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Abstract

Mapping and new structural observations on Kythera demonstrate the presence of a 

major detachment fault, which borders the domed structure of a metamorphic core complex. 

A three stage extensional context accompanied the exhumation of HP-rocks in Kythera. Early 

ductile structures near the mapped detachment fault indicate its initiation under NE-trending 

extension. Later ductile, ductile-brittle and some brittle structures, in the metamorphic unit 

near the detachment, indicate a signifi cant NW-SE extension along-the-arc. The youngest 

brittle structures indicate return to NE-SW extension. 

Thermochronological and structural data show the intensive extension along-the-arc 

in the Kythera area fades out in both directions along the Cretan-Peloponnese ridge. The 

exhumation of HP-rocks in the Hellenic forearc ridge and arc-parallel extension in the 

Hellenic forearc ridge are tectonic episodes resulting from simultaneously high rates of trench 

rollback and slab retreat and consequent expansion of the arc of the overriding Aegean plate 

and simultaneously, the bending of the arc from a more rectilinear shape. Local arc-parallel 

extension occurred where stretching was a maximum, and occurred in a position of oblique 

late convergence along the arc. 

Determination of radiation damage (RD) in zircon using Raman spectroscopy and 

annealing experiments shows wavenumber shifts to correlate strongly with uranium 

concentration of zircon (Uz). Consequently, Raman spectroscopy of v3[SiO
4
] can potentially 

determine the Uz. There is a progressively increasing range of wavenumber shift due to 

Uz increase, which refl ects the ratio of intact versus distorted crystallinity. The time since 

crystallization or last annealing of the zircon will control the amount of radiation damage 

and the Raman wavenumber shift for zircons with a given Uz. A longer time is required for 
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a low-uranium zircon to reach the same amount of alpha and fi ssion damage events of a 

high-uranium zircon, in order for both to show equal  wavenumber shift. Time distinguishes 

zircons of same Uz, which show differences in the Raman wavenumber. The correlation of 

the Raman wavenumber range and Uz may permit the development of a new chronometer 

using Raman measurements only for determining U concentration.
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Figure  12: Low-uranium zircon needs a long time to approach the same amount of decay 
events of a high-uranium zircon to show equal apparent radiation damage. Time is 
what distinguishes zircons of same uranium concentration in the apparent radiation 
damage range. The apparent radiation damage range may allow development of a new 
chronometer using Raman measurements.   ........................................................151
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