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ABSTRACT

A fission track and “°Ar/°Ar thermochronology study of plutonic and volcanic
rocks from the Gangdese magmatic belt, southern Tibet, gives evidence for average
cooling rates of 4 - 10 °C/Ma (54-0 Ma) and unroofing rates of 0.1 - 0.3 mm/y for this
part of the Gangdese batholith. Linzizong volcanics of the Gangdese belt in the Maqu
area have experienced deep burial and slow cooling, and an unroofing rate of ~0.3 mm/y
was obtained for the period of 40-55 Ma. It is confirmed that there has been a puise of
unroofing (>3 mm/y) at 20-15 Ma in the Quxu pluton of the Gangdese batholith based on
fission track and “°Ar/*°Ar K-feldspar modeling results. It is evident from fission track
data that this pulse was also experienced by plutons north of the Quxu area. These data
suggest that onset of intense uplift of southern Lhasa terrane was long after (20 Ma later
than) the beginning of collision between India and Asia, and that the uplift has been
episodic rather than steady. Therefore, some tectonic models of the India-Eurasia
collision, such as Continental Underthrusting, and Continental Injection, are not favored
by these data.

New information on the eruption ages of the voicanic rocks in the southern Lhasa
terrane has been obtained. An eruptional age of 50 + 0.6 Ma of the upper part of
Linzizong sequence is indicated by a flat K-feldspar “°Ar/3°Ar age spectrum. The lower
part of the Linzizong sequence may have been formed 60-65 Ma ago. Miocene age (~15
Ma) volcanic rocks in Majiang area were found to be conformable with conglomerates
containing pebbles of Gangdese magmatic rocks, showing that this molasse deposit is
middie Miocene in age.

Detailed structural mapping in the Maqu area suggests that the total crustal
shortening in the Linzizong Formation is about 15-25 %, and the minimum shortening in
the Cretaceous Takena Formation and older sediments is about ~40 % along the Maqu

and Ganden sections. A biotite sample from a post-deformation diorite stock in the



ii

Takena Formation yields a flat age spectrum of ~65 Ma, with an isochron age of 65.6 +
1.9 Ma. This requires that the crustal shortening represented by the deformation in the
Takena formation occurred prior to the start of the India-Asia collision.

A major low-angle ductile shear zone, containing S-C mylonites, involves
metamorphosed granitic rocks at the southeastern edge of the Nyainqentanglha mountain
range. Kinematic criteria consistently indicate a top-to-SE sense of shear. FT and
“Ar/3%Ar data suggest very young ages (9-0 Ma) and rapid cooling (up to ~200 °C/Ma)
of the footwall rocks. This shear zone and associated metamorphic rocks are interpreted
as a metamorphic core complex structure. The timing of deformation suggests that the
extensional tectonics in this area started at 8 + 3 Ma, which in turn may indicate that the
maximum sustainable crustal thickness was reached in southern Tibet around this time.

A substantial E-W striking and N-dipping ductile shear zone was found within
granitic rocks of the Gangdese plutonic belt, in the Quxu area, just north of the Indus-
Zangbo suture. Prominent stretching lineation lies on the foliation and is parallel to the
dip direction. Quartz c-axis fabrics show strongly asymmetric patterns within the shear
zone. Kinematic indicators suggest a top-to-north sense of shear. The lower grade
phyllitic rocks in the northern part of this shear zone have been sheared into phyllonites. It
is suggested that the shearing deformation occurred between 30-40 Ma, not long after the
emplacement of the Quxu pluton. We interpret this shear zone as a N-S extensional fault
in the upper crust, and its origin is probably similar to that of the younger, large-scale, E-
W trending low-angle normal faults documented in the Higher Himalayas to the south of

the suture zone.
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