DYNAMIC GRAIN BOUNDARY MIGRATION
AND FABRIC DEVELOPMENT:
OBSERVATIONS, EXPERIMENTS AND SIMULATIONS

by

Mark Walter Jessell

A Dissertation
Submitted to the State University of New York at Albany
in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

College of Sciences and Mathematics
Department of Geological Sciences

1986
ABSTRACT

In-situ observations of a deforming aggregate of the hexagonal material octachloropropane have been analysed. Calculations of micro-strains and measurement of c-axis orientations have enabled the processes influencing fabric development to be distinguished, and the importance of dynamic grain boundary migration to be assessed. It was found that in this material, inter-grain strain contrasts could be significant, and that the effect of grain boundary migration was to modify the fabric in a measurable way. A simple model for the driving force for grain boundary migration based on dislocation density contrasts, as controlled by intra-grain strains and grain orientations, is proposed and tested and can account for the migration direction of most of the observed boundaries.

Several grain-scale microstructures are described that demonstrate the migration direction of once-mobile grain boundaries in a naturally deformed quartzite. I present an analysis of the sense of migration of the boundaries and the characteristics of the patterns of relative grain growth and shrinkage. Grain boundary migration can be correlated with the relative crystallographic orientations of neighbouring grains.

A new computer simulation of the development of grain shape and crystallographic preferred orientations is presented. This model combines homogeneous strains,
simplified versions of the lattice rotations predicted by Taylor-Bishop-Hill theory, mobile grain boundaries and the nucleation of new grains, and allows the progressive development of the fabrics to be followed. The model generates several commonly measured quartz c-axis fabrics, while at the same time predicting characteristic variations in average grain sizes and the intensity of grain shape fabrics that arise from differing recrystallization regimes and strain geometries.
ACKNOWLEDGEMENTS

The topic of this thesis was proposed by Win Means, many of the ideas contained herein first saw the light of day during discussions with him, and I am happy to acknowledge his continuous support during this project. During his stay in Albany, and since that time, Janos Urai has encouraged me in my studies and taught me much. Brian Bayly has had a friendly and provocative influence on my thoughts. I would like to thank Janos Urai, Brian Bayly, Jan Tullis, Chris Wilson, Rob Knipe, Steve Delong, Greg Harper and Falk Koenemann for taking the time to read part or all of this work and to suggest improvements to frequently tangled thoughts. I would also like to thank Jan Tullis for her permission to use previously unpublished experimental data. The idea for using orthogonal strain grids was first suggested to me by Peter Cobbold. Tom Ray collected the sample analysed in Chapter 3, and provided me with a detailed account of the regional characteristics of the Ottauquechee Quartzite. Mike Ramundo provided useful advice on the computer graphics used in this thesis. My time spent at the university has been enjoyably spent thanks to all of the members of the department, and especially Chris Steinhardt, Mauricio Roma, Thomas Will, Katherine Stone, Peter Hofmann, Matthias Ohr, Suzanne Baldwin and Antonio Teixell. Diane Paton helped ensure that my progress was smooth. Life in Albany would not have been the same without Patrice,
Hitomi, Chris, Maria, Sue, Ute, Poffi, Ricardo, Metta, Dave, Seth, Tom and Pam. This work was funded by a Presidential Fellowship from the State University of New York at Albany, and by National Science Foundation grants EAR820582001 and EAR8306166. Without the support of my parents and family I would never have got this far this happily. My final thanks go to Linda Bouzida, for everything.
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 EXPERIMENTAL DEFORMATION OF OCTACHLOROPROPA</td>
<td>4</td>
</tr>
<tr>
<td>2.1 INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>2.2 EXPERIMENTAL TECHNIQUE</td>
<td>5</td>
</tr>
<tr>
<td>2.3 ANALYSIS OF EXPERIMENTS</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 EXPERIMENT TO-47</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 EXPERIMENT TO-55</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3 EXPERIMENT TO-58</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4 EXPERIMENT TO-63</td>
<td>26</td>
</tr>
<tr>
<td>2.3.5 EXPERIMENTS TO-64 AND TO-65</td>
<td>50</td>
</tr>
<tr>
<td>2.3.5.1 OBSERVATIONS AND ANALYSIS</td>
<td>50</td>
</tr>
<tr>
<td>2.3.5.2 GRAIN BOUNDARY KINEMATICS</td>
<td>61</td>
</tr>
<tr>
<td>2.3.5.3 MODEL TEST</td>
<td>68</td>
</tr>
<tr>
<td>2.3.6 EXPERIMENT TO-69</td>
<td>75</td>
</tr>
<tr>
<td>2.3.7 EXPERIMENT TO-77</td>
<td>78</td>
</tr>
<tr>
<td>2.4 DISCUSSION</td>
<td>86</td>
</tr>
<tr>
<td>2.5 CONCLUSIONS</td>
<td>90</td>
</tr>
</tbody>
</table>
3 GRAIN BOUNDARY MICROSTRUCTURES IN
A NATURALLY DEFORMED QUARTZITE 91
3.1 INTRODUCTION 91
3.2 SAMPLE DESCRIPTION 92
3.3 GRAIN BOUNDARY MIGRATION MICROSTRUCTURES 97
3.4 ANALYSIS 112
3.5 DISCUSSION 120
3.6 CONCLUSIONS 122

4 A SIMULATION OF FABRIC DEVELOPMENT IN
RECRYSTALLIZING AGGREGATES: DESCRIPTION OF
THE MODEL 123
4.1 INTRODUCTION 123
4.2 DESCRIPTION OF THE MODEL 124
4.2.1 FABRIC INITIALIZATION 127
4.2.2 STRAIN INCREMENT 127
4.2.3 LATTICE REORIENTATIONS 136
4.2.4 RECRYSTALLIZATION 142
4.2.5 INTERACTION WITH MODEL 154
4.3 DISCUSSION 154

5 A SIMULATION OF FABRIC DEVELOPMENT IN
RECRYSTALLIZING AGGREGATES: EXAMPLE
MODEL RUNS 161
5.1 INTRODUCTION 161
5.2 EXAMPLE MODEL RUNS 161
5.2.1 RUN NUMBER 1 161
APPENDIX C: FORTRAN PROGRAM TO SIMULATE

FABRIC DEVELOPMENT IN SIMPLE SHEAR 262
LIST OF FIGURES

2.1 Hajeck apparatus 7
2.2 Geometry of deformation 8
2.3 Photographic record of experiment TO-47 12
2.4 Near single crystal fabric 15
2.5 Hypotheses to explain the widening of 16
the high strain rate zone
2.6 Experiment TO-55 19
2.7 Information used to calculate local 21
deformation matrices
2.8 Finite strain maps for experiment TO-58 25
2.9 Incremental strain maps for experiment TO-58 28
2.10 Photographic record of experiment TO-63 31
2.11 Frequency histogram of grain boundary orientations 36
2.12 c-axis reorientation trajectories 38
2.13 Comparison of OCP c-axis trajectories 41
with predictions
2.14 c-axis fabric diagrams for each stage of 44
the deformation
2.15 Theoretical c-axis fabric diagrams 48
2.16 Average grain size versus shear strain 49
2.17 Photographic record of experiment TO-64 52
2.18 Photographic record of experiment TO-65 54
2.19 Strain map for experiment TO-64 56
2.20 Strain maps for experiment TO-65 58
2.21 Model of grain boundary kinematics
2.22 Variation in copper of stored energy
deformation with orientation
2.23 Grain boundary migration map for TO-64
2.24 Grain boundary migration map for TO-65
2.25 Comparison between predicted stored energy
contrasts and grain boundary motions
for TO-64 and TO-65
2.26 Photographic record of experiment TO-69
2.27 Photographic record of experiment TO-77
2.28 Strain map for experiment TO-77
2.29 Grain boundary migration map for TO-77
2.30 Comparison between predicted stored energy
contrasts and grain boundary motions for TO-77

3.1 Photo-micrographs of quartzite
3.2 c-axes orientations of specimen as a whole
3.3 Pinning microstucture
3.4 Window microstructure
3.5 Dragging microstructure
3.6 Left over grains
3.7 Castellate microstructure
3.8 Zoning of calcium across olivine grain boundaries
3.9 Dislocation lines formed behind
migrating olivine boundaries
3.10 c-axis orientations of growing and
shrinking grains
3.11 The ratio G/G+S for 36 equal orientation segments 119

4.1 Triangular arrangement of points in array 125
4.2 Flow chart of simulation 126
4.3 Results of strain algorithms 129
4.4 Principal of simple shearing strain algorithm 132
4.5 Principal of axisymmetric flattening strain algorithm 135
4.6 Lattice rotations used in model 139
4.5 Comparison of the c-axis fabrics that develop using Taylor-Bishop-Hill and this model with no recrystallization 141
4.7 The distributions of stored energy of deformation assumed in this model 145
4.9 Grain boundary migration algorithm 148
4.10 Nucleation algorithm 153

5.1 Grain boundary maps/c-axis projections for Run 1 164
5.2 Evolution of average grain areas with deformation 168
5.3 Grain boundary maps/c-axis projections for Run 2 173
5.4 Grain boundary maps/c-axis projections for Run 3 180
5.5 Histogram of grain elongation orientations for = 3.61, Run 3 184
5.6 Grain boundary maps/c-axis projections for Run 4 187
5.7 Grain boundary maps/c-axis projections for Run 5 192
5.8 Natural example of double c-axis maximum 197
5.9 Natural example of Y maximum 198
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Experimental conditions</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Data derived from experiments TO-64 and TO-65</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>Range of variables used in simulations</td>
<td>155</td>
</tr>
<tr>
<td>5.1</td>
<td>Values of variables used in example runs</td>
<td>162</td>
</tr>
</tbody>
</table>
If you can look into the seeds of time, and say which grain will grow and which will not, speak then to me.

Shakespeare

(Macbeth I iii)