EXTENSION AND EXHUMATION OF THE HELLENIC FOREARC

AND

RADIATION DAMAGE IN ZIRCON

by

Antonios E. Marsellos

A Dissertation

Submitted to the University at Albany, State University of New York

in partial fulfillment of

the Requirements for the degree of

Doctor of Philosophy

College of Arts & Sciences

Department of Earth and Atmospheric Sciences

2008
Abstract

Mapping and new structural observations on Kythera demonstrate the presence of a major detachment fault, which borders the domed structure of a metamorphic core complex. A three stage extensional context accompanied the exhumation of HP-rocks in Kythera. Early ductile structures near the mapped detachment fault indicate its initiation under NE-trending extension. Later ductile, ductile-brittle and some brittle structures, in the metamorphic unit near the detachment, indicate a significant NW-SE extension along-the-arc. The youngest brittle structures indicate return to NE-SW extension.

Thermochronological and structural data show the intensive extension along-the-arc in the Kythera area fades out in both directions along the Cretan-Peloponnese ridge. The exhumation of HP-rocks in the Hellenic forearc ridge and arc-parallel extension in the Hellenic forearc ridge are tectonic episodes resulting from simultaneously high rates of trench rollback and slab retreat and consequent expansion of the arc of the overriding Aegean plate and simultaneously, the bending of the arc from a more rectilinear shape. Local arc-parallel extension occurred where stretching was a maximum, and occurred in a position of oblique late convergence along the arc.

Determination of radiation damage (RD) in zircon using Raman spectroscopy and annealing experiments shows wavenumber shifts to correlate strongly with uranium concentration of zircon (Uz). Consequently, Raman spectroscopy of $v_3[SiO_4]$ can potentially determine the Uz. There is a progressively increasing range of wavenumber shift due to Uz increase, which reflects the ratio of intact versus distorted crystallinity. The time since crystallization or last annealing of the zircon will control the amount of radiation damage and the Raman wavenumber shift for zircons with a given Uz. A longer time is required for
a low-uranium zircon to reach the same amount of alpha and fission damage events of a high-uranium zircon, in order for both to show equal wavenumber shift. Time distinguishes zircons of same Uz, which show differences in the Raman wavenumber. The correlation of the Raman wavenumber range and Uz may permit the development of a new chronometer using Raman measurements only for determining U concentration.
Acknowledgements

This Dissertation is by far the most significant scientific accomplishment in my life and it would be impossible to have done it without some people who supported me. Foremost, I thank my research advisor, Professor W.S. F. Kidd, for suggesting that I do my graduate research in Kythera island, the Island of my parents’ home, my grandparents’ home and my best place of vacations and spiritual inspirations. This is the Island of love, of Venus (the goddess of Greek mythology), this is the region where the Antikythera mechanism was found in the bottom of the sea. This Island hosts many secrets, where I did my best to decipher its tectonic mysteries.

I also want to thank both my advisors Bill Kidd and John Garver for their time and patience in listening my ideas and reviewing my Dissertation. Embryonic thoughts need the right guidance to be mature; I thank them for providing me the tools and the means to explore them. I appreciate all of their suggestions on this research, in tectonics, in thermochronology and zircon radiation damage, but also for their experience to deal with unexpected scientific results. This is what makes science so attractive! They were always giving me suggestions for research directions, as they still do. They encouraged me to think through all the scales, since geology is applicable to micro-world, as well as to macro-world. Also, special thanks to John Garver for the funding opportunity to research on radiation damage of zircon.

This thesis has benefited from discussions with Prof. Adam Schoonmaker. I particularly appreciate that even after he left the University at Albany he still advised me where to search or provided me with papers related to Aegean tectonics.

I also thank Prof. Kyriakopoulos of the National & Kapodistrian University of Athens (UOA), Greece for urging me to continue my geological studies overseas and to interact
with other scientific faculty in Earth sciences.

I am also very grateful to my friend Matt Montario who have helped me in more ways than can be acknowledged here, Stephanie Perry, David Gombosi and Eva Enkelmann who not just have introduced me to Fission Track Thermochronology, but also, instruct me tricks and how to avoid traps and mistakes. Also, I would like to thank Chul Lim and Jamie Macdonald for assistance on my first steps at the beginning of my research.

I also have a lot of friends nearby Albany who made it much easier to get through hard winters and holidays. I thank Mrs. Maroula Liapis, her sons, Thanassi and Ntino, her many great friends Nancy, Tony and Alice, John and Guen, Robin and Mat.

To my wife Katerina and future colleague in Science, for continuous support and love, these moments, these years of graduate studies were passed like an exciting dream. She made me think that time consumed on studying or working is meaningful when we are together. I also have to say that she was my best partner at the field trips in Kythera Island, she brings me luck to find significant outcrops, though she does not like spiders and especially the snakes, but who does! She was inspiring me by her questions on geology of the Hellenic Arc and leading me, without knowing, to a better understanding. I have to say that she was also studying for her PhD preliminary exams in the Dept. of Mathematics & Statistics even in the 4x4 vehicle during the fieldtrips!

None of this fieldwork on Kythera Island, in the Peloponnese, and on Crete would have been possible without help and support from my local friends and family. I thank my Australian-Kytherean aunt Botitsa, who gave us more than hospitality and the best Kytherean food, at her beautiful house; and my wife’s family, cousin-in-law and their parents in my wife’s village close to Sparta, in the famous Molaoi, Peloponnese! “Sas afchureesto” which
means in Greek, something a lot more than “thank you!”.

Lastly, I would like to thank those whose spiritual support is even more important. I thank my parents, my brother and all of my grandparents and Greek friends for their support.

This study was supported by the National Science Foundation, American Chemical Society, Geological Society of America, and different units of the University at Albany (FRAP, Graduate Student Organization, and Department of Earth and Atmospheric Sciences).
# Table of Contents

CHAPTER 1 ................................................................................................................................. 1

1.1 Scope of the investigation ........................................................................................... 1
1.2 Brief history of the Hellenic arc ................................................................................. 4
1.3 Trench Roll-back & Slab-retreat ................................................................................. 13
1.4 Recent tectonics in Aegean ...................................................................................... 14
1.5 References ............................................................................................................... 16

CHAPTER 2 .................................................................................................................................. 23

**EXTENSION AND EXHUMATION OF THE HELLENIC FOREARC RIDGE IN KYTHERA**

2.1 Abstract ...................................................................................................................... 23
2.2 Introduction and Geological Setting ....................................................................... 25
2.3 Geodynamic context of Kythera - Extension in the Peloponnese-Cretan Ridge ... 28
2.4 Three stages of Cenozoic extension in Kythera .................................................... 31
2.5 Ductile structures ..................................................................................................... 35
2.6 Ductile-brittle structures ......................................................................................... 35
2.7 Brittle structures ....................................................................................................... 40
2.8 Zircon fission track age .......................................................................................... 41
2.9 Arc fragmentation and possible causes of along-arc stretching......................... 42
   2.9.1 Neogene differential rotations in the Peloponnese-Cretan ridge ................. 42
   2.9.2 Late Neogene-Recent segmentation of the Hellenic Arc ......................... 44
2.10 Late brittle deformation and a comparison to the Cyclades and Crete ............ 44
2.11 Conclusions ............................................................................................................ 46
2.12 Acknowledgements ............................................................................................... 47
2.13 References ............................................................................................................. 48
CHAPTER 3 ....................................................................................................................53

EXTENSION AND EXHUMATION OF THE HP/LT ROCKS
IN THE HELLENIC FOREARC RIDGE

3.1 Abstract ..................................................................................................................53
3.2 Introduction ............................................................................................................55
3.3 Geodynamic context ..............................................................................................60
3.4 Methods ..................................................................................................................63
  3.4.1 Shear sense kinematic indicators ..................................................................63
  3.4.2 Zircon Fission track analyses ........................................................................63
  3.4.3 Apatite Fission track analyses .......................................................................73
  3.4.4 40Ar/39Ar Ages .............................................................................................73
3.5 Results ....................................................................................................................79
  3.5.1 Structural Data .............................................................................................79
  3.5.2 Zircon Fission Track (ZFT) ages ....................................................................81
  3.5.3 Secondary peak ZFT ages .............................................................................83
  3.5.4 Apatite Fission Track (AFT) ages ...................................................................86
  3.5.5 40Ar/39Ar Ages ..........................................................................................87
  3.5.6 Correlation of Structural Data and cooling ages .........................................88
3.6 Discussion and Implications ..................................................................................90
  3.6.1 Arc-parallel lineation versus ZFT ages .........................................................90
  3.6.2 Shear sense displacement pattern ..................................................................91
  3.6.3 Progressive exhumation of HP-rocks in the forearc .......................................92
  3.6.4 Cooling rates ................................................................................................94
  3.6.5 AFT from upper and lower plate in Kythera and Peloponnese ......................97
  3.6.6 Arc-parallel to arc-normal transition time .....................................................98
  3.6.7 Transverse faults initiated as normal faults reveal the transition of arc-parallel to
       arc-normal extension and further arc-segmentation .......................................99
  3.6.8 Bending of the slab produces differential rollback and consequent differential
       extension in the overriding plate ..................................................................100
  3.6.9 Exhumation of HP-rocks under arc-parallel extension ..................................101
  3.6.10 Differential exhumation due to arc-parallel extension - What about a “boudi-
        naged” forearc? .................................................................................................103
  3.6.11 Uniform exhumation below the PAZ versus diachronous and differential exhu-
        mation rates above the PAZ shows a boudinaged (active in ductile regime) exposure
        of HP-rocks in the forearc ...............................................................................104
  3.6.12 One or two exhumation events? ..................................................................107
3.7 Conclusions ..........................................................................................................110
3.8 References ............................................................................................................111
APPENDIX SECTION .................................................................................................................. 158

APPENDIX A (Structural Data - Lineations & Shear Sense Kinematic Indicators). 160
APPENDIX B (Thermochronological Data - Zircon & Apatite Fission Track Data calculated with the Zetage and Binomfit program). ................................. 169
APPENDIX C (PLATES A, B, C, and D - MAPS) ................................................................. (in pocket)
APPENDIX D (Raman Spectroscopy Data - Natural and Synthetic Zircons) ............ 745
List of Figures

CHAPTER 1 ..................................................................................................................1

Figure 1: Simplified cross-section of the Aegean domain in the Late Cretaceous (adapted from Bonneau, 1984; after Trotet et al., 2001) showing the ancient Cycladic subduction zone and the associated formation of the Cycladic unit. ........................................5

Figure 2: Model of exhumation driven by slab rollback: (a to c) continental subduction stage, (d) exhumation of high pressure (HP) rocks and (e) exhumation of high-temperature (HT) rocks in core complex. The red line indicates trench retreat, while the white arrows indicate the trench advance (a to c) and retreat (d to f). Slab dip increases during subduction of the continental block (a to c), and then decreases during oceanic subduction (d to f), (Brun & Faccenna, 2008). ...........................................................................6

Figure 3: Schematic N-S cross-sections that illustrate the model of “oblique escape” for the late Eocene to mid-Miocene tectonic development of the Cretan segment of the Hellenic convergent boundary (Thomson et al., 1999). The age sequence of accretion of the different tectonic units of Crete is numbered in (a). The HP-LT lower plate rocks exposed at present on Crete are shaded. PK, Plattenkalk unit; PQ, Phyllite-Quartzite unit; TR, Tripolis unit; PI, Pindos unit; UM, Uppermost unit; CYC, present-day rocks of the Cyclades. ........................................................................................................7

Figure 4: Simplified tectonostratigraphy (after Thomson et al., 1998, 1999) for the central and western Hellenic Arc. a, thrust of post-Cretaceous age; b, major thrust contacts of Oligocene-Miocene age; c, extensional detachment of Miocene age, recognized by Jolivet et al., (1996) for Crete, by Marsellos & Kidd, (2006) for Kythera; d, Neogene sedimentary rocks of Tortonian age unconformably overlie all the tectonic units of Crete as well as those of Kythera. ..................................................................................................10

Figure 5: Seismic-tomography in a NNE-SSW section through Greece, Transect VII, (Spakman, 1993). .................................................................................................................11

Figure 6 : (a-c) Shallow and deep parts of the subduction zone show 30 and 45 degree dips respectively. Maps with section locations, and (d-f) sketch sections of the Hellenic arc and the subduction zone through the Ionian Islands (western part), western Crete (central part) and Rhodes (eastern part). Stress field along the same cross-sections shown by conventional symbols. Extension occurs parallel to the dip of the Wadati-Benioff zone in all cross-sections at depths of more than 50-60km (from Papazachos, 2000)... 12

Figure 7: Location map of the Aegean Sea and the surrounding lands. The dashed line

- xii -
indicates the boundaries of the Aegean plate and the arrows indicate the motion of the plates relative to Eurasia (Anastasia Kiratzi et al., 2003).

**Figure 8:** A compiled figure (after Kiratzi et al., 2003) shows comparison of earthquake slip vectors and of velocity vectors obtained from GPS and SLR measurement in respect to Eurasia (data from Oral, 1994; Reilinger et al., 1997; Clarke et al., 1998; Cocard et al., 1999; McClusky et al., 2000). Earthquake slip vectors represent movement of the hanging wall relative to the footwall (from Louvari, 2000).

CHAPTER 2 ................................................................................................................22

EXTENSION AND EXHUMATION

OF THE HELLENIC FOREARC RIDGE IN KYTHERA

**Figure 1a:** Geological Map of North Kythera including the Potamos Detachment Fault (PDF), (Marsellos, 2006).

**Figure 1b:** Legend for the geological map of North Kythera (Fig. 1a), (Marsellos, 2006).

**Figure 2:** Tectonic setting of the South Aegean arc. Bathymetry shown by a semi-transparent DEM layer; a cross section line A - A' along a NE-SW line through the Kythera strait.

**Figure 3:** Extensional episodes of the southwest part of the Hellenic fore arc ridge (Marsellos, 2006b). Boxed area represents the region including Kythera.

**Figure 4:** (a,c) Strong stretching lineation (the principal transport vector) plunging gently northwest, in outcrop close to Agia Pelagia area. b. Map shows outcrop location (white spot) and white arrows the direction of extension and the grey arrow the shear sense (top to SE).

**Figure 5:** Vertical outcrop face showing asymmetric structure of an S/C fabric in an outcrop north of Potamos village. White spot in map inset shows the outcrop location, white
arrows are the extension direction and the grey arrow the shear sense (top to SSE).33

**Figure 6:** (a). Outcrop of a C/C’ shear band fabric close to the detachment and mylonite, in the Potamos area. (b). Interpretation of this structure. On index map white spot shows the outcrop locality; white arrows show the extension direction; grey arrow indicates the shear sense (top to SE). ........................................................................................................34

**Figure 7:** Quartzite layers (lighter) in phyllite series (grey), showing boudinage from NNE-SSW trending-extension, close to Potamos mylonites. On index map, white spot shows outcrop location, white arrows are the extension direction and the grey arrow the sense of shear (top to SSE). ........................................................................................................36

**Figure 8:** (right) A grayscale gradient Digital Elevation Model of Kythera constructed from SRTM (Shuttle Radar Terrain Model) of 3 arc-sec resolution. (left) Enlargement of parts of the DEM. Top left is Agia Moni area, and bottom left is Agia Elesa area. The ridgeline offsets suggest dextral slip sense on faults of near E-W strike; they may be Riedel fractures in a wider zone of shear.................................................................38

**Figure 9:** Interpretation of the present major submarine faults around Kythera. The background image is a submarine slope map in which probable submarine faults form areas of highest slope, shown white). These scarps show systematic dextral bending in a zone (the black dashed lines) running near the north end of Kythera, and a probable small dextral pull-apart basin between the Peloponnese and Kythera. Black arrows show orientation of inferred active extension perpendicular to dominant fault strike....39

**CHAPTER 3** ...............................................................................................................53

**EXTENSION AND EXHUMATION OF THE HP/LT ROCKS**

**IN THE HELLENIC FOREARC RIDGE**

**Figure 1a:** Partitioning of the arc-normal (high decoupling-underplating activity) and arc-parallel component (low decoupling-underplating activity, prominent extension along-the-arc structures). Rotation figure boxes after [1] Kissel and Laj, (1988). ............56
Figure 1b: Extensional episodes of the southwest part of the Hellenic fore arc ridge (Marsellos, 2006b). Boxed area represents the region including Kythera. 

Figure 2: Distribution of stretching lineations in the PQU of Peloponnese, Kythera, and western Crete. a) Index map (PQU shown black). b) central-south Peloponnese; c) Neapolis, southeastern Pelopononese; d) northern Kythera; e) western Crete; PQU outcrop areas shown by grey in detailed maps.

Figure 3: Distribution of ductile shear sense top displacement in the PQU of Peloponnese, Kythera, and western Crete. a) Index map (PQU shown black). b) central-south Peloponnese; c) Neapolis, southeastern Pelopononese; d) northern Kythera; e) western Crete; PQU outcrop areas in detailed maps shown by grey.

Figure 4: Distribution of ductile-brittle shear sense top displacement in the PQU of Peloponnese, Kythera, and western Crete. a) Index map (PQU shown black). b) central-south Peloponnese; c) Neapolis, southeastern Pelopononese; d) northern Kythera; e) western Crete; PQU outcrop areas shown in detailed maps by grey.

Figure 5a: Distribution of zircon fission track ages in the Phyllite-Quartzite Unit of Peloponnese, Kythera, and western Crete. Index map of the following (next page) b,c,d,e detailed maps. ZFT ages from this research whose sample localities are shown by circles, while ZFT age ranges in bold-outline boxes from eastern Crete and some from western Crete are from [1] Brix et al., (2002), and are shown by open squares in the index map. The black areas in the index map indicate the outcrops of the PQU.

Figure 5(b-e): Distribution of zircon fission track ages in the Phyllite-Quartzite Unit of Peloponnese, Kythera, and western Crete. ZFT ages from this research are shown by circles; b) central Peloponnese; c) southern Pelopononese; d) northern Kythera; e) western Crete; PQU outcrop areas shown by grey.

Figure 6: Distribution of apatite fission track ages in the Phyllite-Quartzite Unit of Peloponnese, Kythera, and western Crete. a) Index map. The black areas indicate the outcrops of the PQU; b) central Peloponnese; c) southern Pelopononese; d) northern Kythera; e) western Crete. The AFT ranges shown with bold outline boxes, and age (square) shown in Crete are from [1] Thomson et al. (1998).

Figure 7: Sample locations of AFT ages from upper plate (Tripolis flysch), and 40Ar/39Ar ages on Kythera Island. Simplified geological map of Kythera, after Petrocheilos et al. (1966) and our observations.

Figure 8: Kythera and southeastern Peloponnese PQU rocks (K) were situated at a lower
crustal level after the first (arc-normal extension) stage compared to rocks of central Peloponnese PQU and Crete PQU (C,P) which reached the zircon FT PAZ. Localized along-arc stretching caused Kythera and Southeastern Peloponnese rocks to exhume quickly through the zircon FT PAZ between 13-9 Ma.

Figure 9: Results from binomial peak-fitting (Brandon, 1996) represented through the probability density plots. On these plots, the observed distribution is reported together with the individual histogram peaks representing the grain-age components. Black solid lines represent the observed grain-age distribution and grey areas represent the individual peaks. ZFT grain ages are from the exposed PQU rocks (lower plate): a) seven samples from the PQU of central Peloponnese. b) nine samples from the PQU of southern Peloponnese. c) nine samples from the PQU of Kythera. d) six samples from PQU of western Crete.

Figure 10: Observed orientation of the stretching lineations of the exposed PQU rocks is plotted together with the individual zircon fission track ages. The grey shaded box contains the ZFT ages of PQU rocks having a strong arc-parallel extensional stretching lineation.


Figure 12 (previous page): Depiction of the bending of isotherms during the bending of the subducting slab below the western half of the Hellenic forearc. GPS velocities derived from an average of five stations LEON, KYRA, OMAL, XRIS and ROML after McClusky et al., (2000).

Figure 13 (previous page): The grey bars represent the mean elevation derived from the sample collection locations from each area. The black bars represent the mean ZFT age from all the samples of each individual area derived by the Binomfit program. The red line is the topographic profile along the forearc ridge through the sample locations.

Figure 14: Two end-member hypothesis proposed shown in models A and B. In both models, Kythera PQU rocks are left at a lower crustal level after the first (arc-normal
extension) stage but in model B the detachment is not held at depth. The rocks with older exhumation ages (central Peloponnese PQU and Crete PQU) are crossing the zircon PAZ (Partial Annealing Zone), while the rocks with younger exhumation ages (southeastern Peloponnese PQU and Kythera PQU) were deeper, below the PAZ. After 12 Ma the Kythera-Neapolis rocks are crossing the zircon PAZ faster than those of central Peloponnese and Crete.

CHAPTER 4 ..............................................................................................................120

RADIATION DAMAGE AND URANIUM CONCENTRATIONS IN ZIRCONS

**Figure 1:** A. Pyrophyllite cases used for annealing individual zircon grains; B. One pyrophyllite case with a zircon of 130 µm length (c-axis) in the center. .............127

**Figure 2:** General band assignment for the most intense bands. FWHM stands for Full Width Half Maximum. The depicted Raman spectra belong to a zircon measured before annealing, and after two successive steps of annealing. .................................130

**Figure 3:** Raman measurements made on the same grains before and after 1000°C (96h) and 1400°C (24h) annealing experiments indicate that high-uranium concentration zircons show larger shift to higher wavenumbers than the low-uranium zircons. All move substantially towards the region of the synthetic zircons having no uranium content, and no radiation damage (the undamaged zircon region). ........................................132

**Figure 4:** The average (3 measurements for first annealing and 5 measurements for second annealing) of the v3 and v1 frequencies of the annealed zircons. Those approach the end member zircon wavenumber range. Numbers in boxes are the v3 and v1 band frequencies of the synthetic zircons with no hafnium and no uranium content (and therefore no radiation damage) with their standard deviation..................................................134

**Figure 5:** The average of the FWHM of the v3 and v1 Raman spectra only approach the undamaged zircon wavenumber range implying less than full annealing or an annealing
process which does not directly invert progressive metamictization. Numbers in boxes are the FWHM of v3 and v1 band frequencies of the synthetic zircons of no hafnium and no uranium content, (and therefore no radiation damage) with their standard deviation. 135

**Figure 6:** (a) Grain map of Raman analysis locations for a zoned zircon grain; (b) figure 6d flipped horizontally to match the orientation of the diagram in (a); (c) photomicrograph of the zircon under plane transmitted light (50x objective); (d) mica print of the zircon after irradiation showing the induced fission tracks in the mica. 136

**Figure 7:** Raman spectra measurements of the v3 and v1 \([\text{SiO}_4]\) peak wavenumber, as well as their FWHM, of the synthetic zircons, with and without hafnium content, versus the zircon uranium concentration. Error bars represent are standard deviation. 140

**Figure 8:** (A) High correlation between the Raman wavenumber of the v3 \([\text{SiO}_4]\) band frequencies, and (B) Full Width Half Maximum - FWHM of the v3 \([\text{SiO}_4]\) band peak plotted against the uranium content of individual natural zircons. 143

**Figure 9:** Correlation between (A) the Raman wavenumber of the v1 \([\text{SiO}_4]\) band frequencies and (B) FWHM of v1 \([\text{SiO}_4]\) band peak, and uranium content of individual natural zircons. 144

**Figure 10:** Raman wavenumber range increases with uranium concentration, reflecting the degree of saturation of the zircon by accumulated radiation damage (the proportion of the distorted to undistorted crystallinity in zircon). 147

**Figure 11:** Radiation damage over same elapsed time in low- and high-U,Th concentration zircon. The radiation damage in the recoil-affected area around the daughter atom as well as the entire crystallinity of the zircon depends on the uranium/thorium content in the grain. Low U,Th content results in a small number of alpha, recoil and fission events, in the zircon host, and a low volume of overall radiation damage. In contrast, natural high-uranium zircon results in a much denser distribution of radiation damage compared to low-uranium zircon. 149

**Figure 12:** Low-uranium zircon needs a long time to approach the same amount of decay events of a high-uranium zircon to show equal apparent radiation damage. Time is what distinguishes zircons of same uranium concentration in the apparent radiation damage range. The apparent radiation damage range may allow development of a new chronometer using Raman measurements. 151
List of Tables

CHAPTER 3 ................................................................................................................................. 53

EXHUMATION OF THE HP/LT ROCKS
IN THE HELLENIC FOREARC RIDGE

Table 1: Summary of zircon fission-track data from the Hellenic Forearc ridge. .... 71
Table 2: Summary of apatite fission-track data from the Hellenic Fore-Arc ridge. .... 76
Table 3: ⁴⁰Ar/³⁹Ar analytical data ................................................................. 78
Table 4: Summary of Zircon Fission Track first and second peak ages using Binomfit program (Brandon, 1996). ................................................................. 85

CHAPTER 4 ............................................................................................................................... 120

REVEALING RADIATION DAMAGE RANGE IN ZIRCON
THROUGH URANIUM CONCENTRATION

Table 1: Raman data of the v3 [SiO₄] band from the zircon of Fig. 6. ............... 137

Table 2: Raman wavenumber frequencies of v1 and v3 [SiO₄] bands and their FWHM for the synthetic zircons, with and without hafnium content. .............. 141