Petrology, Petrogenesis, and Tectonic setting of Jurassic rocks of the Central Cascades, Washington, and Western Klamath Mountains,

California-Oregon

by

James H. MacDonald, Jr.

A Dissertation

Submitted to the University at Albany, State University of New York

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

College of Arts & Sciences

Department of Earth and Atmospheric Science

2006

ABSTRACT

This dissertation consists of four independent yet related projects: 1) the petrology, geochemistry, and original tectonic setting of the Galice Formation, Klamath Mountains, Oregon-California; 2) the geochemistry, tectonic setting, and possible regional correlations of the Iron Mountain and Esmeralda Peaks units of the Ingalls ophiolite complex, central Cascades, Washington; 3) the provance and original tectonic setting of sedimentary serpentinites and ophiolite breccias within the sedimentary rocks of the Ingalls ophiolite complex; and 4) geology, tectonics, and possible regional correlations of pre-Cenozoic rocks, central Cascades, Washington.

This research indicates that the Galice Formation represents continuous Late Jurassic deposition (Oxfordian-Kimmeridgian), within the Josephine backarc basin. Source areas for the Galice Formation included active Jurassic arcs, older Klamath terranes, and the North American craton.

The Early Jurassic Iron Mountain unit of the Ingalls ophiolite complex originated as a seamount within close proximity to an oceanic spreading ridge. The Late Jurassic Esmeralda Peaks unit of the Ingalls ophiolite complex originated in a backarc basin that included a fracture zone. The Iron Mountain unit is the rifted basement of the Esmeralda Peaks unit, and both units correlate to similar rocks within the Klamath Mountains.

Cr-spinel compositions, geochemistry, and petrography indicate that sedimentary serpentinites and ophiolite breccias within the Ingalls sedimentary rocks were locally derived. These rocks were originally deposited in a Late Jurassic fracture zone.

The Manastash inlier consists of the Hereford Meadow amphibolite, Lookout Mountain Formation, Quartz Mountain stock, and Helena-Haystack mélange. Hereford

iv

Meadow amphibolite is, in part, a dismembered pre-Jurassic ophiolite that originated in a supra-subduction zone. The Lookout Mountain Formation is Late Jurassic in age, had cratonic sources, and was originally located in the Klamath Mountains, Oregon-California. The Quartz Mountain stock is Late Jurassic in age, and the roots of an arc. The Helena-Haystack mélange is a major suture between Cascade terranes, and suggests that ~98 km of displacement has occurred along the Straight Creek fault.

The De Roux unit consists of metaigneous and metasedimentary rocks. Metaigneous rocks have calc-alkaline, within-plate, and mid-ocean ridge basalt affinities. The De Roux unit correlates with other Cascade mélanges.

ACKNOWLEDGEMENTS

Without the following, none of this would have been possible: Greg Harper, Bob Miller, Jonathan Miller, Bill Kidd, Marty Rutstein, R. H. Waines, Sally Marsh, Vince Idone, NSF, GSA, USGS, DEAS, Sigma Xi, FRAP, Diane Johnson Cornelius, Charles Knaack, Lori Suskin, punk rock, and my Mom. I would also like to thank, in no order, Mikki-Jo, Mike, Jon, Jacques, Marc, Betsy, Sam, Kevin, Brian, Vollmer, Manos, Brenner, Mary, Ante, Cindy, Ron, Adam, Jen, Tristan, Liz, Chuck, Beth, Jason, Stephan, Jim Henson, Johnny Mac, Bin, Barb, Matt, Lucas, Alexa, James, Josh, George Lucas, Mandy, my family, Diana, Sharon, Allison, Audrey, Antinous, Lynn, Kermit, Arnason, Delano, John Garver, Ned Brown, Steph, every one at the SUMAC SHRIMP-RG, Bill Blackburn, David Wark, Union College, San Jose State University, and every friend I ever had. I would also like to thank every person that had the misfortune of being my educator or my student. They all contributed, in some fashion, to the person that I am today. "Rugged peaks of greenstone occur about the southern border of the Wenatchee Mountains, in intimate association with serpentine; some of these masses are 2 miles or more in diameter, while others are isolated peaks and crests but a few rods in circumference. The structure is here highly complex, and it is evident that the greenstones have been greatly broken and displaced..."

I. C. Russell, 1900

"The Peshastin and Hawkins formations are intricately mingled in some of the areas, making separation difficult in some cases and impossible, as far as mapping is considered, in others..."

G. O. Smith, 1904

TABLE OF CONTENTS

CHAPTER ONE
INTRODUCTION
CHAPTER TWO PETROLOGY, GEOCHEMISTRY, AND PROVENANCE OF THE GALICE FORMATION, KLAMATH MOUNTAINS, OREGON- CALIFORNIA
ABSTRACT
INTRODUCTION
GALICE FORMATION
Sedimentary rocks within the Josephine ophiolite17
Hemipelagic sequence
Transition zone
Turbidite of the Galice Formation
PALEOFLOW DATA
DETRITAL MODES
HEAVY MINERALS
Occurrence
Cr-spinel
AGE OF SOURCE AREAS
GEOCHEMISTRY
DISCUSSION
Provenance
Regional variations

Temporal variations and tectonic implications	76
Tectonic setting of deposition	76
ACKNOWLEDGMENTS	79

CHAPTER THREE

GEOCHEMISTRY AND GEOLOGY OF THE IRON MOUNTAIN UNIT,	
INGALLS OPHIOLITE COMPLEX, WASHINGTON: EVIDENCE FOR THE	
POLYGENETIC NATURE OF THE INGALLS	81

ABSTRACT	
INTRODUCTION	
INGALLS OPHIOLITE COMPLEX	
Mantle peridotites	
Ingalls sedimentary rocks	
Esmeralda Peaks unit	
Iron Mountain unit	
Lithologies	
Geochemistry	
Geochronology	
DISCUSSION	
CONCLUSION	

CHAPTER FOUR

THE INGALLS OPHIOLITE COMPLEX, CENTRAL CASCADES, WASHINGTON: GEOCHEMISTRY, TECTONIC SETTING AND REGIONAL	
CORRELATIONS	
ACKNOWLEDGMENTS	
ABSTRACT	
INTRODUCTION	
INGALLS OPHIOLITE COMPLEX	

Mantle units	134
Iron Mountain unit	
Esmeralda Peaks unit	140
Lithologies	150
Petrography	151
Geochemistry	152
Geochronology	
Amphibolite and dikes	164
Dikes cutting mylonitic peridotite	
Ingalls sedimentary rocks	
Petrography	170
Depositional age	171
DISCUSSION	172
Tectonic setting of the Iron Mountain unit	
Tectonic setting of the Esmeralda Peaks unit	
Backarc basin setting of the Esmeralda Peaks unit	172
Esmeralda Peaks boninites	173
Geochemical correlation of mafic units	175
Fracture zone setting for the Late Jurassic Esmeralda Peaks unit	175
Polygenetic origin of the Ingalls ophiolite complex	176
Regional correlation of the Ingalls ophiolite complex	
Comparison of sedimentary rocks	179
Time relations of ophiolites	

Comparison of geochemical affinities	
CONCLUSIONS	
ACKNOWLEDGMENTS	
CHAPTER FIVE SEDIMENTARY SERPENTINITES AND OPHIOLIT INGALLS OPHIOLITE COMPLEX: FURTHER EVI JURASSIC FRACTURE ZONE SETTING	E BRECCIAS OF THE DENCE OF A LATE
ABSTRACT	
INTRODUCTION	
INGALLS OPHIOLITE COMPLEX	
Mantle units	195
Iron Mountain unit	
Esmeralda Peaks unit	
Ingalls sedimentary rocks	
Sedimentary serpentinites	
Detrital spinel compositions	
DISCUSSION	
INTERPRETATIONS	
ACKNOWLEDGMENTS	
CHAPTER SIX PETROGENESIS, AGE, TECTONIC EVOLUTION, A REGIONAL CORRELATIONS OF PRE-CENOZOIC CENTRAL CASCADES, WASHINGTON: IMPORTA MANASTASH INLIER AND DE ROUX UNIT	AND POSSIBLE ROCKS WITHIN THE NCE OF THE .230
ABSTRACT	
INTRODUCTION	

REGIONAL WASHINGTON GEOLOGY WEST OF THE STRAIGHT C	REEK
FAULT	237
Northwest Cascade System	237
The western and eastern mélange belts	244
Helena-Haystack mélange	
PRE-CENOZOIC UNITS EAST OF THE STRAIGHT CREEK FAULT	246
Hicks Butte inlier	246
Rimrock Lake inlier	
Manastash inlier	251
HEREFORD MEADOW AMPHIBOLITE	
Geochemistry of the Hereford Meadow amphibolite	257
Amphibolite geochemistry	258
Orthogneiss geochemistry	267
LOOKOUT MOUNTAIN FORMATION	
Detrital zircon geochronology of the Lookout Mountain Formation	272
IGNEOUS INTRUSIONS OF UNKNOWN AGE	
QUARTZ MOUNTAIN STOCK	
Geochronology of the Quartz Mountain stock	
Geochemistry of the Quartz Mountain stock	
HELENA-HAYSTACK MELANGE OF THE MANASTASH INLIER	
Age of mélange formation	302
Geochemistry of tectonic blocks within the Helena-Haystack mélange of the	,
Manastash inlier	302

DARRINGTON PHYLLITE OF THE EASTON METAMORPHIC SUI	TE 313
DE ROUX UNIT	
Geochemistry of De Roux unit metavolcanic rocks	
DISCUSSION	321
Hereford Meadow amphibolite	
Orthogneiss from the Hereford Meadow amphibolite	
Lookout Mountain Formation	
Quartz Mountain stock	
De Roux unit	
Tectonic Implications	
CONCLUSIONS	
ACKNOWLEDGMENTS	
APPENDIX A ANALYTICAL METHODS	345
APPENDIX B OUTCROP MAP OF IRON MOUNTAIN AREA	
APPENDIX C OUTCROP MAP OF ESMERALDA PEAKS AREA	
APPENDIX D OUTCROP MAP OF QUARTZ MOUNTAIN AREA	349
APPENDIX E OUTCROP MAP OF DE ROUX CREEK AREA	350
REFERENCES	

LIST OF FIGURES

Figure 1. Generalized geologic map of western Klamath terrane, including Galice
Formation8
Figure 2 . Sedimentary sequence overlying ~162 Ma Josephine ophiolite10
Figure 3. Drill core sample from the Turner-Albright mine showing siliceous argillite
that is interbedded with lavas of the Josephine ophiolite16
Figure 4. Photomicrographs of Galice Formation sandstones
Figure 5. Plot illustrating apparent mixing relationships for sediments within Josephine
ophiolite, hemipelagic sequence, and Galice Formation23
Figure 6. Graded bed from hemipelagic sequence of the Galice Formation26
Figure 7. Rose diagrams displaying paleoflow current directions
Figure 8. Triangular plots of point-count data for sandstones from Galice Formation37
Figure 9. Conglomerate point count data for the Galice Formation and the Mariposa
Formation in the central Sierran foothills illustrating provenance differences40
Figure 10. Al ₂ O ₃ verses TiO ₂ diagram showing detrital Cr-spinels from an intra-pillow
sandstone in the Josephine ophiolite and a turbidite sandstone of the Galice Formation47
Figure 11. $Cr/(Cr+Al)$ versus Mg/(Mg+Fe ²⁺) diagram for detrital Cr-spinels from a
sandstone within the pillow lavas of the Josephine ophiolite and a sandstone from the
basal turbidite sequence overlying the ophiolite
Figure 12. Provenance discriminant-function diagram of Roser and Korsch (1988)54
Figure 13. Th/Sc versus Zr/Sc plot modified from McLennan et al61
Figure 14. Post-Archean Australian shale composite (PAAS) normalized diagrams62
Figure 15. Tectonic model for the generation and emplacement of the Galice Formation
and the underlying Josephine ophiolite75

Figure 16. Location of Middle to Late Jurassic ophiolites of the North America
Cordillera
Figure 17. Map of the Ingalls ophiolite complex and surrounding units
Figure 18. Geologic map of the southeastern part of the Ingalls Ophiolite Complex89
Figure 19. Stratigraphic section (synthesized from map; not measured) of Sheep
Mountain, Iron Mountain, Negro creek and west of Negro creek92
Figure 20. Chondrite-, MORB-normalized diagram95
Figure 21. Th/Yb-Ta/Yb discriminant diagram (Pearce, 1982) for Iron Mountain basalts
and rhyolite and a shaded field and a labeled boninite for the Esmeralda Peaks unit97
Figure 22. Photomicrograph of oolites in limestone within the Iron Mountain unit102
Figure 23. Ti-Zr-Y discriminant diagram for Iron Mountain unit107
Figure 24. Ti-V discriminant diagram for Iron Mountain unit109
Figure 25. Concordia diagram for a rhyolite (sample BL-150) from the Iron Mountain
unit112
Figure 26. Tectonic diagram for the Ingalls Ophiolite Complex118
Figure 27. Location of the Middle to Late Jurassic North American Cordilleran
ophiolites and the older Rattlesnake Creek terrane127
Figure 28. Map of the Ingalls ophiolite complex and surrounding units outlining major
structures
Figure 29. Map showing the mafic units of the Ingalls ophiolite complex and the
unrelated De Roux unit
Figure 30. Geologic map of the Esmeralda Peaks and Longs Pass area of the Ingalls
ophiolite complex

XV

Figure 31. Ti-V basalt discriminant diagram for the Esmeralda Peaks unit142
Figure 32. Th/Yb-Ta/Yb diagram for Esmeralda Peaks unit144
Figure 33. Chondrite- & N-MORB-normalized diagrams for Esmeralda Peaks unit146
Figure 34. Cr-Y discriminant diagram for the Esmeralda Peaks unit157
Figure 35. Cr-Yb diagram for melt and residue compositions for the Esmeralda Peaks
unit159
Figure 36. Fertile-MORB-mantle-normalized diagram163
Figure 37. Field photos of dikes cutting amphibolite166
Figure 38. Tectonostratigraphy of the Ingalls ophiolite complex, Devils Elbow remnant
of the Josephine ophiolite and underlying Rattlesnake Creek terrane (RCT), and the
Josephine ophiolite178
Figure 39. Ta-Hf-Th discriminant diagram for Jurassic Cordilleran ophiolites and their
basement
Figure 40. Map showing the Ingalls ophiolite complex, the De Roux unit, and
surrounding geology and the locations of the sedimentary serpentinite localities194
Figure 41 . Cr/(Cr+Al) versus Mg/(Mg+Fe ^{$2+$}) diagram for detrital Cr-spinels from three

Figure 41. $Cr/(Cr+Al)$ versus Mg/(Mg+Fe ²⁺) diagram for detrital Cr-	-spinels from three
sedimentary serpentinites of the Ingalls ophiolite complex	
Figure 42. Photographs of Gabbro olistolith	
Figure 43. Ti/V and Ta-Hf-Th diagram for mafic breccia clasts	205
Figure 44. Photographs of sedimentary serpentinite thin sections	207
Figure 45. Photo of graded serpentinite sandstone	209
Figure 46. Annotated photo looking north from Navaho Divide	213

Figure 47. Al ₂ O ₃ verses TiO ₂ diagram showing detrital Cr-spinels from three
sedimentary serpentinites of the Ingalls ophiolite complex
Figure 48. Backscatter electron image of a well zoned detrital spinel from sample EL-89-
1
Figure 49. Al-Cr-Fe ³⁺ diagram from Burkhard (1993) for detrital spinels from Ingalls
sedimentary serpentinites
Figure 50. Tectonic model for the formation of the ophiolitic breccia and sedimentary
serpentinite in a Late Jurassic fracture zone setting
Figure 51. Simplified geologic map showing the tectonic elements of the central and
northwest Cascades
Figure 52. Simplified geologic map displaying the tectonic elements east of the Straight
Creek fault and south of the Cascade Crystalline Core236
Figure 53. Location of the Ingalls ophiolite complex, inliers east of the Straight Creek
fault, Blue Mountain Provance, Klamath Mountains, and Northern Sierra terrane239
Figure 54. Structural stacking of terranes within the northwest Cascades, Washington
State
Figure 55. Detailed geologic map of the Hick Butte and Manastash inliers
Figure 56. Th/Yb-Ta/Yb discrimination diagram for Hereford Meadow samples260
Figure 57. Chondrite- and N-MORB-normalized diagrams for Hereford Meadow
amphibolite
Figure 58. Ti-V basalt discriminant diagram for Hereford Meadow amphibolite264
Figure 59. Cr-Y basalt discriminant diagram for Hereford Meadow amphibolite266
Figure 60. Zr vs. TiO ₂ diagram

Figure 61. Concordia diagrams for Lookout Mountain Formation detrital zircons276
Figure 62. Age histograms and probability density distributions for detrital zircons from
the Lookout Mountain Formation
Figure 63. Age histograms and probability density distributions for the youngest (n =
43) detrital zircons from the Lookout Mountain Formation
Figure 64. Concordia diagram and Average mean ²⁰⁷ Pb/ ²⁰⁶ Pb age for the Quartz
Mountain stock
Figure 65. Major element diagrams for the Quartz Mountain stock
Figure 66. Granitic tectonic discrimination diagrams for the Quartz Mountain stock295
Figure 67. Th/Yb-Ta/Yb discrimination diagram for Quartz Mountain stock samples.297
Figure 68. Ti-Zr-Y basalt discriminant diagram for Helena-Haystack mélange and De
Roux unit
Figure 69. Ti-V discriminant diagram for Helena-Haystack mélange and De Roux
unit
Figure 70. Th/Yb-Ta/Yb discrimination diagram for Helena-Haystack mélange and De
Roux unit samples
Figure 71. Chondrite- and N-MORB-normalized diagrams Helena-Haystack
mélange
Figure 72. Geologic map of the type area of the De Roux unit
Figure 73. Schematic geologic map showing the study area in relation to first-order
Precambrian basement provinces of western North America
Helena-Haystack mélange of the Manastash inlier

LIST OF TABLES

Table 1. Cr-spinels from Galice Formation sandstones
Table 2 . Selected analyses of Galice Formation samples
Table 3 . Analyses of Iron Mountain unit basalts and rhyolite103-104
Table 4 . U/Pb data from a rhyolite from the Iron Mountain unit113
Table 5. Early Jurassic radiolarian ages from the Iron Mountain unit115
Table 6. Representative petrography of Ingalls ophiolite complex samples
Table 7. Representative analyses from the Iron Mountain unit
148
Table 8 . Jurassic radiolarian ages from the Ingalls ophiolite complex
Table 9. Analyses of the Esmeralda Peaks unit
Table 10. Analyses of Esmeralda Peaks unit gabbros
Table 11. Analyses of amphibolite and dikes that cut them from the Ingalls ophiolite
complex167
Table 12 . Analyses of samples that cut mylonitic peridotite
Table 13. Analyses of ophiolite derived breccia clasts
Table 14. Detrital Cr-spinel analyses (BL-139-1)
Table 15. Detrital Cr-spinel analyses (BL-216-1)
Table 16. Detrital Cr-spinel analyses (EL-89-1)
Table 17. Analyses of Hereford Meadow amphibolite samples
Table 18. SHRIMP analyses of detrital zircons from the Lookout Mountain
Formation

Table 19.	Ages of detrital zircons from the Lookout Mountain Formation	282
Table 20.	SHRIMP analyses of zircons from a Quartz Mountain stock sample	286
Table 21.	Analyses of Quartz Mountain stock samples	292
Table 22.	Analyses of Helena-Haystack mélange samples3	800-301
Table 23.	Analyses of De Roux unit samples	319-320