APPENDIX C

COMPOSITION OF CLINOPYROXENE, PLAGIOCLASE AND CR-SPINEL IN SAMPLES FROM THE WILD ROGUE WILDERNESS, SW OREGON (ELECTRON MICROPROBE ANALYSIS)

Table C1: Microprobe analysis of clinopyroxene in O/C-325

A3)					
Analysis	11	12	13	14	15
Location	3	3	4	4	4
SiO_2	53.75	53.83	52.51	53.62	53.27
TiO ₂	0.16	0.19	0.24	0.17	0.15
Al_2O_3	1.84	1.70	2.30	1.51	1.64
FeO*	4.12	3.96	5.36	5.12	4.57
Cr_2O_3	0.90	0.78	0.75	0.61	0.80
MgO	18.40	18.25	17.29	18.73	17.94
CaO	20.21	21.02	20.57	19.47	20.60
Na ₂ O	0.21	0.25	0.20	0.19	0.22
Total	99.59	99.98	99.22	99.42	99.19
Si	1.960	1.955	1.933	1.960	1.955
Al	0.079	0.073	0.099	0.065	0.071
Ti	0.004	0.005	0.007	0.005	0.004
Fe ³⁺	0.000	0.001	0.014	0.002	0.004
Fe ²⁺	0.126	0.119	0.151	0.155	0.137
Cr	0.026	0.022	0.022	0.018	0.023
Mg	1.000	0.988	0.948	1.020	0.981
Ca	0.790	0.818	0.811	0.762	0.810
Na	0.015	0.018	0.014	0.013	0.016
Sum	4.000	3.999	3.999	4.000	4.001
WO	41.2	42.5	42.1	39.3	41.9
EN	52.2	51.3	49.3	52.6	50.8
FS	6.6	6.2	8.6	8.1	7.3

deformed dike (porphyritic), sheeted dike complex (see table <u>A3</u>)

Table C2: Microprobe analysis of clinopyroxene in O/C-81a

Analysis	11	17	18	3.1	3.2	4.1	4.2
Location	5	3	3	8	8	8	8
SiO_2	53.91	53.09	53.29	53.47	53.47	52.62	52.62
TiO ₂	0.07	0.10	0.17	0.10	0.10	0.24	0.24
Al_2O_3	1.47	1.61	1.95	1.88	1.88	2.44	2.44
FeO*	3.63	3.69	5.98	3.51	3.51	6.28	6.28
Cr_2O_3	0.53	0.45	0.19	0.74	0.74	0.29	0.29
MgO	17.68	17.41	17.41	17.53	17.53	16.71	16.71
CaO	22.63	22.76	19.99	22.25	22.25	20.57	20.57
Na ₂ O	0.10	0.11	0.13	0.12	0.12	0.17	0.17
Total	100.02	99.22	99.11	99.60	99.60	99.32	99.32
Si	1.961	1.947	1.965	1.954	1.954	1.941	1.941
Al	0.063	0.070	0.084	0.080	0.080	0.106	0.106
Ti	0.002	0.003	0.005	0.003	0.003	0.007	0.007
Fe ³⁺	0.002	0.025	0.000	0.000	0.000	0.002	0.002
Fe ²⁺	0.108	0.088	0.184	0.107	0.107	0.192	0.192
Cr	0.015	0.013	0.006	0.021	0.021	0.008	0.008
Mg	0.958	0.952	0.957	0.954	0.954	0.919	0.919
Ca	0.882	0.894	0.790	0.871	0.871	0.813	0.813
Na	0.007	0.008	0.009	0.009	0.009	0.012	0.012
Sum	3.998	4.000	4.000	3.999	3.999	4.000	4.000
WO	45.2	45.6	40.9	45.1	45.1	42.2	42.2
EN	49.1	48.6	49.6	49.4	49.4	47.7	47.7
FS	5.7	5.8	9.5	5.5	5.5	10.1	10.1

 $cpx + plag \pm ol phyric basalt$, Mule Mountain volcanics (see table A5)

Table C3a: Microprobe analysis of plagioclase in O/C-118

Plagioclase	Plagioclase coexisting with hornblende, table 3.1a (chapter 3)								
Analysis	69	71	82	74	86	63	83		
Location	1	2	5	3	4	5	5		
SiO_2	58.92	59.28	59.29	63.07	66.38	67.76	59.21		
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Al_2O_3	25.77	25.68	25.80	22.60	21.16	20.22	25.82		
FeO*	0.11	0.24	0.18	0.20	0.02	0.24	0.12		
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MgO	0.09	0.01	0.00	0.01	0.00	0.05	0.02		
CaO	7.43	7.39	7.44	3.60	2.02	1.59	7.49		
Na ₂ O	7.40	7.43	7.29	9.19	10.64	10.74	7.32		
K_2O	0.14	0.13	0.15	0.03	0.00	0.00	0.10		
Total	99.85	100.17	100.16	98.71	100.21	100.60	100.09		
Si	10.542	10.575	10.570	11.270	11.628	11.805	10.562		
Al	5.431	5.395	5.417	4.757	4.366	4.149	5.424		
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Fe ²⁺	0.017	0.036	0.027	0.030	0.003	0.035	0.017		
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Mg	0.023	0.003	0.000	0.004	0.000	0.013	0.006		
Ba	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
Ca	1.424	1.411	1.422	0.688	0.378	0.298	1.431		
Na	2.566	2.570	2.521	3.185	3.613	3.628	2.531		
Κ	0.032	0.029	0.034	0.007	0.000	0.000	0.023		
Sum	20.035	20.019	19.991	19.941	19.988	19.928	19.994		
Ab	63.80	64.10	63.40	82.10	90.50	92.40	63.50		
An	35.40	35.20	35.80	17.70	9.50	7.60	35.90		
Or	0.80	0.70	0.90	0.20	0.00	0.00	0.60		
coexisting	68	70	78	80	76	79	81		
hbl analys.									

Hornblende quartz diorite, Half Moon Bar diorite (see table A7)

aviating with hamphlands, table 1

Analysis was performed at Rensselaer Polytechnique Institute using a JEOL 733X electron microprobe operating at 15 keV accelerating voltage and 15.5 nA sample current. Analyses were obtained using a defocused beam site and integrated count times of 5 seconds.

Total iron as FeO*

Table C3b: Microprobe analysis of plagioclase in O/C-376

D1 · 1	. ,.	-11	11 1	11 2 11	(1)			Plagioclase
Plagioclase	coexistin	g with hol	nblende, 1	table 3.1b	(chapter 3	57	67	core
Location	40	4/	1	1	30	37	5	44 2
Location	Z	L	1	1	3	3	3	2
SiO ₂	60.03	57.48	54.58	61.38	54.84	66.21	64.67	49.66
TiO ₂	0.00	0.03	0.06	0.00	0.01	0.04	0.07	0.02
Al_2O_3	25.35	27.88	28.68	24.12	28.56	21.27	22.33	31.77
FeO*	0.16	0.27	0.48	0.22	0.35	0.22	0.21	0.55
MnO	0.00	0.06	0.00	0.04	0.00	0.01	0.02	0.00
MgO	0.03	0.05	0.02	0.01	0.02	0.03	0.00	0.02
CaO	6.67	8.52	11.60	5.75	10.76	2.50	3.41	14.84
Na ₂ O	7.57	5.92	5.14	8.01	5.38	10.15	9.56	3.20
K_2O	0.27	0.61	0.15	0.35	0.17	0.12	0.25	0.08
Total	100.07	100.82	100.71	99.87	100.10	100.56	100.52	100.13
Si	10.689	10.223	9.818	10.925	9.894	11.583	11.358	9.077
Al	5.315	5.840	6.075	5.056	6.068	4.382	4.618	6.840
Ti	0.000	0.004	0.008	0.000	0.001	0.005	0.010	0.003
Fe ²⁺	0.024	0.040	0.072	0.032	0.053	0.033	0.031	0.083
Mn	0.000	0.009	0.000	0.006	0.000	0.002	0.003	0.000
Mg	0.007	0.014	0.004	0.002	0.006	0.007	0.000	0.006
Ba	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Ca	1.273	1.623	2.236	1.096	2.079	0.468	0.641	2.906
Na	2.613	2.042	1.794	2.764	1.882	3.443	3.257	1.132
Κ	0.060	0.138	0.034	0.080	0.040	0.028	0.055	0.019
Sum	19.981	19.933	20.041	19.961	20.023	19.951	19.973	20.066
Ab	66.2	53.7	44.1	70.2	47.0	87.4	82.4	27.9
An	32.3	42.7	55.0	27.8	52.0	11.9	16.2	71.6
Or	1.5	3.6	0.8	2.0	1.0	0.7	1.4	0.5
coexisting hbl analys.	40	41	48	49	53	55	64	-

Hornblende quartz diorite, Half Moon Bar diorite (see table A7)

Analysis was performed at Rensselaer Polytechnique Institute using a JEOL 733X electron microprobe operating at 15 keV accelerating voltage and 15.5 nA sample current. Analyses were obtained using a defocused beam site and integrated count times of 5 seconds.

Total iron as FeO*

Table C4: Microprobe analysis of plagioclase in O/C-229

Plagioclase of	coexisting	with hornble	ende, table 3	.2 (chapter :	3)		
Analysis	129	131	130	121	127	126	133
Location	2	4	5	5	5	5	5
SiO2	61.66	58.15	56.65	57.18	56.13	55.61	54.41
TiO2	0	0	0	0.03	0.18	0	0.01
Al2O3	24.59	26.7	27.78	27.29	27.61	28.52	29.13
FeO	0.45	0.58	0.37	0.17	0.09	0.31	0.23
MnO	0.01	0.01	0.01	0.01	0.02	0	0.01
MgO	0.16	0.2	0.09	0	0	0.01	0.01
CaO	4.16	7.38	8.89	9.23	9.74	10.08	11.43
Na2O	7.93	6.52	6.01	6.6	6.17	5.86	5.34
K2O	1.03	0.78	0.54	0.07	0.11	0.33	0.06
Total	99.99	100.31	100.33	100.57	100.03	100.72	100.62
Si	10.948	10.394	10.152	10.214	10.095	9.963	9.78
Al	5.141	5.621	5.862	5.742	5.848	6.017	6.166
Ti	0	0	0	0.004	0.024	0	0.002
Fe2	0.067	0.086	0.056	0.025	0.014	0.046	0.034
Mn	0.002	0.001	0.001	0.002	0.003	0	0.001
Mg	0.043	0.052	0.025	0.001	0	0.003	0.004
Ba	0	0	0	0	0	0	0
Ca	0.792	1.414	1.708	1.766	1.877	1.934	2.201
Na	2.73	2.26	2.087	2.287	2.151	2.036	1.862
K	0.234	0.177	0.123	0.015	0.024	0.076	0.013
Sum	19.957	20.005	20.014	20.056	20.036	20.075	20.063
Ab	72.7	58.7	53.3	56.2	53.1	50.3	45.7
An	21.1	36.7	43.6	43.4	46.3	47.8	54
Or	0.8	0.7	0.9	0.2	0	0	0.6
	120	120	10.5	124	125	126	105
Coexisting hbl analys.	139	138	125	134	135	136	137

Hornblende quartz diorite in metagabbro unit (see table A1b for petrography)

Plagioclase coexisting with hornblende table 3.2 (chapter 3)

Analysis was performed at Rensselaer Polytechnique Institute using a JEOL 733X electron microprobe operating at 15 keV accelerating voltage and 15.5 nA sample current. Analyses were obtained using a defocused beam site and integrated count times of 5 seconds.

Total iron as FeO*

Table C5a: Microprobe analysis of plagioclase in MRH-78/1

Plagioclase	Plagioclase coexisting with hornblende, table 3.3 (chapter 3)								
Analysis	142	144	149	152	160				
Location	1	1	2	3	4				
SiO2	65.382	62.548	64.828	63.431	61.518				
TiO2	0.034	0.015	0.015	0.017	0.000				
Al2O3	22.063	23.865	22.707	23.456	24.823				
FeO	0.124	0.085	0.080	0.090	0.047				
MnO	0.006	0.026	0.003	0.006	0.010				
MgO	0.008	0.008	0.014	0.005	0.011				
CaO	2.447	4.882	3.042	4.317	5.941				
Na2O	10.137	8.849	9.829	9.191	8.418				
K2O	0.049	0.058	0.070	0.033	0.026				
Total	100.250	100.340	100.590	100.550	100.790				
Si	11.469	11.042	11.351	11.152	10.844				
Al	4.558	4.961	4.682	4.857	5.153				
Ti	0.004	0.002	0.002	0.002	0				
Fe2	0.018	0.013	0.012	0.013	0.007				
Mn	0.001	0.004	0	0.001	0.001				
Mg	0.002	0.002	0.004	0.001	0.003				
Ba	0	0	0	0	0				
Ca	0.46	0.923	0.571	0.813	1.122				
Na	3.448	3.029	3.337	3.133	2.877				
Κ	0.011	0.013	0.016	0.007	0.006				
Sum	19.971	19.989	19.975	19.979	20.013				
Ab	88.00	76.40	85.00	79.30	71.80				
An	11.7	23.3	14.6	20.6	28				
Or	0.3	0.3	0.4	0.2	0.1				
Coexisting	141	143,145	150	151	156,165				
hbl analys.									

Metagabbro unit (see table A1a for petrography)

Analysis was performed at Rensselaer Polytechnique Institute using a JEOL 733X electron microprobe operating at 15 keV accelerating voltage and 15.5 nA sample current. Analyses were obtained using a defocused beam site and integrated count times of 5 seconds.

Total iron as FeO*

Table C5b: Microprobe analysis of plagioclase in MRH-78/2

Plagioclase coexisting with hornblende, table 3.3 (chapter 3)							
Analysis	42	47	50	55	40		
Location	2	1	4	4	3		
SiO2	65.244	63.962	62.810	63.995	66.075		
TiO2	0.029	0.018	0.017	0.019	0.058		
Al2O3	22.224	22.651	23.633	22.988	21.259		
FeO	0.113	0.048	0.087	0.094	0.179		
MnO	0.005	0.005	0.006	0.009	0.010		
MgO	0.009	0.007	0.004	0.012	0.000		
CaO	2.596	3.666	4.781	3.693	1.702		
Na2O	10.060	9.535	8.971	9.499	10.522		
K2O	0.055	0.041	0.028	0.061	0.024		
Total	100.340	99.930	100.340	100.37	99.830		
Si	11.439	11.292	11.083	11.253	11.616		
Al	4.589	4.709	4.911	4.761	4.401		
Ti	0.004	0.002	0.002	0.003	0.008		
Fe2	0.017	0.007	0.013	0.014	0.026		
Mn	0.001	0.001	0.001	0.001	0.001		
Mg	0.002	0.002	0.001	0.003	0		
Ba	0	0	0	0	0		
Ca	0.488	0.693	0.904	0.696	0.321		
Na	3.42	3.264	3.069	3.239	3.587		
K	0.012	0.009	0.006	0.014	0.005		
Sum	19.972	19.979	19.99	19.984	19.965		
Ab	87.2	82.3	77.1	82	91.7		
An	12.4	17.5	22.7	17.6	8.2		
Or	0.3	0.2	0.2	0.4	0.1		
Coexisting	41,43	49	51	52	54		
hbl analys.							

Metagabbro unit (see table A1a for petrography)

Analysis was performed at Rensselaer Polytechnique Institute using a JEOL 733X electron microprobe operating at 15 keV accelerating voltage and 15.5 nA sample current. Analyses were obtained using a defocused beam site and integrated count times of 5 seconds.

Total iron as FeO*

Table C5c: Microprobe analysis of plagioclase in O/C-373

Plagioclase	coexisting	with hornble	ende, table :	3.3 (chapter	3)	
Analysis	8	12	17	20	24	30
Location	1	4	4	3	3	3
SiO2	63.424	61.447	63.222	61.510	64.412	62.790
TiO2	0.020	0.044	0.020	0.000	0.000	0.049
Al2O3	23.423	24.404	23.488	24.795	23.189	23.692
FeO	0.133	0.169	0.076	0.259	0.047	0.060
MnO	0.011	0.027	0.007	0.000	0.000	0.009
MgO	0.018	0.004	0.010	0.060	0.018	0.010
CaO	4.009	5.482	4.372	5.162	3.489	4.792
Na2O	9.235	8.417	9.164	8.347	9.598	8.995
K2O	0.097	0.056	0.048	0.277	0.085	0.029
Total	100.370	100.050	100.410	100.410	100.840	100.430
Si	11.167	10.903	11.135	10.877	11.264	11.071
Al	4.857	5.099	4.872	5.163	4.776	4.919
Ti	0.003	0.006	0.003	0	0	0.006
Fe2	0.02	0.025	0.011	0.038	0.007	0.009
Mn	0.002	0.004	0.001	0	0	0.001
Mg	0.005	0.001	0.003	0.016	0.005	0.003
Ba	0	0	0	0	0	0
Ca	0.756	1.042	0.825	0.978	0.654	0.905
Na	3.153	2.896	3.13	2.862	3.254	3.075
Κ	0.022	0.013	0.011	0.062	0.019	0.007
Sum	19.985	19.989	19.991	19.996	19.979	19.996
Ab	80.2	73.3	78.9	73.3	82.9	77.1
An	19.2	26.4	20.8	25.1	16.7	22.7
Or	0.6	0.3	0.3	1.6	0.5	0.2
Coexisting	6	13, 14	15	23	25, 26	27, 29
hbl analys.						

Metagabbro unit (see table A1a for petrography)

Plagioclase coexisting with hornblende table 3.3 (chapter 3)

Analysis was performed at Rensselaer Polytechnique Institute using a JEOL 733X electron microprobe operating at 15 keV accelerating voltage and 15.5 nA sample current. Analyses were obtained using a defocused beam site and integrated count times of 5 seconds.

Total iron as FeO*

analysis	23 ¹	24^{1}	25^{1}	26 ¹	27^{1}	27^{1}
Location	1	1	2	2	3	3
TiO2	0.26	0.26	0.41	0.40	0.26	0.26
Al2O3	10.30	10.47	10.00	9.88	10.67	10.64
Fe2O3	3.99	3.79	4.83	4.83	3.81	3.98
FeO	13.02	13.37	17.01	16.69	14.00	17.49
MgO	14.03	14.04	12.07	12.22	14.03	11.63
Cr2O3	55.60	56.35	54.74	54.74	56.93	55.45
Ti	0.0064	0.0064	0.0102	0.0100	0.0063	0.0064
Al	0.3993	0.4017	0.3872	0.3835	0.4041	0.4103
Fe3	0.1398	0.1325	0.1703	0.1704	0.1318	0.1424
Fe2	0.3172	0.3244	0.4164	0.4089	0.3367	0.4345
Mg	0.6878	0.6817	0.5912	0.5996	0.6720	0.5673
Cr	1.4459	1.4507	1.4217	1.4250	1.4468	1.4350
Cr #	78.4	78.3	78.6	78.8	78.2	77.8
Mg #	68.4	67.8	58.7	59.5	66.6	56.6
analysis	29 ^P	30 ^P	31 ^P	32 ^P	33 ^P	34 ^P
Location	1	1	2	2	3	3
TiO2	0.23	0.22	0.24	0.24	0.31	0.29
Al2O3	10.45	10.41	10.35	10.39	10.97	10.58
Fe2O3	3.22	3.17	3.45	3.54	3.84	4.06
FeO	11.63	11.76	18.26	18.41	21.50	23.60
MgO	15.20	15.09	10.89	10.78	9.13	7.48
Cr2O3	57.97	58.06	55.09	54.87	53.23	52.56
Ti	0.0057	0.0053	0.0061	0.0059	0.0077	0.0073
Al	0.3964	0.3951	0.4062	0.4082	0.4319	0.4235
Fe3	0.1114	0.1102	0.1273	0.1303	0.1427	0.1536
Fe2	0.2795	0.2836	0.4676	0.4713	0.5545	0.6204
Mg	0.7291	0.7245	0.5405	0.5354	0.4546	0.3788
Cr	1.4750	1.4786	1.4503	1.4452	1.4057	1.4112
	un.	un.				
Cr #	78.8	78.9	78.1	78.0	76.5	76.9
Mg #	72.3	71.9	53.6	53.2	45.0	37.9

 Table C6a:
 Cr-spinel compositions in sample O/C-4-S3a (sheeted dike complex)

¹ inclusion in olivine pseudomorph ^P microphenocryst

analysis	35 ¹	36 ¹	37 ¹	38 ¹	39 ¹	40^{1}
Location	1	1	2	2	3	3
TiO2	0.35	0.32	0.52	0.59	0.24	0.25
Al2O3	12.06	11.92	9.94	10.34	11.21	11.17
Fe2O3	3.96	3.63	6.91	7.27	3.74	3.64
FeO	12.53	14.68	20.66	20.92	10.84	10.86
MgO	14.99	13.68	10.45	10.33	15.96	15.94
Cr2O3	55.46	55.58	51.56	50.27	57.93	57.72
Ti	0.0083	0.0077	0.0128	0.0147	0.0056	0.0060
Al	0.4524	0.4496	0.3862	0.4025	0.4172	0.4172
Fe3	0.1339	0.1263	0.2411	0.2532	0.1245	0.1219
Fe2	0.2943	0.3541	0.5004	0.5057	0.2507	0.2526
Mg	0.7110	0.6524	0.5138	0.5085	0.7513	0.7529
Cr	1.3953	1.4062	1.3442	1.3131	1.4466	1.4463
Cr #	75.5	75.8	77.7	76.5	77.6	77.6
Mg #	70.7	64.8	50.7	50.1	75.0	74.9

Table C6a: Cr-spinel compositions in sample O/C-4-S3 (sheeted dike complex)

¹...inclusion in olivine pseudomorph

analysis	1^{1}	2^{1}	3 ¹	4 ¹	5 ¹
Location	1	2	3	4	5
TiO2	0.29	0.26	0.22	0.31	0.32
Al2O3	10.65	9.78	9.79	9.59	9.50
Fe2O3	3.81	3.11	3.03	3.68	3.36
FeO	17.56	32.49	33.98	28.97	26.09
MgO	11.49	1.49	0.31	4.06	5.70
Cr2O3	55.47	50.86	50.47	52.37	53.60
Ti	0.0071	0.0070	0.0059	0.0082	0.0083
Al	0.4120	0.4131	0.4176	0.3938	0.3871
Fe3	0.1372	0.1282	0.1264	0.1456	0.1316
Fe2	0.4387	0.9292	0.9844	0.7956	0.7099
Mg	0.5618	0.0797	0.0169	0.2110	0.2938
Cr	1.4389	1.4409	1.4438	1.4433	1.4648
Cr #	77.7	77.7	77.6	78.6	79.1
Mg #	56.2	7.9	1.7	21.0	29.3
analysis	6 ¹	7^{1}	8 ¹	9 ^P	10 ^P
location	5	5	6	1	1
TiO2	0.16	0.17	0.30	0.42	0.44
Al2O3	9.48	9.65	8.38	10.81	10.97
Fe2O3	3.15	3.08	3.42	7.11	7.06
FeO	11.39	11.29	33.36	22.91	22.84
MgO	15.13	15.18	0.69	8.74	9.04
Cr2O3	59.15	59.07	51.71	48.33	49.04
Ti	0.0040	0.0041	0.0083	0.0106	0.0109
Al	0.3618	0.3683	0.3587	0.4300	0.4309
Fe3	0.1098	0.1074	0.1422	0.2557	0.2506
Fe2	0.2756	0.2734	0.9639	0.5718	0.5635
Mg	0.7305	0.7325	0.0376	0.4397	0.4493
Cr	1.5152	1.5116	1.4841	1.2900	1.2929
Cr #	80.7	80.4	80.5	75.0	75.0
Mg #	72.6	72.8	3.8	43.5	44.4

Table C6b Cr-spinel compositions in sample MRH-45a (sheeted dike complex)

¹...inclusion in olivine pseudomorph ^P... microphenocryst

analysis	1 ^P	2 ^P	3 ^P	4 ^P	5 ¹	6 ¹	7^1	8 ¹
locatiom	1	1	2	2	1	2	3	4
TiO2	0.27	0.28	0.22	0.21	0.21	0.22	0.19	0.30
Al2O3	10.60	10.83	10.32	10.31	10.74	10.69	10.36	9.65
Fe2O3	4.13	4.07	3.68	3.71	3.66	3.63	3.95	4.91
FeO	11.29	11.41	11.57	11.55	11.66	12.77	12.16	17.21
MgO	15.46	15.52	15.31	15.48	14.99	14.48	15.03	11.70
Cr2O3	56.64	56.70	57.93	58.59	56.48	56.77	57.58	54.45
Ti	0.0066	0.0068	0.0052	0.0050	0.0052	0.0053	0.0047	0.0074
Al	0.4023	0.4090	0.3902	0.3870	0.4107	0.4075	0.3916	0.3779
Fe3	0.1394	0.1370	0.1255	0.1254	0.1264	0.1261	0.1343	0.1751
Fe2	0.2647	0.2668	0.2738	0.2709	0.2797	0.3078	0.2873	0.4259
Mg	0.7421	0.7415	0.7324	0.7346	0.7251	0.6982	0.7187	0.5798
Cr	1.4422	1.4366	1.4696	1.4745	1.4495	1.4523	1.4606	1.4305
Cr #	78.2	77.8	79.0	79.2	77.9	78.1	78.9	79.1
Mg #	73.7	73.5	72.8	73.1	72.2	69.4	71.4	57.6
				S				
analysis	9 ¹	10 ^C	16 ^C	18 ^P	19 ^P	20^{1}	21 ¹	
location	4	5	6	3	3	7	7	
TiO2	0.33	0.62	0.33	0.22	0.20	0.31	0.28	
Al2O3	9.73	12.93	9.21	10.71	10.69	10.44	10.37	
Fe2O3	4.85	5.53	3.69	3.60	3.75	4.15	4.59	
FeO	17.53	19.89	28.70	10.97	10.42	12.93	13.46	
MgO	11.76	10.32	2.63	15.82	15.92	14.40	13.82	
Cr2O3	55.10	48.05	48.23	58.17	58.21	56.38	55.99	
Ti	0.0080	0.0156	0.0092	0.0053	0.0047	0.0075	0.0067	
Al	0.3772	0.5079	0.4062	0.4013	0.4011	0.3984	0.3975	
Fe3	0.1717	0.1982	0.1564	0.1212	0.1254	0.1427	0.1575	
Fe2	0.4307	0.4948	0.8452	0.2565	0.2420	0.3088	0.3209	
Mg	0.5767	0.5123	0.1469	0.7499	0.7554	0.6953	0.6701	
Cr	1.4329	1.2658	1.4262	1.4626	1.4652	1.4437	1.4397	
Cr #	79.2	71.4	77.8	78.5	78.5	78.4	78.4	
Mg #	57.2	50.9	14.8	74.5	75.7	69.2	67.6	

Table C6c: Cr-spinel compositions in sample O/C-325 (sheeted dike complex)

1 inclusion in olivine pseudomorph

Р

^P microphenocryst
 C inclusion in clinopyroxene

analysis	1^{C}	$2^{\rm C}$	3 ^C	$4^{\rm C}$	5 ^C	6 ^C
location	1	1	2	2	3	3
TiO2	0.25	0.24	0.25	0.24	0.23	0.24
Al2O3	11.45	10.86	11.20	11.25	11.02	11.42
Fe2O3	3.61	3.30	3.52	3.72	3.26	3.58
FeO	15.43	24.25	14.80	14.91	15.42	16.30
MgO	13.13	7.18	12.88	12.89	12.74	12.06
Cr2O3	55.80	52.97	55.35	54.92	55.77	54.59
Ti	0.0061	0.0060	0.0061	0.0058	0.0056	0.0059
Al	0.4352	0.4344	0.4327	0.4347	0.4253	0.4425
Fe3	0.1271	0.1266	0.1255	0.1322	0.1173	0.1290
Fe2	0.3767	0.6459	0.3668	0.3684	0.3852	0.4076
Mg	0.6309	0.3632	0.6292	0.6302	0.6217	0.5912
Cr	1.4227	1.4209	1.4339	1.4235	1.4436	1.4189
Cr #	76.6	76.6	76.8	76.6	77.2	76.2
Mg #	62.6	36.0	63.2	63.1	61.7	59.2
analysis	$7^{\rm C}$	$8^{\rm C}$	9 ^p	10 ^P	11 ^P	12 ^P
location	4	4	1	1	1	1
TiO2	0.23	0.25	0.23	0.23	0.21	0.24
Al2O3	11.21	11.16	9.04	8.84	8.82	8.49
Fe2O3	3.21	3.29	3.63	3.31	3.69	2.97
FeO	15.56	15.36	15.34	15.21	15.10	20.67
MgO	12.50	12.52	12.68	12.54	12.64	9.09
Cr2O3	54.93	55.14	58.21	58.18	58.34	57.11
Ti	0.0057	0.0062	0.0057	0.0058	0.0051	0.0060
Al	0.4359	0.4334	0.3494	0.3448	0.3422	0.3394
Fe3	0.1165	0.1192	0.1299	0.1202	0.1319	0.1134
Fe2	0.3923	0.3858	0.3808	0.3834	0.3751	0.5485
Mg	0.6147	0.6150	0.6203	0.6191	0.6202	0.4594
Cr	1.4327	1.4365	1.5099	1.5228	1.5183	1.5312
Cr #	76.7	76.8	81.2	81.5	81.6	81.9
N.C. 11	61.0	61.5	62.0	61.8	62.3	45.6

Table C7: Cr-spinel compositions in sample O/C-224b (pillow unit)

^C inclusion in cpx(?) pseudomorph ^P.... microphenocryst

analysis	1 ^P	2 ^P	$7^{\rm C}$	8 ^C	9 ^C
location	1	1	1	1	2
TiO2	0.23	0.21	0.38	0.38	0.31
Al2O3	10.48	10.40	11.11	10.94	9.25
Fe2O3	3.41	3.34	5.22	5.30	5.08
FeO	21.70	22.36	18.22	18.23	20.50
MgO	8.60	8.11	11.22	11.13	9.83
Cr2O3	54.04	53.79	52.28	52.43	54.04
Ti	0.0058	0.0055	0.0094	0.0094	0.0079
Al	0.4168	0.4164	0.4327	0.4267	0.3655
Fe3	0.1291	0.1274	0.1852	0.1877	0.1849
Fe2	0.5701	0.5928	0.4484	0.4488	0.5180
Mg	0.4325	0.4105	0.5528	0.5493	0.4909
Cr	1.4418	1.4443	1.3664	1.3720	1.4320
Cr #	77.6	77.6	75.9	76.3	79.7
Mg #	43.1	40.9	55.2	55.0	48.7
					_
analysis	10 ^C	13 ^P	16^{P}	19 ^C	
location	2	2	3	3	_
TiO2	0.25	0.49	0.50	0.30	
Al2O3	7.94	14.98	18.12	10.89	
Fe2O3	4.64	9.75	8.76	7.43	
FeO	20.13	21.13	20.87	18.95	
MgO	9.71	10.64	10.68	9.82	
Cr2O3	56.33	41.73	38.42	49.38	
Ti	0.0062	0.0120	0.0121	0.0075	
Al	0.3155	0.5755	0.6947	0.4338	
Fe3	0.1708	0.3254	0.2948	0.2615	
Fe2	0.5149	0.4900	0.4874	0.4633	
Mg	0.4881	0.5170	0.5178	0.4947	

 Table C8:
 Cr-spinel compositions in sample O/C-81b (Mule Mountain volcanics)

^C inclusion in cpx

Cr

Cr #

 $Mg \ \#$

^P microphenocrysts

1.5024

82.6

48.7

1.0757

65.1

51.3

0.9878

58.7

51.5

1.3195

75.3

51.6