX V

IMAGES core MD97-2141: δ^{18}O and δ^{13}C data from *Globorotalia crassaformis*
<table>
<thead>
<tr>
<th>Sample (depth, cm)</th>
<th>Age$^\circ$ (kyr)</th>
<th>δ^{18}O (G.crasi$^\circ$)</th>
<th>δ^{13}C (G.crasi$^\circ$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>36.42</td>
<td>0.648</td>
<td>0.750</td>
</tr>
<tr>
<td>511</td>
<td>36.47</td>
<td>0.659</td>
<td>0.654</td>
</tr>
<tr>
<td>512</td>
<td>36.53</td>
<td>0.490</td>
<td>0.484</td>
</tr>
<tr>
<td>514</td>
<td>36.64</td>
<td>0.670</td>
<td>0.698</td>
</tr>
<tr>
<td>515</td>
<td>36.69</td>
<td>0.859</td>
<td>0.545</td>
</tr>
<tr>
<td>518</td>
<td>36.86</td>
<td>0.571</td>
<td>0.737</td>
</tr>
<tr>
<td>520</td>
<td>36.97</td>
<td>0.967</td>
<td>0.816</td>
</tr>
<tr>
<td>522</td>
<td>37.08</td>
<td>0.737</td>
<td>0.673</td>
</tr>
<tr>
<td>525</td>
<td>37.25</td>
<td>0.659</td>
<td>0.684</td>
</tr>
<tr>
<td>527</td>
<td>37.36</td>
<td>0.888</td>
<td>0.775</td>
</tr>
<tr>
<td>529</td>
<td>37.47</td>
<td>0.681</td>
<td>0.762</td>
</tr>
<tr>
<td>531</td>
<td>37.58</td>
<td>0.819</td>
<td>0.712</td>
</tr>
<tr>
<td>533</td>
<td>37.69</td>
<td>0.800</td>
<td>0.737</td>
</tr>
<tr>
<td>535</td>
<td>37.80</td>
<td>0.699</td>
<td>0.753</td>
</tr>
<tr>
<td>538</td>
<td>37.96</td>
<td>0.652</td>
<td>0.703</td>
</tr>
<tr>
<td>540</td>
<td>38.07</td>
<td>0.741</td>
<td>0.895</td>
</tr>
<tr>
<td>541</td>
<td>38.13</td>
<td>0.892</td>
<td>0.903</td>
</tr>
<tr>
<td>544</td>
<td>38.29</td>
<td>0.936</td>
<td>0.833</td>
</tr>
<tr>
<td>545</td>
<td>38.35</td>
<td>0.784</td>
<td>0.733</td>
</tr>
<tr>
<td>546</td>
<td>38.40</td>
<td>0.757</td>
<td>0.726</td>
</tr>
<tr>
<td>547</td>
<td>38.46</td>
<td>0.864</td>
<td>0.844</td>
</tr>
<tr>
<td>549</td>
<td>38.57</td>
<td>0.424</td>
<td>0.589</td>
</tr>
<tr>
<td>550</td>
<td>38.62</td>
<td>0.919</td>
<td>0.871</td>
</tr>
<tr>
<td>552</td>
<td>38.73</td>
<td>0.776</td>
<td>0.763</td>
</tr>
<tr>
<td>556</td>
<td>38.96</td>
<td>0.799</td>
<td>0.848</td>
</tr>
<tr>
<td>557</td>
<td>39.02</td>
<td>0.917</td>
<td>0.909</td>
</tr>
<tr>
<td>560</td>
<td>39.19</td>
<td>0.725</td>
<td>0.763</td>
</tr>
<tr>
<td>563</td>
<td>39.36</td>
<td>0.813</td>
<td>0.754</td>
</tr>
<tr>
<td>566</td>
<td>39.53</td>
<td>0.716</td>
<td>0.743</td>
</tr>
<tr>
<td>568</td>
<td>39.65</td>
<td>0.629</td>
<td>0.783</td>
</tr>
<tr>
<td>570</td>
<td>39.76</td>
<td>0.833</td>
<td>0.715</td>
</tr>
<tr>
<td>575</td>
<td>40.05</td>
<td>0.519</td>
<td>0.576</td>
</tr>
<tr>
<td>579</td>
<td>40.28</td>
<td>0.818</td>
<td>0.643</td>
</tr>
<tr>
<td>581</td>
<td>40.39</td>
<td>0.768</td>
<td>0.610</td>
</tr>
<tr>
<td>590</td>
<td>40.91</td>
<td>0.829</td>
<td>0.745</td>
</tr>
<tr>
<td>593</td>
<td>41.08</td>
<td>0.047</td>
<td>0.620</td>
</tr>
<tr>
<td>600</td>
<td>41.48</td>
<td>0.578</td>
<td>0.535</td>
</tr>
<tr>
<td>608</td>
<td>41.94</td>
<td>0.318</td>
<td>0.596</td>
</tr>
<tr>
<td>610</td>
<td>42.05</td>
<td>0.469</td>
<td>0.426</td>
</tr>
<tr>
<td>614</td>
<td>42.28</td>
<td>0.449</td>
<td>0.579</td>
</tr>
<tr>
<td>618</td>
<td>42.51</td>
<td>0.539</td>
<td>0.599</td>
</tr>
<tr>
<td>624</td>
<td>42.86</td>
<td>0.816</td>
<td>0.758</td>
</tr>
<tr>
<td>626</td>
<td>42.97</td>
<td>0.291</td>
<td>0.533</td>
</tr>
<tr>
<td>628</td>
<td>43.09</td>
<td>0.387</td>
<td>0.388</td>
</tr>
<tr>
<td>636</td>
<td>43.55</td>
<td>0.634</td>
<td>0.670</td>
</tr>
<tr>
<td>640</td>
<td>43.78</td>
<td>0.652</td>
<td>0.707</td>
</tr>
<tr>
<td>644</td>
<td>44.01</td>
<td>0.327</td>
<td>0.483</td>
</tr>
<tr>
<td>Sample (depth, cm)</td>
<td>Age(^s) (kyr)</td>
<td>(\delta^{18}\text{O}) (G.crass(^t))</td>
<td>(\delta^{13}\text{C}) (G.crass(^t))</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>809</td>
<td>52.86</td>
<td>0.246</td>
<td>0.630</td>
</tr>
<tr>
<td>813</td>
<td>53.09</td>
<td>0.775</td>
<td>0.586</td>
</tr>
<tr>
<td>818</td>
<td>53.37</td>
<td>0.842</td>
<td>0.491</td>
</tr>
<tr>
<td>825</td>
<td>53.77</td>
<td>0.731</td>
<td>0.543</td>
</tr>
<tr>
<td>829</td>
<td>54.00</td>
<td>0.659</td>
<td>0.462</td>
</tr>
<tr>
<td>831</td>
<td>54.12</td>
<td>0.836</td>
<td>0.469</td>
</tr>
<tr>
<td>836</td>
<td>54.41</td>
<td>0.687</td>
<td>0.556</td>
</tr>
<tr>
<td>838</td>
<td>54.52</td>
<td>0.741</td>
<td>0.570</td>
</tr>
<tr>
<td>839</td>
<td>54.58</td>
<td>0.574</td>
<td>0.438</td>
</tr>
<tr>
<td>840</td>
<td>54.64</td>
<td>0.440</td>
<td>0.606</td>
</tr>
<tr>
<td>842</td>
<td>54.75</td>
<td>0.506</td>
<td>0.468</td>
</tr>
<tr>
<td>844</td>
<td>54.87</td>
<td>0.309</td>
<td>0.482</td>
</tr>
<tr>
<td>847</td>
<td>55.04</td>
<td>0.561</td>
<td>0.562</td>
</tr>
</tbody>
</table>

\(^s\) see Table 1 for age model

\(^t\) G. cras = Globorotalia crassaformis (300-355 \(\mu\)m)