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ABSTRACT

The Josephine Peridotite is a large ultramafic complex exposed in northern
California and soﬁthern Oregon and represents the mantle portion of the Late
Jurassic Josephine ophiolite. This unit has been subjected to deformation over a
broad range of physical conditions. Deformation at temperatures below ~550°C
invariably appears to have been accompanied by serpentinization. At relatively
low temperatures, the dominant mode of deformation apparently was cataclasis.
The products of such deformation are referred to as incohesive serpentinites, since
the primary cohesion was greatly reduced during the extensive fracturing
associated with cataclasis. Despite abundant indications of cataclasis, these rocks
typically have planar anisotropies, and occasionally composite planar fabrics.

Deformation and concomitant serpentinization near the upper limit of
antigorite stability (based on oxygen isotope data and microstructural observations)
resulted in the formation of serpentinite mylonites which are strongly foliatied,
typically lineated mylonitic rocks with microstructures very similar to those
commonly found in quartzofeldspathic mylonites. Of particular interest are the
shear band foliations and porphyroclast systems observed in these rocks.

Several deformation styles have been inferred to have resulted from
deformation above ~550°C. These include: (a) distributed flow - which probably
occurred at asthenospheric conditions, (b) localized olivine plasticity within shear
zones with extensive recovery - which is interpreted to have occurred at high
temperature lithospheric conditions, (¢) localized olivine plasticity associated with
some cataclasis producing strongly foliated peridotite mylonites - which is

interpreted to have occurred near the lower limits of olivine plasticity, (d) and



extensive cataclasis of peridotite which is interpreted to have occurred below the
lower limits of olivine plasticity, but above the upper limit of antigorite stability.
Serpentinite mylonites and subordinate peridotite mylonites occur within an
extensive, originally subhorizontal shear zone which occurs approximately one
kilometer beneathv the base of the crustal sequence. This structure is interpreted to
represent an extensional detachment shear zone which formed from amagmatic
lithospheric extension during periods of low magma supply, and is considered to
have accommodated the previously determined rotations of the overlying crustal

sequence.
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Well I'm sitting down by the highway,
Down by that highway side.
Everybody’s going somewhere,

Riding just as fast as they can ride.

I guess they’ve got a lot to do

Before they can rest assured

Their lives are justified.

Pray to God for me, babe,

He can let me slide.

Well I've been up and down this highway,
Far as my eyes can see.

No matter how fast I run,

I can never seem to get away from me.
No matter where I am,

I can’t help thinking I’'m just a day away
From where I want to be.

Well I’'m running home now,

Like a river to the sea.

Jackson Browne
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