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ABSTRACT

As an aid to understanding the high-temperature microstructures of rocks, the
development of microstructures in the hexagonal organic matérial, octachloropropane,
was studied with in-situ optical microscopy. It was found that the deformation behavior
of grains in hard and soft orientations for slip is different during simple shearing, |
although they both grow. Strain heterogeneity is induced by partitioning of deformation
into relatively increased components of rigid-body rotation and translation in hard grains
and strains in soft grains.

A steady-state foliation, having a constant intensity and orientation was observed
in simple shearing. The steady state is maintained by a balance between foliation-
strengthening and -weakening processes. The major foliation-strengthening process is
intragranular strain, and the major foliation-weakening process is dynamic
recrystallization including migration of straight or slightly wavy grain boundaries, grain
dissection and rotational recrystallization. Other minor weakening processes are grain
amalgamation, relative rigidity of hard grains and grain boundary sliding. Foliation
intensity is lower than the axial ratio of the bulk strain ellipse by a factor 0.2 - 0.4 at a
total shear strain of 1.3 - 1.8, indicating that grain-shape foliations of this type cannot
be used for strain calculation.

Subgrain boundaries which appear similar under optical microscopy originate in
seven different ways. They are classical polygonization, kinking, misorientation
reduction, grain coalescence, impingement of migrating subgrain boundaries, edgewise
propagation, and static development of subgrain boundaries from optically strain-free
grains. The preferred orientation of subgrain boundaries with respect to the grain-shape
foliation is symmetric in pure-sheared samples and asymmetric in simple-sheared
samples.

Grain boundary sliding can occur by discontinuities in the strain, rotation and/or
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translation components of deformation across the boundary in deforming samples. Grain
boundary diffusion and intragranular plastic deformation are found to be effective in
accommodating grain boundary sliding. Grain boundary openings can develop in
association with grain boundary sliding, preferentially along grain boundaries at a low
angle to the shortening direction. Once grain boundary openings occur, they
continuously change their shape and are eventually closed by thrusting of sliding grains
and grain overgrowth into the openings. An approximately equal volume of new
openings grow in other places, however, maintaining a steady ratio of 0.5 - 3% of the
sample volume without development of any large scale fracture. The opening and

closing of grain boundaries usually involve neighbor switching of surrounding grains,
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