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Abstract

Experiments on growth of fibers and fibrous veins using analog materials
demonstrated that fibers can develop by a distinctive process of growth, called Taber
growth, which is characterized by accretionary growth of vein-like bodies of fibrous
crystals in confined space at the fiber-wall interface, by drawing nutrient from pore
solutions in the "wall-rock" on one hand and pushing apart the enclosing walls on the
other, through the action of a "force of crystallization". Taber growth differs markedly
from the crack-seal model of Ramsay, in that no long-range, wall-parallel cracking is
involved, and the growth itself plays an active role in opening a vein. It differs from all
models of vein development that involve passive growth of crystals following and keeping
pace with externally imposed vein dilation, or involve delivery of solute along a fluid-filled
vein crack or fissure, rather than through the wall rocks. Based on extensive experimental
observations the detailed characteristics of Taber growth were documented and its
essential growth conditions were studied. It was found that the ambient humidity, the pore
fluid pressure and the grain or pore size are the principal controlling factors that determine
the morphologies of fibers and whether fibrous or non-fibrous blocky crystals grow.
Detailed examination of experimental Taber fibers revealed microstructural features that
are reminiscent of similar features in natural fibrous veins.

Fibrous veins with various types of fiber curvature patterns were produced under
different growth conditions. Examination of the tracking behavior of some typical
experimental veins showed that fibers in Taber growth generally track the instantaneous
displacement as long as the growth interface remains cohesive and there is no internal
deformation within the fiber aggregate. The concept of tracking was criticized and re-
evaluated in light of the experimental observations, and a method was developed by which
vein displacement histories can be reconstructed using fibers that are known to track the

wall-vein displacements.

il



The displacive characteristic of Taber growth was specially investigated through
experiments on growth of fibrous veins under large compressive loading conditions. It was
demonstrated that fibrous veins could grow against virtually any pressures or stresses
externally imposed on the wall blocks as long as the pressure was not so large as to cause
the failure of the blocks and fibers couldn't grow at any other sites against smaller
pressures. The crystallization force in Taber growth was analyzed from a point of view of
thermodynamics, and it was interpreted as reflecting a crystallization pressure, which is
defined as the difference between the fluid pressure and the theoretical maximum
independent pressure that a crystal can grow against without dissolving under the given
supersaturation conditions. Theoretical analysis suggests that the crystallization pressure
in Taber growth can attain values of about the same order as geologically realistic values
as long as a high supersaturation level can be maintained and growth occurs in confined
spaces in a fine porous medium. Further analysis of the surface energy effects on
crystallization in a fine-grained medium suggests that the conspicuous displacive
crystallization of Taber growth is due to the distinctive process of crystal growth in fine
porous media. Solution confined in such a porous medium can become highly
supersaturated without much crystallization in the pores, thus producing a large
crystallization pressure that is capable of forcing or pushing open a "vein" in the
"wallrock" wherever its strength is weakest.

Taber Growth affords significant implications for some natural veins. Fibrous veins
formed by Taber growth could be non-tectonic as well as synkinematic. Taber growth
readily explains why the instantaneous direction of new fiber segments should parallel the
instantaneous direction in which older segments of the same fibers are moving away from
the vein wall. The possible role of the displacive crystallization of Taber growth in
formation of fibrous veins further suggests that some natural fibrous veins may have been

forced open by displacive growth.
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