EXAMPLES OF TECTONIC MECHANISMS FOR LOCAL CONTRACTION
AND EXHUMATION OF THE LEADING EDGE OF INDIA. SOUTHERN TIBET
(28-29 °N; 89-91 °E) AND NANGA PARBAT, PAKISTAN

by

Michael A. Edwards

A Dissertation
Submitted to the University at Albany, State University of New York
in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

College of Arts & Sciences
Department of Earth & Atmospheric Sciences
1998
ABSTRACT

In Gonto La valley, southern Tibet, a continuous, planar, ~10°N dipping detachment horizon juxtaposes Tethyan slates over a footwall of leucogranite that intrudes a S-dipping injection complex layer that I regard as a rotated Southern Tibet Detachment System (STDS) horizon. This is deformed & partially cut by the leucogranite which forms a pluton extending throughout Khula Kangri massif. In collaboration, \(^{208}\text{Pb-}^{232}\text{Th}\) measurements on 12 monazite grains of the leucogranite gave a crystallization age of 12.5±0.4 Ma. Integrated estimates of magnitude, and rate, of detachment displacement suggest that STDS displacement continued after granite crystallisation for 1-3 m.y. Therefore N-S extension in southern Tibet continued into the Late Miocene. A new geologic map of the Khula Kangri and Kanga Punzum-Monlakarchung High Himalayan ranges is presented using field, satellite & topographic data. These define a fork in the High Himalaya that results in a repetition of the main geological section. The STDS can be traced around both ranges and is a continuous surface. A simple model of post detachment, scissor faulting and block rotation is proposed. In SE Nanga Parbat Haramosh Massif (NPHM), Pakistan, field and microstructural analysis of strain and sense of shear trends indicate that several km of metasedimentary schists and gneisses are Himalayan Main Mantle Thrust (MMT) footwall rocks rotated to vertical due to NW-SE directed shortening. Near the NPHM summit region, several km of non-coaxially sheared granitic orthogneiss show W over E displacement structures. Although deformation mechanisms appear lower temperature than in the MMT footwall rocks, a major "uplift" structure (the Rupal Chichi shear zone - RCSZ) is proposed. To the SW, an E-over W shear zone (the Diamir Shear Zone - DSZ) that coincides with a syn-kinematically intruded granite (the Jalhari Granite) is recognised. In collaboration, \(^{208}\text{Pb-}^{232}\text{Th}\) measurements on monazite grains of the Jalhari indicate displacement has continued from ~9 to <3 Ma. The DSZ is regarded as the mechanical continuation of the Raikot Fault. The Raikot-DSZ, together with the RCSZ define a conjugate pair that is interpreted to mark a pop-up structure, allowing the skywards displacement of NPHM.
DEDICATION

For Anna,

who remained in Albany

until shortly after I left
ACKNOWLEDGEMENTS

Discussion & ideas: Asif Khan, Burchfiel, Burg, Coulton, Delano, Dannenmann, Davidson, Gilotti, Grujic, Guillot, Hanson, Harris, Harrison, Hayman, Heilbronner, Hollister, Koons, Kosanke, Law, Le Fort, Meltzer, S. Park, Y-D. Park, Parrish, Pêcher, Ratschbacher, Ross, Royden, Rutter, Samson, Scaillet, Schneider, Seeber, Shroder, Spencer, Teyssier, Treagus, Vannay, Zeitler.

[Names on this this list are in alphabetical order. Names do not appear twice. This list is only of professional acknowledgements and does not include those who are solely friends, even if they specifically asked to be named here (e.g., Susi Herrmann)]
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
</tbody>
</table>

1. INTRODUCTION 1
1.1 PURPOSE OF THE STUDY 1
1.1 SCOPE OF THE STUDY 3
1.1 FORMAT OF THE STUDY 4

2. MULTI STAGE DEVELOPMENT OF THE SOUTHERN TIBET DETACHMENT SYSTEM NEAR KHULA KANGRI. NEW DATA FROM GONTO LA publication in Tectonophysics, 260 with co-authors William S. F. Kidd, Jixiang Li, Yongjun Yue, and Marin Clark 7

2.1 INTRODUCTION 9
2.2 GONTO LA 13
2.2.1 Geological observations 14
2.2.2 Interpretation 26
2.3 THE DZONG CHU FAULT 28
2.4 LHOZAG - LA KANG 30
2.4.1 Geology 30
2.4.2 Interpretation 33
2.5 THE STDS IN BHUTAN 34
2.6 DISCUSSION 35
2.6.1 Gonto La 36
2.6.2 Lhozag-La Kang 37
2.6.3 Regional Relationships 38
2.6.4 Estimates of strain 39
2.6.5 Timing 40
2.7 CONCLUSION 41
2.8 CHAPTER APPENDICES 42
2.8.1 The Khula Kangri pluton 42
2.8.2 Lithological and structural descriptions 43
2.8.2.1 Granite mylonite 43
2.8.2.2 Gneiss 44

3.1 INTRODUCTION 47
3.2 LOCAL GEOLOGY 51
3.3. ANALYTICAL TECHNIQUES 51
3.4 RESULTS 53
3.5 IMPLICATIONS 56
3.6 CONCLUSION 59

4.1 INTRODUCTION 63
4.2 MORPHOLOGY 67
4.3 GEOLOGY 68
4.3.1 Khula Kangri range 68
4.3.2 Chatang valley 71
4.3.3 The Kanga Punzum-Monlakarchung range 72
4.4 STRUCTURE 74
4.4.1. The crystalline-sedimentary rock contact 74
4.4.1.1. Gonto La valley and Khula Kangri summit section 74
4.4.1.2. Lhozag - La Kang section 76
4.4.2 THE DZONG CHU FAULT 77
4.5 INTERPRETATION OF MECHANISMS 80
4.6 GEOCHRONOLOGY 81
4.7 CONCLUSION 82
4.8. CHAPTER APPENDICES 82
4.8.1 Map and satellite imagery information 82
4.8.2 Margins of the Pasalum-Monlakarchung leucogranite 83

5. STRUCTURAL GEOLOGY AND TECTONICS OF NANGA PARBAT-HARAMOSH MASSIF, PAKISTAN HIMALAYA 84

5.1 INTRODUCTION 84
5.1.1 Regional background 84
5.1.2 Exhumational versus extensional structures 89
5.1.3 Himalayan and NPHM related strain 91
5.1.3.1 Principal Himalayan Fabric 91
5.1.3.2 Rotation of Himalayan thrust fabric 92
5.1.3.3 Himalayan normal sense fabric 96
5.1.3.4 NPHM exhumation-related fabric 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 LITHOLOGIC BACKGROUND</td>
<td>98</td>
</tr>
<tr>
<td>5.2.1 Indian plate basement and cover at NPHM</td>
<td>99</td>
</tr>
<tr>
<td>5.2.1.1 Basement</td>
<td>99</td>
</tr>
<tr>
<td>5.2.1.2 Cover</td>
<td>100</td>
</tr>
<tr>
<td>5.3 GEOLOGICAL OBSERVATIONS IN SE NPHM</td>
<td>101</td>
</tr>
<tr>
<td>5.3.1 General procedures</td>
<td>101</td>
</tr>
<tr>
<td>5.3.2 Lower Rupal Valley</td>
<td>102</td>
</tr>
<tr>
<td>5.3.2.1 NPHM/KLS contact</td>
<td>102</td>
</tr>
<tr>
<td>5.3.2.2 Churit to Tarshing</td>
<td>117</td>
</tr>
<tr>
<td>5.3.2.3 Churit Fault Zone</td>
<td>124</td>
</tr>
<tr>
<td>5.3.2.4 Ladakh Rocks</td>
<td>138</td>
</tr>
<tr>
<td>5.3.2.5 Right bank of Lower Rupal Valley</td>
<td>141</td>
</tr>
<tr>
<td>5.3.2.6 Discussion and conclusion for Lower Rupal Valley</td>
<td>141</td>
</tr>
<tr>
<td>5.3.3 Ghurikot valleys</td>
<td>145</td>
</tr>
<tr>
<td>5.3.3.1 NPHM/KLS contact</td>
<td>146</td>
</tr>
<tr>
<td>5.3.3.2 Overturning of the SE NPHM sequences</td>
<td>148</td>
</tr>
<tr>
<td>5.3.3.3 Main section of SE NPHM sequences</td>
<td>150</td>
</tr>
<tr>
<td>5.3.3.4 Churit Fault Zone in Ghurikot</td>
<td>152</td>
</tr>
<tr>
<td>5.3.4 Bulan</td>
<td>153</td>
</tr>
<tr>
<td>5.3.4.1 NPHM/KLS contact</td>
<td>154</td>
</tr>
<tr>
<td>5.3.5 Rama valley</td>
<td>158</td>
</tr>
<tr>
<td>5.3.5.1 NPHM/KLS contact</td>
<td>158</td>
</tr>
<tr>
<td>5.3.5.2 Lath Unit</td>
<td>160</td>
</tr>
<tr>
<td>5.3.5.3 - NPHM main section</td>
<td>166</td>
</tr>
<tr>
<td>5.3.6 Rattu area</td>
<td>171</td>
</tr>
<tr>
<td>5.3.6.1 NPHM/KLS contact</td>
<td>171</td>
</tr>
<tr>
<td>5.3.7 Conclusions for SE NPHM</td>
<td>171</td>
</tr>
<tr>
<td>5.3.7.1 KLS and NPHM rocks</td>
<td>171</td>
</tr>
<tr>
<td>5.3.7.2 Himalayan and NPHM-related strain</td>
<td>172</td>
</tr>
<tr>
<td>5.4 GEOLOGICAL OBSERVATIONS ALONG THE ASTOR GORGE</td>
<td>174</td>
</tr>
<tr>
<td>5.4.1 General remarks</td>
<td>174</td>
</tr>
<tr>
<td>5.4.2 Western Astor Gorge</td>
<td>174</td>
</tr>
<tr>
<td>5.4.3 Dashkin Synform and Dichil Antiform</td>
<td>183</td>
</tr>
<tr>
<td>5.4.4 Eastern Astor Gorge and Dichil Gah</td>
<td>185</td>
</tr>
<tr>
<td>5.4.4.1 Eastern Astor Gorge</td>
<td>186</td>
</tr>
<tr>
<td>5.4.4.2 Dichil Gah</td>
<td>193</td>
</tr>
<tr>
<td>5.4.5 Discussion and conclusions for Astor Gorge area</td>
<td>195</td>
</tr>
<tr>
<td>5.5 CONCLUSIONS FOR CENTRAL AND SOUTHEAST NPHM AREA</td>
<td>198</td>
</tr>
<tr>
<td>5.5.1 Affinities of rocks and strain patterns</td>
<td>198</td>
</tr>
<tr>
<td>5.5.1.1 Indian and Kohistan-Ladakh rocks</td>
<td>198</td>
</tr>
<tr>
<td>5.5.1.2 Himalayan deformation</td>
<td>198</td>
</tr>
<tr>
<td>5.5.1.3 Deformation associated with growth of NPHM</td>
<td>198</td>
</tr>
<tr>
<td>5.5.2 Domains of sinistral and dextral motion in eastern NPHM</td>
<td>199</td>
</tr>
<tr>
<td>5.6 GEOLOGICAL OBSERVATIONS IN THE RUPAL AREA</td>
<td>202</td>
</tr>
</tbody>
</table>
5.6.1 General remarks

5.6.2 The Rupal Chichi Shear Zone
 5.6.2.1 Metasedimentary rock associated with the RCSZ
 5.6.2.2 Western limits of the Rupal Chichi Shear Zone
 5.6.2.3 Rupal Chichi Shear Zone discussion and conclusion

5.6.3 Central and Upper Rupal
 5.6.3.1 General Remarks
 5.6.3.2 Central Rupal
 5.6.3.3 Upper Rupal
 5.6.3.4 Southwest Rupal Valley
 5.6.3.5 Central and Upper Rupal discussion and conclusion

5.6.4 Mazeno Pass Area

5.7 GEOLOGICAL OBSERVATIONS IN SW NPHM
 5.7.1 General Remarks
 5.7.2 Cover Sequences
 5.7.3 Diamir shear zone
 5.7.4 SW NPHM discussion and conclusions
 5.7.3.1 SW NPHM cover rocks
 5.7.3.2 Diamir shear zone

5.8 CONCLUSION FOR NPHM

5.9 CHAPTER APPENDICES
 5.9.1 Sense of shear analyses
 5.9.2 Deformation mechanisms inferred from microstructure
 5.9.3 Samples and thin sections from Nanga Parbat
 5.9.3.1 Samples from Nanga Parbat
 5.9.3.2 Thin sections from Nanga Parbat

5.9.3.3 Samples and thin sections from Nanga Parbat
 5.9.3.4 Thin sections from Nanga Parbat

6. REFERENCES

APPENDIX A Geological summary of Plate 1

LIST OF FIGURES

CHAPTER TWO

2.1 Map showing main geological features of Southern Tibet
2.2 Geologic summary map of Khula Kangri area
2.3 Geologic map of Gonto La valley
2.4 Cross Section A-A' and B-B' along Gonto La valley
2.5a Photo looking WSW to Gonta La detachment
2.5b Line drawing of photo looking WSW to Gonta La detachment
2.6a Photo of SE corner of main Gonto La valley 19
2.6b Line drawing of photo of SE corner of main Gonto La valley 20
2.7 Photomicrograph of mylonitic horizon of leucogranite 22
2.8 Photomicrograph of biotite-sillimanite gneiss 24
2.9 Schematic illustration of interpreted history of Gonto La area 27
2.10 Cross section C-C' and D-D' from Lhozag to the Chatang valley 31
2.11 Cartoon crustal section of southern Tibet and Bhutan 37

CHAPTER THREE
3.1A Tectonic map of Himalaya 48
3.1B Tectonic map of area around southern Yadong-Gulu rift system 50
3.2 Generalized cross section (x-y) through Gonto La valley 52
3.3 Map of monazite grain c. 54

CHAPTER FOUR
4.1 General geologic map of Himalayan chain 64
4.2 Regional topographic map of Tibet-Bhutan frontier 65
4.3 Summary of archival geologic map 66
4.4 Geologic cross sections 69
4.5 Cartoon illustrating the two options for fault at location C 79

CHAPTER FIVE
5.1A Regional Map of northwest Himalaya 85
5.1B Summary Map of NPHM 86
5.2A & B MMT Cross section cartoons 94
5.2C MMT Cross section cartoon 95
5.3 View to north of Rampur Ridge 103
5.4 Looking N. to left bank of Lower Rupal Valley 104
5.5 Compositional layering within garnetiferous metapelites 106
5.6 Equal area projection for Lower Rupal 107
5.7 Looking S and upwards, on right bank of Lower Rupal Valley 108
5.8 Optical photomicrographs of thin section 5/29F 109
5.9 Sample E6/6/27-IV 111
5.10 Optical photomicrographs of thin section 66/27D 113
5.11 View to north of Churit Ridge 116
5.12 Photo of quartzofeldspathic-biotite-amphibolite gneiss 119
5.13 High strain zone near outcrop #70A 120
5.14 Angel hair unit at outcrop #62 on Rama left bank 121
5.15 Optical photomicrograph of thin section 610/10A 122
5.16 Sample NE95/29-III 124
5.17 Optical photomicrograph of thin section 5/29D 127
5.18 Sample NE95/29-II 128
5.19 Optical photomicrograph of thin section 5/29B 129
5.20 Optical photomicrograph of thin section 5/29A 131
5.21 Migmatite-rich portion of garnet-pelitic gneiss 133
5.22 Looking north to left bank of main valley in Ghurikot Gah
5.23 Line drawings of field sketches around Churit re-entrant
5.24 Field photo at outcrop #14
5.25 Lower hemisphere equal area projection from Ghurikot
5.26 Looking north to left bank of main valley in Ghurikot Gah
5.27 View to west and upward to Bulan Peak
5.28 Looking N. to left bank of Chuggam Gah
5.29 Lower hemisphere equal area projection for Bulan
5.30 Lower hemisphere equal area projection for Rama
5.31A Lath unit outcropping on left bank of Rama Valley
5.31B Lath unit outcropping on left bank of Rama Valley
5.32 Optical photomicrograph of thin section AS/E
5.33 Line drawings of fieldbook sketches for Rama Valley
5.34 View to W over Indus River valley to Kohistan synform
5.35 View to NE and right bank of Astor Gorge
5.36 Lower hemisphere equal area projection for W Astor Gorge
5.37 Iskere gneiss outcropping along left bank of Astor Gorge
5.38 View to NE from Astor Gorge high road
5.39 View to NNW showing antiformal folding
5.40A Migmatite-garnet-pelitic gneiss at foot of Dichil Pass trail
5.40B Cascade / parasitic folding within well-stretched amphibolite
5.41 Lower hemisphere equal area projection for eastern Astor Gorge and Dichil valleys
5.42 Optical photomicrograph of thin section 66/27E
5.43 Granitic orthogneiss in Rupal side valley at outcrop #18
5.44 Optical photomicrograph of thin section 66/18D
5.45 Optical photomicrograph of thin section cut from KC-9A
5.46 View to NW of general area of #CC5 in southern Chichi
5.47 Tight folding in quartzite layers within metasedimentary sequences
5.48 Isoclinal asymmetric folding in quartzite layers beside biotite schist
5.49 Moderately north-dipping compositionally layered gneiss
5.50 West Shagiri ridge
5.51 Looking N to summit of Nanga Parbat (8143m)
5.52 Left bank of Toshain Glacier
5.53 Nanga Parbat summit ridge
5.54 L-tectonite granitic orthogneiss ~200m S of #CR52
5.55 Optical photomicrograph of thin section 69-28A
5.56 Granitic orthogneiss on Mazeno Glacier Valley
5.57 NW dipping pegmatitic sheets
5.58 Looking at east side of Mazeno Pass
5.59 View directly up steep West face of Mazeno Pass
5.60A Contoured lower hemisphere equal area projection of foliation poles and lineation of all rocks in Diamir Gah
5.60B Contoured lower hemisphere equal area projection of foliation poles and lineation of all rocks in Airl Gah
5.60C Contoured lower hemisphere equal area projection of foliation poles and lineation of all rocks in Biji area
5.61A Cross sections along Diamir section and Nashkin-Airl
5.61B View (due W) from Airl Gali pass
5.62 Looking NNW to outcrop of Gashit Fold
5.63 Strained portion of Jalhari granite within Airl-Gah
5.64 "Pancake biotite" portion of Jalhari granite
5.65 Optical photomicrograph of thin section 5-11G
5.66 Summary cross section for southern NPHM

Plate 1. Geologic Map of Yamdrok portion of INDEPTH II seismic traverse
Plate 2. Geologic Map of outcrops in southern Nanga Parbat – Haramosh Massif

LIST OF TABLES

CHAPTER THREE
3.1 Th-Pb monazite results for sample IE-26

CHAPTER FIVE
5.1 Recognised senses of shear from locations in SE NPHM & Dichil/E. Astor
5.2 Samples collected in Nanga Parbat, Pakistan during 1995
5.3 Samples collected in Nanga Parbat, Pakistan during 1996
5.4 Samples collected in Nanga Parbat, Pakistan during 1997
5.5 Abbreviations used in other tables