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ABSTRACT

Overthe past12years, many differentcomputational methods or variations of existing
methods have been proposed for determining paleostress tensors from fault populations and
their slip directions. These methods are all based upon well-known relationships between
stress and shearand use iterative, non-linear mathematical algorithms which seek to minimize
the angles between the calculated maximum shear stress direction and the observed movement
directions on each fault plane in a population. The solution returned is the best-fit paleostress
tensor for the population.

By taking the Coulomb failure criterion into account, several paleostress analysis
programs havebeenabletouselinear,ratherthannon-linear, methodstosolve forapaleostress
tensor. Theadvantagesofusinglinearequationsisthattheyarelesscomputationally-intensive
and are far easier to solve.

A majorproblem withcomputational methods of paleostress analysis is thatvery little
work has been done on evaluating their effectiveness and/or possible limitations. If the
techniques return results consistent with other methods of estimating paleostress directions,
or with various kinematic analysis methods, they are often used by geologists. If not, an
attemptmaybemadetoexplain why,butgeologicalexplanationsare usually soughtratherthan
criticizing the paleostress analysis methods. This study isanattemptto formulate the problem
and to begin systematically examining it.

For my thesis project, I obtained several working versions of paleostress analysis
computer programs. After much work, I decided to testtwo of the methods -- those developed
by Angelier and Reches. Artificial fault populations were created for these tests with a slip
vector calculation program which I wrote specifically for that purpose. The artificial fault
populations were created using exactly the same initial assumptions that the paleostress

analysis programs used.

il



il

An artificial fault population is a set of fault orientations and their associated slip
directions consistent witha predetermined stress field. Forallofthe faultpopulationscreated,
the most compressive principal stress axis was vertical with a relative magnitude of +1.0 and
the least compressive principal stress axis was oriented north-south with arelative magnitude
of -1.0. Entering these populations into a paleostress analysis program should have,
theoretically, returned the same orientations for the principal stress axes.

With thisinmind,Ichosetocreateseveral differenttypesofartificial faultpopulations
totestpossiblelimitationsinpaleostressanalysis. lused randomly-oriented faultpopulations,
special-case fault populations, and fault populations which had data added or removed from
them.

Theresultsofthese testsare thatthetwo paleostressanalysisprogramslexaminedmay
work sufficiently well for certain types of well-constrained fault populations, but often give
large errors when examining special types of fault sets such as conjugate faults, orthorhombic
symmetry faults, and fault populations where all of the faults have very similar orientations.
The paleostress analysis programs may also be sensitive to measurement errors and/or
extraneous data depending upon several factors, including the orientations of the faults in
question.

In conclusion, much more work is currently needed to further examine this topic and
to begin to formulate general guidelines for applying paleostress analysis methods to fault

populations gathered by geologists in the field.
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CHAPTER 1

INTRODUCTION

A numerical algorithm for paleostress analysis using fault populations was first
proposed by Carey and Brunier (1974) sixteen years ago (Angelier and Goguel, 1979;
Etchecopar, er. al., 1981; Angelier, et. al., 1982; Célérier, 1988; Angelier, 1989). Since that
time, several different computational methods have been proposed (Carey and Brunier, 1974;
Armijo and Cisternas, 1978; Angelier, 1979; Etchecopar, et. al.,1981; Angelier, et. al., 1982;
Vasseur, et. al., 1983; Angelier, 1984; Gephart and Forsyth, 1984; Michael, 1984; Reches,
1987; Angelier, 1989), each having distinct advantages over the preceding ones. These
numerical methods are all based upon the theoretical relationships between stress and shear
described by Wallace (1951) and Bott (1959) and use iterative methods to seek a best-fit
between the observed slip directions of faults and the directions of maximum shear stress on
each fault plane for different paleostress tensors (Etchecopar, et. al., 1981; Angelier, 1984;
Gephart and Forsyth, 1984; Michael, 1984; Reches, 1987; Angelier, 1989).

Paleostress analysis programs require an initial data set of faults assumed, or known,
tohavebeenactivated duringasingle tectoniceventwithinahomogeneousstress field. A fault

datum consists of the fault's orientation, slip direction, and sense of slip. This faultpopulation

data is used to calculate the orientation of the three principal stress axes 0, 0,, and O;and a

value signifying some ratio of their relative magnitudes, commonly denoted as () (Angelier,

1979; Michael, 1984).

1.1 Purpose of this Study

Paleostress analysis techniques have recently been applied by many geologists to



regional faultpopulations (Angelierand Mechler,1977; Angelier,1979; Angelierand Goguel,
1979; Aydin, 1980; Etchecopar, et. al., 1981; Angelier, et. al., 1982; Angelier, 1984;
Michael, 1984; Aleksandrowski, 1985; Angelier, et. al., 1985; Frizzell and Zoback, 1987;
Hancock, et. al., 1987; Julien and Cornet, 1987; Lisle, 1987; Pfiffner and Burkhard, 1987;
Reches, 1987; Sassi and Carey-Gailhardis, 1987; Caputo and Caputo, 1988; Célérier, 1988;
Larroque and Laurent, 1988; Lisle, 1988; Angelier, 1989; Hardcastle, 1989; Hatzor and
Reches, 1989; Manning and de Boer, 1989; Wallbrecher and Fritz, 1989; Umhoefer, 1990) in
ordertoderiveregional paleostresstensors. A closeexamination of published studies indicate
thatnumerical paleostress analysistechniquesarecommonly appliedto faultpopulations only
when the results are consistent with other methods of estimating paleostresses (Frizzell and
Zoback, 1987; Hancock, et. al., 1987; Pfiffner and Burkhard, 1987; Larroque and Laurent,
1988; Hardcastle, 1989; Manning and de Boer, 1989; Wallbrecher and Fritz, 1989; Hatzor
and Reches, 1990). Unfortunately, very little work has been published on the possible
limitations ofindividual paleostress analysis programs currently inuse (Angelier, et. al.,1982;
Angelier, 1984; Célérier, 1988) and I am not aware of any published papers providing a
detailed study of the limitations of paleostress analysis programs in general. Thisimplies that
some researchers may be applying paleostress analysis to regional fault populations without
havingaclearideaofhow appropriate the application of suchtechniquesto theirdatasets may
be (Edelman, 1989) although, since work on this thesis has started, several researchers have
begunto examine this importanttopic (Pershing, 1989; Pollard, 1990).

My studyisanattempttocorrectthisproblem by systematically examining two widely-
used paleostress analysis programs and demonstrating that they both possess important
limitations. Geologists should be made aware of these limitations before they use paleostress

analysis techniques to determine a possible paleostress tensor from field data.



1.2 Scope of this Study

The two paleostress analysis programs I chose to examine for this study were those
developed by Angelier (Angelier, 1979; Angelier, 1989) and Reches (Reches, 1987). These
programs were chosen for testing because the literature indicated that they are the most
commonly used paleostress analysis programs (Angelier, 1979; Angelier, et. al., 1982;
Angelier, 1984; Angelier,et. al.,1985; Pfiffnerand Burkhard, 1987; Reches, 1987; Angelier,
1989; Hardcastle, 1989; Hatzor and Reches, 1990). I have also begun examining other
paleostress analysis programs including those developed by Etchecopar (Etchecopar, et. al.,
1981),Michael (Michael, 1984), Gephart(Gephartand Forsyth, 1984),and Lisle (Lisle,, 1988)
although the results from those programs are too preliminary to be included here and will be
addressed in a future paper.

To evaluate the usefulness of the paleostress analysis programs tested, [ will address

the following three questions in this thesis.

1. Do the two paleostress analysis programs chosen for testing have significant
limitations?

2. If so, whatexactly are those limitations?

3. How does this information pertain to the geologist applying paleostress analysis
techniques?

Severalresearchers have shown thateach ofthe paleostress analysis programs I tested
willyield geologically-reasonable, orexpected, results forcertain faultpopulations (Angelier,
1979; Angelier, et. al., 1982; Angelier, 1984; Angelier, et. al., 1985; Pfiffner and Burkhard,
1987; Reches, 1987; Angelier, 1989; Hardcastle, 1989; Hatzor and Reches, 1990). I

specifically setoutto find situationsinwhichthe methods wouldnotyieldthe expectedresults.



In this way, I hoped to discoverand evaluate any weaknesses inherent in these programs.
The hypothesis I wish to prove in this thesis is that computational methods of
paleostress analysis have several significant limitations that geologists must be aware of when

using these techniques to derive a regional paleostress tensor from natural fault populations.

1.3 Testing Procedures

All of the paleostress analysis programs tested make three very important initial

assumptions.

1. The fault and slip orientations which comprise the data set are associated with a
unique, homogeneous regional paleostress tensor.

2. The faults each behave independently of one another and do notinteract mechanically.

3. The movement vector for each fault plane corresponds to the direction of maximum

shearstress within thatplane.

Artificial fault populations consistent with a known stress tensor were derived using
these three simplifying assumptions. These artificial fault population datasets were thenused

totestthe paleostress analysis programs in four different ways.

1. Theaccuracy ofeachpaleostressanalysisprogram wastestedbycreatingrandom fault-
slip populations consistent with a chosen stress tensor. The orientations of the fault
planes were randomly chosen and their slip directions were coincident with the
direction of maximum shear stress within each plane. These fault populations were

used as input for the paleostress analysis programs and the results were compared to



the original stress tensor under which the fault-slip data were created.

The behavior of each paleostress analysis program when applied to special-case fault
populations was tested by using the following fault populations associated with a

known stress tensor.

A. Simple Andersonian conjugate faultsets (Anderson, 1951).

B. Orthorhombic, or rhombohedral, fault populations (Aydin and Reches, 1982;
Krantz, 1986; Krantz, 1989).

C. Fault populations where all faults have approximately the same orientation.

D. Fault populations where some or all of the faults have approximately the same

orientation as the principal stress planes.

The stability ofthe calculated paleostresstensors to insufficientdata, extraneous data,
and measurementerrors was tested by applying the following proceduresandnotingthe

effectupon the calculated paleostress tensor.

A. Randomly removing one or more fault planes from a fault population.

B. Randomly adding one or more fault planes, with randomly chosen slip
directions, to the fault population.

C. Giving a +5° variability to the orientations of the fault plane normal and slip

vectors.

Finally, the programs were compared to one another, using both natural and artificial
fault populations, to see how consistent the results were given the same initial data

sets. Since one assumption shared by all of the paleostress analysis programs is that



there exists aunique regional paleostress tensor for any given fault population arising
from a single tectonic event, inconsistencies between the output of the various

programs would indicate their unreliability given certain initial data sets.

1.4 Thesis Organization

I have organized this thesis into four main sections. Chapters 2 and 3 introduce the
concept of paleostress analysis as it is applied to fault populations and give a review of
previous work. The second section consists of chapter 4 which discusses problems inherentin
paleostress analysis, chapter S which describes the program and methodology used to generate
artificial fault populations, and chapters 6 and 7 which describe the two paleostress analysis
programs tested. The third section, consisting of chapters 8 and 9, is the main body of the
thesisand detailsthe proceduresusedtotestthe paleostressanalysis programs and presentsthe
resultsofthose tests. Finally,chapter 10 presents the conclusions ofthisstudy and suggestions

for further work.



CHAPTER 2

PALEOSTRESS ANALYSIS

Paleostress analysis refers to various methods which attempt to determine a regional
stress tensor consistent with existing geologic structures. Several different techniques for
estimating stress tensors have been proposed. Principal stress directions and relative
magnitudes have been determined from fault populations (Angelier and Mechler, 1977;
Angelier,1979; Angelierand Goguel,1979; Aydin, 1980; Etchecopar, et. al.,1981; Angelier,
et. al., 1982; Angelier, 1984; Michael, 1984; Alesandrowski, 1985; Angelier, et. al., 1985;
Frizzell and Zoback, 1987; Hancock, et. at., 1987; Lisle, 1987; Pfiffner and Burkhard, 1987;
Reches, 1987; Sassi and Carey-Gailhardis, 1987; Caputo and Caputo, 1988; Célérier, 1988;
Larroque and Laurent, 1988; Lisle, 1988; Angelier, 1989; Hardcastle, 1989; Manning and de
Boer, 1989; McBride, 1989; Wallbrecher and Fritz, 1989; Hatzor and Reches, 1990;
Umhoefer, 1990), earthquake focal mechanism data (McKenzie, 1969; Ellsworth and
Zhonghuai, 1980; Vasseur, et. al.,1983; Gephartand Forsyth, 1984; Julien and Cornet, 1987;
Pfiffner and Burkhard, 1987; Wahlstrom, 1987; Michael, 1987a; Michael, 1987b; Jones,
1988), borehole elongation data (Zoback and Zoback, 1980; Plumb and Cox, 1986; Suter,
1986; Hansen and Mount, 1990), joint sets (Price, 1966; Engelder and Geiser, 1980;
Engelder, 1982; Hancock, 1985; Hancock, et. al., 1987), dike sets (Berger, 1971; Muller and
Pollard, 1977; Davidsonand Park, 1978; Borradaile, 1986; Rice, 1986; Lisle, 1989; Manning
and de Boer, 1989; Hansen and Mount, 1990), calcite e-twins (Spang, 1972; Spang and Van
Der Lee, 1975; Laurent, et. al., 1981; Pfiffner and Burkhard, 1987; Larroque and Laurent,
1988), various microstructural features (Friedman, 1964; Scott, et. al., 1965; Carter and
Raleigh, 1969; Spang and Van Der Lee, 1975; White, 1979; Plumb, et. al., 1984; Pécher, et.
al.,1985; Lespinasse and Pécher, 1986; Kowallis, et. al., 1987; Jang, et. al., 1989; Laubach,

1989; Shepard, 1990), folds (Dieterich and Carter, 1969; Michael, 1984), stylolites



(Arthaud and Mattaeur, 1969; Buchner, 1981; Hancock, et. al., 1987), kink bands (Gay and
Weiss, 1974), and fracture markings on joint surfaces (Bahatand Rabinovich, 1988).
Fault-striation paleostress analysis, the topic of this thesis, is the subset of paleostress

analysis which attempts to estimate the relative magnitudes and orientations of the three
principal stresses 0,, 0,, and O; (most compressive to least compressive respectively) from

fault populations and their associated slip directions.

2.1 Andersonian Fault Classification

To determine the stress tensor associated with a displacement along a faultin a given
slipdirection,some hypothesismustbe made aboutthe failure mechanismsinvolved. The first,
and simplest, hypothesis is that failure occurred within intact isotropic rock. In Anderson's

classic work on faulting (Anderson, 1951, p. 7), Coulomb's failure criterion (Coulomb, 1776;

Handin, 1969) was used to predict the orientations of the three principal stress axes 0,, 0,, and

O, resulting in the three common types of conjugate fault systems -- thrust, normal, and

wrench.
Andersonbeganbyexamininganinfinitesimal prism (oratleastone smallenoughsuch

that the stresses present are homogeneous throughout its volume) situated within a right-
handed XYZ coordinate system where O,, 0,, and O; are parallel the X, Y, and Z directions

respectively (figure 2-1). If face A is assumed to be of unit area and 0 is defined as the angle
between plane A and the X-axis, this would imply an area of sin(0) for face <oprt>and an area

of cos(0) for face <pqrs>. If the system is in equilibrium, then a simple force balance shows
that the force acting normal to plane A (which is equivalent to the normal stress O, upon the

plane) is



X = Sigma 1
Y = Sigma 2

Z = Sigma 3

°)

Figure 2-1 - An infinitesimal prism <opqrst> situated within a right-handed XY Z coordinate

system. The three principal stresses O,, 0,, and O, parallel the X, Y, and Z-axes respectively

and O defines the angle between plane A and the X-axis. Plane A is defined to be of unit area.
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0,= 0,sin(0)sin(0) + O5cos(0)cos(0) (1)

and the shear stress O, which is found by resolving the forces parallel to the direction <oq>,

is

0,=0sin(0)cos(0) - 05sin(0)cos(0) (2)

which can be reduced using the trigonometric identity 2sin(0)cos(0) = sin(20) to yield

0,=1[(0,-03)/2]sin(20) (3)

Itis clear, for any given magnitudes of principal stresses present, that the shear stress
will be greatest when sin(20) =+1, or 0 = +45°. There are thus two planes at any point across
which the shear stress magnitudes are at a maximum.

Anderson noted, however, that in natural and artificial conjugate faults, an acute and

an obtuse angle are present with the acute angle bisected by O, and the obtuse angle bisected

by O, (i.e. the principal stress axes are not oriented at 45° from the fault planes as equation (3)

predicts). This principal is occasionally referred to as Hartmann's Rule (Hartmann, 1896;
Dennis, 1987, p.238) after the French metallurgist who first formulated it. The solution to this
discrepancy between theory and observation is to take into account the Coulomb failure

criterion

0s:CO+ uo-n (4)

where C;is a constant denoting the cohesion of the fault surface and |l is the coefficient of
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internal friction (Coulomb, 1776; Handin, 1969). Thisisneeded because friction existsonreal

fault surfaces. Substituting inthe normal stress from equation (1) results in

0,=Cy+ M[O,;sin*( 0) + O5cos’( 0)] (5)

and substituting the identities O, = [(0,+ 05)/2]+[(0,-0;)/2]and O;=[(0O,+ 03)/2]-[(0,-
0,)/2]into equation (5) and reducing it through suitable algebraic manipulations and the two

trigonometric identities [sin?(0) + cos?(0)] =1 and [cos*(0) - sin?(0)] = cos(20) yields

0,=Cy+ B[((O,+03)/2)-((0,-03)/2)co0s(20)] (6)

or

[(0,-03)/2]sin(20) = Cy + R[((O, + 03) / 2) ((O,- O3) / 2)cos(20)] (7)

The problem is now to find the planes along which the shearing stress (which drives
slip) will most likely overcome the normal stress (which acts to retard slip). Since the shear
stress may have both positive and negative values, the problem reduces to finding the angles

for which

[(0,-05) /2]sin(20) + W[((O, + O5) / 2) ((0, - O3) / 2)cos(20)] (8)

is at a maximum, and

[(0,-05) /2]sin(20) - B[((O,+ O3)/2) ((0,- O3) /2)cos(20)] (9)
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isataminimum. Differentiating these two equations with respectto 0 and setting them equal

to zero yields

[(O,-0,)/2]cos(20) = W[(O, - 0;) /2]sin(20) = 0 (10)

which reduces to

cos(20) + Usin(20) =0 (11)

or, alternatively

tan(20) = (1 / W) (12)

Since the coefficient of friction in most rocks has been experimentally determined to
range from 0.5 to 1.0 (Byerlee, 1968; Handin, 1969; Jaeger and Cook, 1979, p.59; Brace and

Kohlstedt, 1980), O will be less than 45° and the angle between conjugate faults will be less
than 90° where bisected by O, and greater than 90° where bisected by O;.

Andersonreasoned thatin natural faults one of the principal stress orientations will be
vertical since the surface of the earth may be thought of as a free surface unable to support
shear stresses. The other two principal stresses are thus required to be horizontal. Assuming
that the relative magnitudes of the principal stresses must change for faulting to occur, there
are three possible relationships between the magnitudes of the horizontal principal stresses --
they are eitherbothincreasinginmagnitude,bothdecreasinginmagnitude,oroneisincreasing
while the other is decreasing (Anderson, 1951, p. 13). These correspond, respectively, to the

three common types of conjugate fault systems -- reverse faults, normal
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faults, and wrench faults (figure 2-2). The success of Anderson's method is witnessed by the
fact that it is still used today as a first approximation for determining the principal stress
orientations from conjugate faultsets (Davis, 1984, p.306; Ragan, 1985,p.135; Suppe, 1985,
p- 292; Rowland, 1986, p. 134; Dennis, 1987, p. 236; Marshak and Mitra, 1988, p. 261;
Spencer, 1988, p. 199). Care mustbe used, however, since conjugate fault sets exist which do
not fit the Andersonian classification (Oertel, 1965; Aydin, 1977; Aydin and Reches, 1982;

Reches and Dieterich, 1983; Krantz, 1988; Krantz, 1989).

2.2 Bott's Formula

The next important steps in paleostress analysis were the determination of the
relationship of shear stresses to the orientation of fault planes and their associated slip
directions (Wallace, 1951) and the relationship of the principal stress magnitudes and
orientations to the resulting directions of maximum shear stress within fault planes (Bott,
1959). These steps were motivated by the fact that rock in its natural state is rarely intact and
isotropic (Anderson's assumption). The upper5to 10 kilometers of the earth's crust is riddled
with preexisting faultplanes, joints,and bedding surfaces with slidingoften occurring onthese
planar discontinuities long before a state of stress high enough to cause fracture in an intact
volume of rock is reached (Wallace, 1951; Bott, 1959; Jaeger, 1960; Donath, 1964; Handin,
1969; McKenzie, 1969).

Wallace (1951), using stereographic projections, plotted shear stress magnitudes for
various orientations of planes within a stress system and the directions of maximum shearing
stress in those same planes. Wallace's major contribution, however, was to show how a body
has atendency to shearin a plane which represents a compromise between experiencing a low

normal stress and a high shear stress and that this plane will always be oriented atless than 45°

from the O, direction. This may be shown by solving for the minimum of the normal
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Figure 2-2 - The three Andersonianclassesofconjugate faultsets. A. Conjugate thrust faults

with horizontal O, and vertical 0;. B. Conjugate normal faults with vertical 0,and horizontal

0;. C. Conjugate wrench faults with O, and O;both horizontal. In all three cases O, parallels

the intersection line of the two fault planes.



15

stress/shear stress difference in the following way

d[0,-0,]1/dB =0 (13)

which, upon substitution of the standard formulas for 0,and O, (Means, 1976, p. 72) becomes

d[((O,+ 0,)/2) + ((0,- 03)/2)cos(20) - (0, - 05)/2)sin(20)]/dO =0 (14)

which, after differentiation, yields

(0,-03)[-sin(20) - cos(20)] =0 (15)

which implies tan(20) = -1 or 0 = 67.5 for any values of 0, and O, (figure 2-3).

Wallace's work laid the groundwork for Bott (1959) who derived a formula relating the

direction of maximum shear stress within the fault plane to the fault plane's orientation with

respect to the principal stress axes and the relative magnitudes of these stresses which may be

represented as follows

0 =tan"'[(1,%1, - D1, + L) / (1,15)] (16)

where O is the pitch angle between the maximum shear stress direction and the strike of the

fault plane, 1,,1,, and l; are the three direction cosines of the normal vector to the fault plane,

and @ is defined as (Angelier, 1979; Michael, 1984)

@:[(02-03)/(01-0‘3)] (17)
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which ranges from 0.0 to 0.1 and represents the relative magnitudes of the three principal
stresses (i.e. describes the shape of the stress ellipsoid). Other similar principal stress

magnitude ratios have been defined, including the tensor aspectratio & (Célérier, 1988)

d=1[(0,-0,/(0,-0y] (18)

where O also ranges from 1.0 to 0.0 (i.e. 0 = 1 - @) and the parameter R (called C by

Aleksandrowski, 1985), which has been defined (Armijo and Cisternas, 1978; Etchecopar, et.

al., 1981) as

R = [(Oz-ox)/(oy_ox)] (19)

R may have values from -% to +* since 0,, 0,, and O, may correspond to 0,, 0,, and O,

in any order although some confusion has resulted due to the use of the symbol R with
definitions different than the original one of Armijo and Cisternas (Lisle, 1987; Gephart and
Forstyth, 1984; Larroque and Laurent, 1988). An important implication of Bott's formula is
that the slip direction of a fault plane is dependent upon the relative magnitudes of the three
principal stresses O,, 0,, and O, (expressed by (I)) and not simply their orientations. A
complete derivation of Bott's formula and its application in generating artificial fault

populations is given in chapter 4.

2.3 Graphical Methods of Fault-Striation Paleostress Analysis

Oneofthesimplestgraphical methodsofpaleostressanalysisusing fault-striation data,

is to plot the fault planes on a Schmidt or Wiilff stereographic projection along with their
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Normal
Stress

Stress

Shear
Stress

0

0 45 90’

Angle between pole to plane and sigma 1

Figure 2-3 - A plotofthe shearstressesand normal stresses actingupon a plane parallel to the
0, direction versus the inclination angle of the plane's normal from the O, orientation. The

upper curve represents the normal stresses and the lower curve represents the shear stresses.
It may be seen by inspection that the normal stress/shear stress difference is ata minimum at

67.5° (denoted by the dashed line).
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associated slip directions. Ifthe fault population forms a conjugate set, the 0, axis is assumed

to bisect the acute angle of the conjugate set, O, the obtuse angle, and O, is located at the

intersection ofthe faultplanes--assuming, ofcourse, thatthese placementsare consistent with
the slip directions on the fault planes present (figure 2-4). The drawback ofthis method is that
it will only work on the simplest of conjugate fault sets (Ragan, 1985, p. 135; Suppe, 1985, p.
292; Rowland, 1986, p. 134; Marshak and Mitra, 1988, p. 261).

A somewhat different type of graphical paleostress analysis was developed from a
postulated direct relationship between the regional strain ellipsoid and the regional stress
ellipsoid associated with a fault population. Arthaud's method (Arthaud, 1969), and the
modification of that method by Aleksandrowski (Aleksandrowski, 1985), used movement
planes to determine the orientations of 0, 0,, and O;.

An M-plane, or movement plane, associated with a fault is the plane containing the
fault's normal and slip vectors (figure 2-5). One ofthe importantproperties of m-planesisthat
these planes contain at least one of the principal strain axes. Assuming a fault population
consisting ofrandomly-distributed, preexisting planes activated during one tectonic event, the
following steps allow one to use m-planes to graphically locate the principal strain axes

(Arthaud, 1969; Aleksandrowski, 1985):

1. Plot the fault plane normal and slip vectors on a stereonet.
2. Join each pole and its associated slip vector with a greatcircle. These great circles are

the m-planes.

3. Plot the poles (TTM-poles) to the m-planes.

Allofthe m-planesshouldintersectatone,two,orthree generally diffuse points which

are the normals of the same number of mutually perpendicular great circles of TM-
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Figure 2-4 - Lower-hemisphere stereographic projection showing 24 conjugate normal faults

and theirassociated slip vectors (smallcircles on faultplanes). Inthissimple fault population,

the 0,, 0,, and O, axes may be assigned by inspection -- O, bisecting the acute angle of the

conjugate faultset, O;bisecting the obtuse angle, and O,atthe intersection of the fault planes.
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[] Fault slip vector

(O Pole of fault plane Fault plane

Figure 2-5 - Lower-hemisphere stereographic projection showing the relationship between
a fault plane, the normal and slip vectors, and the m-plane. The m-plane is the plane

perpendicularto the faultalong which movement takes place.
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poles (i.e. if m-planes intersect, their TM-poles lie on a great circle). Intersection points of

the m-planes correspond to an orthogonal system of X, Y, and Z axes where X is the axis of
maximum extension, Y in the intermediate axis, and Z is the axis of maximum shortening.
These are the principal strain axes and are assigned according to the movement directions of
the faults present and orientation of any stylolites or tension fractures present (figure 2-6).
This technique is known as Arthaud's method (Arthaud, 1969) and he contended that
giventhe strainellipsoid associated witha faultpopulation,itwaspossibletoplace constraints

upon the stress ellipsoid. A serious limitation in this method is that it can be successfully

applied only to populations originating in radial stress fields (i.e. one defined by a D value of
0.0 where 0, = O; or a ® value of 1.0 where 0, = 0,) and the only axis of deformation

obtainable from such populations corresponds totherevolutionaxisofaprolateoroblatestress
ellipsoid (Carey, 1976; Aleksandrowski, 1985).

Aleksandrowski (1985) modified Arthaud's methodto make itapplicable forageneral,
triaxial stress field (i.e. a stress field in which the three principal stress magnitudes are
unequal). The procedure is the same as in Arthaud's method (steps 1 ~ 3 above) exceptthatthe
final result consists of more than three common intersection points of m-planes. Each of these
common intersection points must then be separately analyzed to ascertain whether or not the
slip vectors corresponding to the m-planes lie on a great circle and at fairly large angular
distances from one another; the intersection point of this great circle with the girdle of

associated TM-poles is one of the three principal stress axes. The plane perpendicular to this

principal stress axis which passes throughthe commonintersection pointcontainsthe othertwo
principal stresses (figure 2-7). If another common intersection point can be found which
satisfies these conditions, the three principal stress axes may be located with varying degrees

of precision (Aleksandrowski, 1985; Marshak and Mitra, 1988, p. 263). A D value may then

also be calculated from the orientation of any one of the slip vectors and its associated fault
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o

= Slip vectors (S) (O =M-plane pole (TTM)

B = Principal strain axis X = Fault plane pole (TTF)

Figure 2-6 - Lower hemisphere stereographic projection demonstrating the m-plane method

of locating a principal strain axis. Four fault planes are used, their poles (TTF1 - TTF4) and slip
vectors (S1 ~ S4)areconnected by greatcircles (m-planes) and the polestothe m-planes (TTM 1

- TTM4) are shown to form a girdle. The intersection of the m-planes (which is also the pole

of the girdle) is one of the three principal strain axes (figure modified from Arthaud, 1969).
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O = o axis x = Slip vectors

M-plane CIP

© = M-plane poles

Figure 2-7 - Analyzing a common intersection point (CIP) of m-planes (solid great circles).
The poles (TTM-poles) to the m-planes (circles) define a great circle denoted by GCP (long

dashed/short dashed line) and the pole of the GCP is the CIP. A great circle may be drawn

through the slip vectors (x symbols) of each of the m-planes and is denoted by GCF (short
dashed line). The intersection of the GCP and GCF is a principal stress axis 0. The plane
perpendicular to O, through the CIP, and denoted by OP (long dashed line) contains the other

two principal stress axes (figure modified from Aleksandrowski, 1985).
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plane using Bott's formula (equation 15).

2.4 Right-Dihedra Methods of Fault-Striation Analysis

Another graphical method of paleostress analysis has been developed by adapting the
constructiontechniques of fault-plane solutions from seismic datato striated faultpopulations
(McKenzie, 1969; Angelier and Mechler, 1977; Lisle, 1987; Lisle, 1988). The relationship

between the fault plane solutions and the principal stress axes was first shown by McKenzie
(1969), who rigorously demonstrated that the most compressive principal stress O, must lie

within the quadrant containing the axis of compression P for fault plane solutions of shallow
earthquakes assumed to have occurred along preexisting planar discontinuities.

Fault-plane solutions are constructed from striated faults or from the seismic first
motions of earthquakes and show the relationship between a fault and its corresponding
auxiliary plane, the zonesof compressionand dilation,and the axes of compressionandtension
(figure 2-8). The auxiliary plane is the plane which is perpendicularto both the fault plane and
the slip direction and, along with the fault plane, defines two compressional and two
extensional right dihedra (Cox and Hart, 1986, p. 197). By constructing fault plane solutions

foreachdatum ofapopulation offaults,the overlapping quadrants containing the compression
axis P will act to constrain the location of 0,. This technique has been called
the right-dihedra method (la méthode des diédres droits) by Angelier (Angelier and Mechler,
1977) and was later modified by Lisle (Lisle, 1987; Lisle, 1988) who added an additional
constraint upon the location of O;.

To utilize these methods, consider a fault plane with a normal vector N, a slip vector

S, and a vector O atright angles to both N and S. Three orthogonal planes may be defined by

these vectors -- the fault plane which contains S and O, the auxiliary plane which contains
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Figure 2-8 - Schematic diagram and lower-hemisphere stereographic projection illustrating
therelationship between anormal fault plane dipping at45° and its associated auxiliary plane,

the zones of compression and dilation, and the axes of compression and tension in a fault plane

solution.
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Nand O,andthemovementplane (the m-plane of Aleksandrowski, 1985) which contains N and
S (figure 2-9). The four right dihedra of Angelier and Mechler's method (Angelier and
Mechler, 1977) are bounded by the fault plane and the auxiliary plane. By knowing the
direction, and sense, of slip on the fault plane, two dihedra may be defined as compressional

regions and two dihedra as extensional regions. If the assumption is made that the
compressional regions contain O, and that the extensional regions contain O; (McKenzie,
1969), the position of the paleostress axes may thus be constrained for each fault datum.
Superimposing the O,and O,regions forseveral faults, the possible positions for 0,and O;may
be constrained even further (figure 2-10).

Lisle (1987), introduced another constraint upon the orientations of 0, and O, by
considering how the orientation of the slip vector S changes as the stress ratio () (equation 17)
changes. Ifthe normal vector N ofa fault plane has direction cosines ofl, m, and n with respect
to the 0,, 0,, and O;axes respectively, it can be shown (Jaeger, 1969, p. 18) that the vector O

has direction cosines proportional to

mn (03 - 02)5
nl (0, - 0;), and (20)
Im (O0,-0)).

When the stress ratio @ is equal to 0.0 (the case of axial compression), O, is equal to
O, and the first direction cosine in equation (20) reduces to zero. This implies that the vector
O hasno component parallel to the O, axis,and O, is thus parallel to the movement plane. The
projection of O, onto the fault plane will then be coincident with the slip vector S. When the

stress ratio is equal to 1.0 (the case of axial extension), O, is equal to O, and the third
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Q = Pole to the fault plane Fault plane
L | =Poletoauxiliary plane o _____ Auxiliary plane
A =Pole to movementplane Movement plane

Figure 2-9 - Lower-hemisphere stereographic projection showing the relationship between
a fault plane with anormal vector N, its associated auxiliary plane with a normal vector S (the

fault's slip vector), and its associated movement plane (m-plane) withanormal vector O.
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Fault 2 Sigma 1 Area
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Fault 3 Sigma 1 Area

Figure2-10 - Lower-hemisphere stereographic projections showinghow theregioncontaining
O ,is constrained by normal fault populations consisting of A. one plane, B. two planes, and

C. three planes.
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direction cosine in equation (20) reduces to zero. This implies that the vector O has no

component parallel to the O, direction, and O; is thus parallel to the movement plane. The
projection of O; onto the fault plane will then be coincident with the slip vector S. S will be

within the acute angle between these two extreme positions for intermediate values of ()
(figure 2-11). Given this constraint upon the position of S, it can be inferred that the

projections of 0, and O,lie on opposite sides of S and are both 90° or less from S. Or, in three

dimensions, O,and O;willbe withinseparaterightdihedrabounded by the fault'sauxiliary and
movement planes. Lisle (1987) arbitrarily labelled these dihedra A and B for convenience
(figure 2-12) and, if O, is known to lie in the A dihedron, then O; must lie in the B and vice
versa.

To use Lisle's method, auxiliary and movement planes are used to create A and B
dihedra for each fault. Superimposing these dihedra, regions are obtained which may be
labelled according to which dihedra it falls into for each fault. Thus, in a population of four
superimposed faults, the region designated ABAA lies in the A dihedron with respect to fault
1,in the B dihedron with respect to fault 2, and in the A dihedra with respect to faults 3 and 4.

As an example, consider the data set of three faults represented in figure 2-13. Using
Angelier and Mechler's (1977) method, fairly large O, and O, regions may be constructed
(figure 2-14). Lisle's (1987) method begins by superimposingthe A and B dihedra (figure 2-15)

and comparing them to the O, and O, regions of Angelier and Mechler's (1977) method --
keeping in mind that O, and O; must be in separate A and B dihedra for each fault datum. The
O, regionin figure 2-14 consists of the AAA, ABA, ABB,BAA,BAB,BBA,and BBB areas of
figure 2-15. The presence of O, in area BAB is compatible with O;being in ABA. The same

may be said for AAA, ABA, BAB,BBA, and BBB in the O, region and AAA, AAB,
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Figure 2-11 - Lower-hemisphere stereographic projection showing 20 slip vectors

representing D values ranging from 0.0 to 1.0 on a fault plane with a normal vector oriented
at 70/030 degrees. The O, 0,, and O; axes correspond to the north, up, and east directions

respectively. The dashed lines represent the projections of O, and O, onto the fault plane

(figure modified from Schimmrich, 1990).



31

Q = Pole to the fault plane Fault plane
L | =Poleto auxiliary plane Auxiliary plane
A =Pole to movementplane Movement plane

Figure 2-12 - Lower-hemisphere stereographic projection showing the right dihedra defined
by Lisle (1987) as A (stippled) and B (unstippled). These right dihedra are bounded by the
fault's auxiliary and movement planes. The pole to the fault plane is N, the pole to the

movement plane is O, and the pole to the auxiliary plane is S (the fault's slip vector).
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Figure 2-13 - Lower-hemisphere stereographic projection of three faults with slip vectors S

and fault normals N. The 0,/0; and A/B dihedra are defined for each fault datum (figure

modified from Lisle, 1987).
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Figure 2-14 - Lower-hemisphere stereographic projection showing the O, and O; fields

constructed by superimposingthe faultdata from figure 2-13. Thisisthe Angelierand Mechler

(1977) method (figure modified from Lisle, 1987).



34

——————————————————————

BBB

eBBA S

Figure 2-15 - Lower-hemisphere stereographic projection showing the regions constructed
by superimposing the A and B dihedra from the fault data in figure 2-13. Thisis Lisle's (1987)

constraint (figure modified from Lisle, 1987).
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ABA, BAB, and BBB in the O;region. The BAA and ABB areas in the 0, region, however,

have no counterpartsinthe Oyregion (ABBorBAA)andmay be eliminated as areas of possible

O, directions. For the same reason, BBA may be eliminated as an area containing the O,

direction. The resulting solution (figure 2-16) has noticeably smaller O, and O;regions.
It is easy to see that for these methods to give satisfactory results, one must have a
population of faults sufficiently scattered to constrain the O, and O regions to small areas. A

population of faults where all of the faults have similar orientations will yield no more
information than any subset of that population (figure 2-17). These methods will also not
perform very well when dealing with certain types of symmetrical fault populations such as
conjugate sets (Anderson, 1951)ororthorhombicsets (Aydinand Reches, 1982; Krantz, 1986;
Krantz, 1989) of faults (figure 2-18).

The graphical methods of paleostress analysis developed by Angelier and Mechler
(1977)and Lisle (1987) are extremely cumbersome todo onasterconetwhendealingwithmore
than a handful of fault planes. For this reason, these methods are usually performed
numerically by a computer program (Angelier and Mechler, 1977; Lisle, 1988). It should be
kept in mind, however, that even though these methods are adapted for a computer, they are

still essentially considered graphical methods and not computational methods.
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Figure 2-16 - Lower-hemisphere stereographic projection showing the O, and O; fields

constructed by utilizing Lisle's (1987) constraint on the fault data from figure 2-13. Even with
a small population of three faults, there is a noticeable improvement over Angelier and

Mechler's (1977) method (figure modified from Lisle, 1987).
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___________ Auxiliary Planes — Fault Planes

Figure 2-17 - Lower-hemisphere stereographic projection showing the 0, and O; regions

derived using Lisle's (1987) method on four thrust faults all having a similar orientation.
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Figure 2-18 - Lower-hemisphere stereographic projection showing the 0, and O; regions

derived using Lisle's (1987) method on A. a conjugate set of four normal faults and B. an

orthorhombic set of four normal faults.



CHAPTER 3

COMPUTATIONAL PALEOSTRESS ANALYSIS OF FAULT POPULATIONS

Given the assumption that faults will slip in the direction of their maximum resolved

shear stress, determining the direction and sense of slip on a population of fault planes of

known orientations for a given stress tensor O is a trivial matter (Bott, 1959). The inverse of

this problem -- finding a stress tensor O satisfying known slip directions and orientations for

a population of faults -- is much more difficult. This is termed the "inverse problem" and its
solutionisthe goalofcomputational methods of paleostressanalysis (Etchecopar,et. al.,1981;
Amijo, et. al., 1982; Angelier, 1989).

All paleostress analysis methods assume that two items of information are known for
each fault -- the fault plane's orientation in a geographic coordinate system and the fault's
direction and sense of slip. Inaddition, two very important fundamental assumptions are made
by all of the methods -- that the direction of slip on a fault plane is always parallel to the
direction of resolved shear stress on that plane and that all of the faults are activated within a

unique, static stress field.

3.1 Early Attempts at Computational Paleostress Analysis

In 1974, Carey and Brunier made the first attempt at formulating and solving the
mathematics defining the inverse problem (Armijo, et. al., 1982; Célérier, 1988; Angelier,
1989). Two years later, Carey (1976) developed the first paleostress analysis program which

soughttominimize theangulardeviations between measured faultstriations and thecalculated

shear stress directions on each fault plane for a chosen paleostress tensor O. Angelier also

developed a similar method at approximately the same time (1975). Since then, Angelier has

39
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developed several successive methods, each possessing slight improvements in the
mathematical algorithms used to perform the analyses (chapter 6).

An important characteristic (some would say a problem) of methods of paleostress
analysis such as Angelier's is that they set up non-linear iterative equations and thus have
extremely complex mathematical solutions. These equations are termed non-linear because,
for each step in the iteration, the output variable is changed (just as it is in a linear equation)
and this new output variable will result in different input variables (which does not happen in

alinearequation).

3.2 Etchecopar's Method of Paleostress Analysis

In 1981, Etchecopar (Etchecopar, et. al., 1981) developed a method of paleostress
analysis similartothatbeing developedatapproximatelythesametimeby Angelier (Angelier,
1979; Angelier, et. al., 1982). This method was similar to Angelier's in that it sought to

minimize the angulardeviation ofthe maximum shear stress directions from the slip directions

for a chosen paleostress tensor O on each fault plane in the population examined. The only

substantial difference was the use by Etchecopar ofa slightly different iterative algorithm for
performing the non-linear least-squares inversion.

After corresponding with Arnaud Etchecopar of the Université des Sciences et
Techniques du Languedoc in Montpellier, France, I obtained a copy of his program though
Richard Plumb of Schlumberger Doll Research in Ridgefield, Connecticut. The program
source code was written in FORTRAN and sent on a magnetic tape, the contents of which I
transferredto SUNY Albany's VAX-8650 mainframe computer. Aftertranslating the program
documentation from the original French into English (with the assistance of Debra Lenard --
a SUNY Albany linguistics major), I was able to compile and run the program for several fault

populations. Unfortunately, all of the results obtained were no different than
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those given by Angelier's program and [ abandoned further testing of this method in favor of

Angelier's.

3.3 Michael's Method of Paleostress Analysis

Michael (1984) derived a method of paleostress analysis which made a new initial
assumption -- that the magnitudes of the shear stress O, on each of the fault planes in a

population at the time of slip are similar. Michael claimed this assumption was justified by

observing that the fault planes all experienced slip, therefore the absolute magnitudes of the

shear stresses on all of the planes were similar and minimizing the difference | O'S| -1 for all
of the fault planes will allow one to determine | O'S| for each fault plane. This allows a fairly

simple linear inversion to solve for the stress tensor O.

I wrote a Turbo Pascal version 3.01 computer program for performing paleostress
analyses using Michael's method in May, 1987. Unfortunately, I found that this method gave
inconsistent results for many types of fault populations -- especially those with faults which
are close to being parallel to the principal stress axes. This is probably due to the fact that the
shear stress on such planes becomes quite low relative to those planes at 45° to the principal
stress axes (figure 3-1). Michael's method also does not work well with too few faults (what
constitutes "too few" is not well-defined and is dependent upon the fault's orientations) and
faults which all have a very similar orientation. This is because the inversion matrix becomes
close to being a singular matrix and the calculated confidence limits become very large as a
result (Michael, 1984).

Célérier (1988) severely criticized Michael's method and stated that the shear stress
assumption does not correspond to a realistic failure criterion and the only rational for using

itis that it results in a simplification for the inversion by linearizing the equations. Michael
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Figure 3-1 - Northeast quadrant of a lower-hemisphere stereographic projection showing

polesto fault planes where the relative sizes of each pole reflect the relative magnitudes of the
shear stresses on their associated planes. A ® value of 0.5 and a ratio of the isotropic stress

to the deviatoric stress of 4.5 (Michael, 1984) was used to calculate this data.
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later modified his algorithm to use non-Gaussian rather than Gaussian statistics in the
inversion (Michael, 1987a; Michael, 1987b) which improved the method but which also

effectively rendered my program obsolete.

3.4 Gephartand Forsyth's Method of Paleostress Analysis

Alsoin 1984, Gephart and Forsyth proposed a slightly different method of paleostress
analysis using earthquake focal mechanism data. This method begins by setting up a grid of
points on a stereonet (Gephartrecommends either 10° or 5° spacings) and then systematically
orienting the most compressive principal stress axis O, such thatitis coincident with each of
these grid points in turn while then systematically orienting the least compressive principal

stress axis Oy such thatitis coincident with all points 90° from O, in turn and then varying the

stress ratio @ at each of the O, locations. This obviously results in a very large number of
stress tensors being defined for each fault population (dependent upon the number of grid
points defined). For each stress tensor O thus defined, the angle which the normal vector for

each fault plane must be rotated through to have that fault's slip vector be consistent with the
stress field is computed. The program seeks to minimize the sum of the squares of these
angular divergences. The stress model which has the smallest sum is assumed to be the
population's paleostress tensor.

I obtained a copy of this paleostress analysis program in February, 1989 from John
Gephart at Cornell University. The program consisted of several subroutines all written in
FORTRAN for the Macintosh IT computer. A major characteristic of the program is that it is
very computationally intensive and requires approximately a full 24-hour day to perform a
search of 10,000 stress models for a relatively small data set of 20 focal mechanisms. While

this is not too severe a limitation for a small number of analyses, a thorough testing of the
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method would be extremely time consuming.
Gephart further modified this method and created a FORTRAN program called FMSI
(an ancronym for focal mechanism stress inversion) which has recently been submitted for
publication (Gephart, 1990). This method does not differ much from earlier work and is

primarily an attemptto speed up the computational procedures.

3.5 Recent Trendsin Paleostress Analysis

In1987,Rechesderivedapaleostressanalysismethod whichused alinearleast-squares
inversion method rather than a non-linear one. This greatly simplifies the calculations
involved by taking the Coulomb failure criterion into account (chapter 7). Célérier (1988) also
derived mathematical algorithms forcalculating paleostresstensors by introducinga frictional
constraint upon the faults in the population. The advantage of being able to introduce an
additional constraintis thatthe inverse problem equations become linear and thus much easier
and fasterto solve computationally.

The most recent papers on paleostress analysis are concerned with techniques to

estimate absolute magnitudes for the principal stress axes 0, 0,, and O rather than simply

their relative magnitudes (expressed by the stress ratio (I)). To do this, two additional

constraints must be placed upon the problem. Angelier (1989) attempted to do this by
considering geologically-reasonable rupture and friction laws for the faults examined.
Angelieralsoattemptedtoconstrainthe vertical stressby assumingittobecoincidentwithone
of the three principal stresses and taking into account the thickness of the sedimentary
overburden for faults in the Basin and Range Hoover Dam locality in Nevada-Arizona
(Angelier, et. al., 1985; Angelier, 1990).

Another important area of research is the attempt to relate fault geometry and

kinematics to driving stresses. Dynamic (stress-based) and kinematic (strain-based) methods
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of fault analysis are being used together in an attempt to learn more about the mechanics of
faulting. A currentleader in this field of study is Richard Allmendinger of Cornell University

(Marrettand Allmendinger, 1990).



CHAPTER 4

PROBLEMS IN PALEOSTRESS ANALYSIS

Problems in computational methods of paleostress analysis using striated-fault
populations arise in two areas -- in the gathering of data as input for the programs and in the
fundamental simplifying assumptions made by these programs as they attempt to calculate a
paleostress tensor. All of the paleostress analysis programs currently in use require, as
numerical input, the orientation of each fault plane along with the fault's direction, and sense,
of slip. Problems may arise in gathering this information from the field since inaccurate data
may result in a program returning an incorrect paleostress tensor (sections 4.1 and 4.2).
Paleostress analysis programs also make several simplifying assumptions about faults and the
nature of faulting which may lead to resultant errors (sections 4.3 through 4.6). In order to
understand the limitations of these programs, all of the assumptions inherent within them must

be closely examined.

4.1 Measurement Errors

A careful field worker should be able to collect fairly accurate (+5° orless) orientation
data for a population of faults using only a compass and clinometer (Compton, 1962, p.21-35;
Ragan, 1985, p. 15). There are, however, conditions under which small measurement errors
made while determining the strike of a fault plane or the trend of a lineation within that fault
plane may become magnified.

When, in measuring the strike of a fault plane, the compass is not held exactly

horizontal then a direction of strike will be measured other than the true strike. If the angular

departure in degrees of this apparent strike from the true strike is denoted as €,and the dip of

the fault plane as 6, then the resultant strike error (Eg) may be calculated by

46
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€ = sin![tan €,/ tan 6] (1)

From this equation (Ragan, 1985, p. 16), it may be seen that for shallow-dipping fault
planes, the resultant strike errors may be quite large given fairly small measurement errors
(figure 4-1).

When measuring the trend of a lineation on a fault plane, it is a common practice to

align the compass in the direction of a projection of that lineation onto a horizontal plane. If

an error is made in this alignment, as measured by the angle €, for a lineation of pitchron a

fault plane of dip 6, then the resultant trend error (€;) may be calculated by

€, =tan ' {[tan(r+€) - tan(r)]cos 0/1+ [tan(r)tan(r+€) COSZ6]} (2)

From this equation', it may be seen that for lineations with large pitch angles on
q y ge p g

steeply-dipping fault planes, a large trend error for those lineations may occur (figure 4-2).
In addition, the maximum error associated with (r-€) is less than it is for (r+€) and repeated

measurements willnotbesymmetrically distributed around the true trend (Ragan, 1985,p. 56).

Given the above information, it would be useful to know how sensitive paleostress
analysis programs are to small variations in the orientations of the fault planes and their slip
directions. If small measurementerrors gave significantly differentresults for the calculated
paleostress tensors, these programs would lose some of their usefulness given geologically

realistic fault population data.

! Equation 4.8 in Ragan (1985, p. 56) is given as: tan € = [tan(r+€) - tan 6]005 0/1+ [tan r tan(r+€)c0s25]
which is incorrect and has been corrected here in equation (2).
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Figure 4-1 - Graph of the maximum strike error for a fault plane arising from a strike

measurement error (€,) of 1°to 5° as a function of the dip of the fault plane (figure modified

from Ragan, 1985, p. 16).
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Figure 4-2 - Graph of the maximum trend error of a slickenline on a fault plane arising from

atrend measurement error (€) of 3° as a function of the pitch of the slickenline (10° to 80° in

10° increments) and the dip of the fault plane (figure modified from Ragan, 1985, p. 57).
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4.2 Determining Fault Slip

The direction of slip on a faultis commonly obtained by examining lineations known
as slickenlines on the fault's surface (Tjia, 1964; Means, 1987). Slickenlines are linear
striations, or grooves, resulting from friction or shear strain on fault surfaces and indicating
the last direction of movement on that fault (Fleuty, 1975). Itis possible for faultsurfaces to
containmore thanone setofslickenlines and careful examination may beneeded to distinguish
the latest slip direction from earlier ones. Also, slickenlines are axial data (Cheeney, 1983, p.
10-11), giving two possible slip directions 180° apart, and some other criteria are thus needed
to establish the sense of slip of the fault (i.e. which end of a slickenline points in the direction
of movement of the opposing fault block). The best sense-of-slip indicators are geometric or
physicallines which have been offset by faulting (Davis, 1984, p.268; Ragan, 1985,p.92-93).
These features must be used cautiously as slip direction indicators, however, since they record
the net slip on the fault which may be the result of several distinct slip events with differing
slip directions (figure 4-3).

Before 1958, it was considered axiomatic that step-like features on fault planes could
be used as sense-of-slip indicators (Hobbs, et. al., 1976, p. 304). By running your hand over
the faultsurface,the directionofleastresistance (i.e. the direction where yourhand jumpsover
the risers of the steps rather than slamming into them) is the direction of movement of the
opposing fault block (figure 4-4). A problem with this method is thatother workers have since
claimed that steps are an unreliable sense-of-slip indicator since steps with an incongruous
sense-of-slip are known from the field and the laboratory (Paterson, 1958; Tjia, 1964;
Riecker, 1965; Tjia, 1967; Norris and Barron, 1969; Gay, 1970; Hobbs, et. al., 1976, p. 303-
305). In 1969, Norris and Barron distinguished between two different types of steps found on
fault planes -- accretion steps and fracture steps. Accretion steps are formed by the adhesion

of mineralized gouge onto the slip surface and fracture steps are steps which have
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Figure 4-3 - Diagram demonstrating how the net slip vector on a fault plane may be the result

of several distinctslip events with differing slip directions (slip vectors 1 through 4).
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Figure 4-4 - Cross-sectional view ofa faultplane showing how steps may be used as sense-of-
slip indicators on fault surfaces. The direction of least resistance is taken to be the direction

of motion for the opposing fault block.
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been cut into the solid rock. Accretion steps are formed as the slip surface is parted with the
step's risers facing preferentially in the direction of movement of the opposing block.
Accretion steps are therefore usually congruous with the fault's sense-of-slip. Fracture steps
may face in either direction and thus may give either a congruous or an incongruous sense-of-
slip. Durney and Ramsay (1973) claimed that a third type of steps formed from layers of
fibrous minerals on the slip surface always gave a congruous sense-of-slip. Therefore, with
care,stepsmaybeusedassense-of-slipindicatorsonsome faults (Rod,1966; Tjia,1967; Tjia,
1972; Norris and Barron, 1969; Durney and Ramsay, 1973; Petit, et. al., 1983; Petit, 1987).

Other possible sense-of-slip indicators are structural features such as prod marks,
crescentic gouges, pluck marks, chattermarks, protuberances resembling roches moutonnées,
spalls, bruised step risers (Tjia, 1967; Tjia, 1972; Gamond, 1983), drag folds (Davis, 1984,
p-270-272; Hobbs, et. al., 1976, p. 305-306), en échelon tension gashes, and the orientation
ofanysecondary shear fractures (Gamond, 1983; Petit,et. al.,1983; Hancock, 1985; Gamond,
1987; Petit, 1987). Fault gouge (Byerlee, et. al., 1978) and slickensides (Lee, 1990) may also
contain microstructural sense-of-slip indicators when examined petrographically.

When collecting fault population data for paleostress analysis programs, a
recommended finalcheck onthesense-of-slipdataistosee whethertheyareallconsistentwith
one another--asinglereverse faultinapopulationofnormal faults should signal caution since

itisunlikely to belong to the same stress field as the others.

4.3 Fault Morphology

An implicit assumption in paleostress analysis is that faults are planar (i.e. they may
be described by a unique strike, dip, and dip direction). In reality, however, faults are not
perfectly planaron any scale (Scholz, 1990, p. 146-147).

Most faults show a degree of curvature in dip sections orin plan view (Mandl, 1988,
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p.24). Listric (shovel-shaped) normal and thrust faults are extreme examples of this and are
quite common in areas of thin-skinned tectonics. Subsurface stress distributions have been
used toaccount forthe development oflistric faults (Hafner, 1951; Jaroszewski, 1984, p.215-
217) and factors which may affect the curvature of a developing fault include anisotropies in
the shearing strength of the rock mass, compaction by the overburden, abnormally high pore
fluid pressures, and changes in the tectonic stress field (Mandl, 1988, p. 24). Faults may also
be curved, or wavy, on a smaller scale (Gamond, 1983; Jaroszewski, 1984, p.218; Hancock,
1985) due primarily to anisotropies of the rock mass or changes in the tectonic stress field
during their formation.

Curved faults will yield different strike and dip orientations,depending upon where on
the fault's surface the measurements are made, resulting in problems for paleostress analysis
programs similar to those presented by measurement errors. Another problem with curved
faults (dealt with in more detail in section 4.4) is that fault curvature, more so than the
maximum resolved shear stress, may determine the fault's slip direction when the fault is
reactivated.

Another characteristic of faults is their discontinuity. Field studies have shown that
faults, at all scales, are discontinuous and consist of numerous discrete segments (Wallace,
1973; Segall and Pollard, 1980; Mandl, 1987; Mandl, 1988, p.43-47; Scholz, 1990, p. 151).
Discontinuous faults have been modelled as arrays ofright- or left-stepping pairs ofen échelon
segments (Segall and Pollard, 1980) which have pronounced differences in mechanical
behavior from continuous faults and which influence their slip directions when subjected to a
given stress field.

In 1970, Tchalenko demonstrated that the formation and evolution of shear zones
involvedidentical characteristic stagesindependentoftheirsize. Shearzones were thus shown
to be self-similar from the scale of shear-box experiments (tens of millimeters) to earthquake-

producing faults (hundreds of meters). Self-similarity at different scalesis animportant



55
characteristicofaclassoffractals (Mandelbrot,1977; Mandelbrot,1983),andseveral workers
have since demonstrated that fault surfaces may be described by fractal geometry (Brown and
Scholz, 1985; Scholz and Aviles, 1986; Okubo and Aki, 1987; Power, et. al., 1987; Scholz,
1990, p. 147).

Faults whose surface roughness is best described by a fractal, or Hausdorff-
Besicovitch,dimensionmay be used in paleostress analysisifthe orientation of the fault's slip
plane,ratherthanthe faultplane itself,isused (Scholz, 1990,p.147). The slip plane is defined
as the idealized plane upon which the slip vector lies and may be viewed as the regional mean
of the actual fault plane (figure 4-5). Determining this slip plane from a small exposure of the
fault plane in an outcrop may notalways be possible.

Antithetic faults also pose a problem for paleostress analysis. Antithetic faults
(Jaroszewski, 1984, p.212; Mandl, 1988, p.47) are minor faults with a sense-of-shear which
isopposite to the general direction of an externally imposed shear. When movement occurs on
anormal listric fault, for example, the increased curvature of the upper part of the fault causes
the fault walls to separate. Second-order antithetic faults arise to accomodate this change in
geometry. Since these faults arise due to a secondary stress field developing around the main
fault, careful field work must be performed to be sure that antithetic faults are not included in
fault populations used for paleostress analysis.

Finally, there are a special class of faults with a rotational component ofslip (Donath,
1962; Davis, 1984, p. 266; Jaroszewski, 1984, p. 146; Ragan, 1985, p. 89; Mandal and
Chakraborty, 1989; Twissand Gefell, 1990). Such faults donothave a constant slip direction,

or sense-of-slip, and cannotbe used in paleostress analysis programs (figure 4-6).

4.4 The Relationship of Shear Stress to Fault Slip Directions

A fundamentalassumption ofall paleostress analysis programs isthat faultslipalways
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Figure 4-5 - Diagram demonstrating the difference between a fault's slip plane and the actual

fault surface which may not be planar (figure modified from Scholz, 1990, p. 148).
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occurs in the maximum resolved shear stress direction on the fault plane (Carey and Brunier,
1974; Armijo and Cisternas, 1978; Angelier, 1979; Etchecopar, et. al., 1981; Angelier, et.
al.,1982; Vasseur, et. al., 1983; Angelier, 1984; Gephartand Forsyth, 1984; Michael, 1984;
Reches, 1987; Angelier,1989). [tmaybeshown, however,thatundercertainconditions faults
may notalways slip in the direction of the maximum resolved shear stress.

For faultsurfaces with long-wavelength asperities (i.e. wavy or curved faults), sliding

will occur at some small angle d) to a slip plane with a normal force of N, a shearing force of

S, and a coefficient of friction of L (Jaeger and Cook, 1979, p. 55; Scholz, 1990, p. 52). Two

equations may be derived relating N and S to the normal force (n) and the shear force (s) acting

upon the ramp of the asperity as follows (figure 4-7)

n =N cos(P)+ S sin(P) (3)

and

s:Scos(CI))-Nsin(d)) (4)

Assuming a Coulomb failure criterion such that

s=HMdn (5)

the following equation results upon the substitution of equations (3) and (4) into equation (5)

S cos(P) - Nsin(P) = [N cos(P)+ S sin(P)] (6)
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i

Figure 4-6 - Two fault types with a rotational component of slip. A. Hinge faults and B.

Pivotal faults (figure modified from Ragan, 1985, p. 89).
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Z

Figure 4-7 - Cross-sectional view of a fault surface parallel to shearing with an asperity A
creating an angle d) with the fault subjected to a total shearing force of S and a total normal

force of N. The ramp of asperity A is subjected to the resolved normal force (n) and shearing

force (s).



60

Multiplying equation (6) by [1 /cos(d))] and algebraically rearranging yields

S=[1+tan(P)]/[1- W tan(P)]N (7)

which reduces to

S=WUN (8)

when there are no asperities in the shearing direction ((b = 0). Therefore, shearing on a fault
surface with asperities will require a larger shearing force (S) than shearing on a fault surface

without asperities for sufficiently small values of d) The difference is aresult of the increase
in the frictional coefficient term of equation (8) from W to [ + tan(d))] /1 - tan((b)] of

equation (7) provided that CI) <tan'(1/ M) since at CI) =tan™' (1/ M) the equation changes sign.

Assume an undulating fault plane (figure 4-8) such that

S= u'N ®)

represents shearing in the maximum resolved shear stress direction at some acute angle O to

the long axis of the undulations where

B'= [+ tan(P)] /1 - | tan(P)] (10)

The equation
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Figure 4-8 - An undulating fault plane with the maximum resolved shear stress direction
(vector S) making an angle O with the slip direction which corresponds to the long axis of the

undulations (vector S'). It is assumed that only sliding parallel to the long axis of the

undulations encounters no asperities.



62

Scos(0l) =K N (11)

or

S=MWUN/cos() (12)

will then represent shearing parallel to the long axis of the undulations.

Setting equation (9) equal to equation (12) yields

M'N =L N/cos(X) (13)

which reduces to

M'=H/cos() (14)

Substituting equation (10) into equation (14) yields

[+ tan(P)]/[1 - 1 tan)] = 1L / cos(0) (15)

which reduces, through algebraic manipulation, to

Cb:tan'l[p.-p.cos(O(.)]/[cos(O(.)Jr p.z] (16)

Assumingageologicallyreasonable coefficientof friction ([b) of0.85 foruppercrustal

rocks (Barton and Choubey, 1977; Byerlee, 1978), equation (16) may be rewritten as
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¢ =tan"' [0.85-0.85 cos(®)] / [cos(®) + 0.7225] (17)

and the relationship between the angles 00 and CI) may be graphed as 0 varies from 0° to 90°
(figure 4-9).
From the above, itmay be seen that non-planar faults (i.e. most faults) with favorably-

aligned asperities do not always slip in the direction of their maximum resolved shear stress.

4.5 Faulting Phase Differentiation

An important problem in paleostress analysis using striated-fault populations is
determining if each of the faults in the population were activated within a single stress field.
Careful field work can often distinguish the relative ages of faults using cross-cutting
relationships but there is no guarantee that contemporancously-formed faults all belong to the
same faulting phase since a faultiscreated atone time and may then be reactivated many times
during its existence. Paleostress analysis programs assume that faulting will occur on pre-
existing planes of weakness (Angelier, 1979; Etchecopar, et. al.,1981; Angelier,et. al., 1982;
Vasseur, et. al., 1983; Angelier, 1984; Gephart and Forsyth, 1984; Michael, 1984; Reches,
1987; Angelier,1989). Therefore, faultsof widely disparate initiationages may bereactivated
when subjected toa given paleostress field. Observing geometric relationships between faults
and the presence of any successive striations of different attitudes on faults indicates thattwo
ormore paleostress fields have beenrecorded but, in general, distinguishing which faults have

been reactivated at the same time is a difficult problem which has not been widely addressed.

In the past ten years, numerical algorithms have been proposed which separate faults

into different faulting phases (Angelier and Manoussis, 1980; Huang and Angelier, 1987;
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Figure 4-9 - Graph of the change in alpha (0) from 0° to 90° for differing angles of phi ((]))
Region 1 contains the angles of O and CI) for which sliding will occur parallel to the long axis
of the undulations and region 2 contains the angles of &0 and d) for which sliding will occur

paralleltothe maximum resolved shearstress direction. For smallangles of 0(,even very small

long-wavelength asperities will act as barriers to slip in the maximum resolved shear stress

direction.
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Galindo-Zaldivar and Gonzalez-Lodeiro, 1988; Huang, 1988). Unfortunately, these methods
all rely on the same computational methods used to determine paleostress axes from fault
populations (chapters 6 and 7). Separating faultsinto homogeneous faulting phase subsets with
these programs will therefore guarantee an excellent fit for a paleostress tensor when these
subsets are run through an analysis program. The results may not be very useful, however,

since the subsets are essentially created by how well they will constrain a paleostress tensor.

4.6 Determining a Paleostress Tensor

Paleostress analysis programs attemptto define a paleostress field which is consistent
with a population of striated faults. The implication of this is thata single, unique paleostress
tensor is recorded in the faulting rocks at a specific point in time. A major problem with this
implication is that stress fields are not always static -- they may evolve with time (Mandl,
1988, p.15-16).

Consider two thrust faults situated within a stress field where the least compressive

principalstressaxis (0;)isverticaland constantinmagnitude, the intermediate principalstress

axis (0,)is horizontal and constant in magnitude, while the most compressive principal stress

axis (0),) is horizontal and steadily increasing in magnitude. If the two faults have a strike

direction perpendicular to O, and differ only in their dip angles, it is quite possible for them

both to be activated by essentially the same stress field at two different times and with two
differentslip directions. The differentslip directions arise since, according to Bott (1959), the
slip direction is a function of the ratios of the principal stresses and this ratio changes as O,

increases in magnitude (figure 4-10).

Faults may also totally switch style during a single tectonic event (Mandl, 1988, p. 15-
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16). As the principal stress axes increase or decrease in magnitude, they may exchange

orientations (i.e. a horizontal O;increases in magnitude until it becomes 0, and then O, while

0, and O, become O;and O, respectively). As the principal stress axes change orientations,

faulting styles may switch between normal, wrench, or thrust faults.

Another way in which faults may change in style is by gravitational re-equilibration.
A thrust fault may, when the horizontal compressive stress begins lessening, behave like a
normal fault (Beutner, 1972; Jaroszewski, 1984, p. 172).

Accordingto Edelman (1989), while reasonable estimates may be made for paleostress
statesusing small faults, large faults are indicative of large, finite, nonelastic strains and there
areno constitutive equationsrelating stress and permanent strain. Ifthe strainrate, coaxiality,
and viscosity tensor were known for some instant in time in the deformation history of a rock
mass, calculation of the stress would be trivial and contain the propogated errors of the other
measurements. In other words, a single paleostress determination is a derived, unverifiable
quantity. Thisisimportantsince paleostressanalysis programs are oftenused todetermine the
paleostress orientations for very large-scale faults such as the San Andreas and Coalinga fault

systems (Michael, 1987b; Jones, 1988).

4.7 Discussion

Toevaluate the performance of paleostress analysisalgorithms,Icreated artificial fault
populations using the same initial assumptions that are used by the programs. The artificial

fault populations consist of perfectly planarnormal faults with an exact strike and dip situated
within a static stress field with the principal stress axes 0O,, 0,, and O; having orientations of
north, up, or east. The slip vectors for each fault in the population are calculated using the

same initial assumptions that paleostress analysis programs use when calculating paleostress

tensors -- Bott's formula (Bott, 1959) is utilized to find the maximum
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Figure 4-10 - Mohr circles demonstrating how two faults of slightly different orientations

(graphed as 1 and 2 on the diagrams) will slip at different times as O, increases. A. No slip

occurs initially. B. Fault 1 begins to slip as O, increases. C. Both faults 1 and 2 slip as O,

reaches a maximum value.
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shear stress direction and this is assumed to be identical to the fault's slip direction. Running
these fault populations through a paleostress analysis program should thus give the exact
orientations of the principal stress axes used to create them. If the paleostress analysis
programs examined return differentresults, the magnitude of their errors may be examined.

Systematically altering the orientations of the individual faults within the artificial
faultpopulations allows one totestthe sensitivity of the various paleostressanalysis programs.
As anexample, increasing the dip ofone of the fault planes in the population by a few degrees
may be viewed as equivalent to using a real population where the dip of one of the faults is
incorrect -- due either to a measurement error or possibly to the fact that the fault surface is
non-planar. By placing a new fault plane into a population with an arbitrarily chosen
orientation for its normal and slip vectors, the sensitivity of the paleostress analysis programs
to the accidental inclusion of faults from separate tectonic phases may be examined.

Through careful selection of the artificial fault populationsused to testthe paleostress
analysis programs, the effect of the various problems in paleostress analysis discussed in this

chaptermay be demonstrated and even quantified tosome extent. Thatis the aim of this thesis.



CHAPTER 5

GENERATING ARTIFICIAL FAULT POPULATIONS

To develop synthetic data sets for testing computational methods of paleostress
analysis, I wrote a Pascal program to calculate the slip vectors and the shear stress to normal
stress ratios on any arbitrarily oriented fault plane situated within a stress field of varying
principal stress magnitudes. This allowed me to derive artificial data sets of faults and their
slip directions for a given stress tensor. A complete listing of this program is given in

Appendix C.

5.1 Theory

Itcan be shown that fora given stress tensor, the total stressacting upon a plane in any
orientation within that stress field may be calculated by a relationship described by Means

(1976, p. 103) as Cauchy's formula, which may be written in tensor notation as

T,= 0,1, (D)

where T;represents the north, up, oreastcomponents of the total stress vector, I;represents the
north, up, or eastdirection cosines (Cheeney, 1983, p. 112),and O;represents each of the nine
components of the stress tensor. The north, up, and east direction cosines are defined here as

the cosines of the angles between the fault plane normal vector and the north, up, and east

coordinate axes which will correspond, for purposes of this section, to the three principal
stresses 0, 0,, and O respectively (figure 5-1).

When the direction cosines are calculated from the orientation of the normal vector to

the fault plane, Cauchy's formula may be used to determine the components of the total

69
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Up
Sigma 2

North
Sigma 1
East
Sigma 3
Figure 5-1 - Relationship between a plane XY Z situated within a geographic coordinate

system where the north, up, and east coordinate axes correspond to the principal stress axes 0,

0,,and Ojrespectively. The direction cosines are the cosines of the angles between the plane's

normal vector (n) and the three coordinate axes (i.e. I, = cos(alpha), 1, = cos(beta), and 15 =

cos(gamma).
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stress vector acting upon that fault plane. Since the principal stress axes have the same
orientation as the north, up, and east coordinate axes, the shear stress terms vanish from the

stress tensor and Cauchy's formula (equation 1) reduces to

T,=0,,
T,=0,l, (2)
T; = 0;l;

where the 1,2, and 3 components are the north, up, and east components respectively.

To calculate the normal stress and shear stress magnitudes acting upon the fault plane,
the angle between the total stress vectorand the normal vector to the faultplane mustbe found.
A simple relationship exists between any two vectors in space and the angle (0) between them

such that

6 =cos'[(a-b)/([a] [b])] (3)

where a* b is the inner, or dot, product and |a| and |[b| are the magnitudes of vectors a and b

respectively (Marsden and Tromba, 1981, p. 20). The inner product between any two vectors

is defined as

a*b=ab, +a,b,+ asb, (4)

and the magnitude of any vector is defined as

2 2 25\ 1/2
lal = (a,>+ a)> + ay?) )
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Once the angle between the two vectors has been calculated, itcan be shown by simple

trigonometry (figure 5-2) thatthe normal stress (O,) and shear stress (O,) magnitudes are

0,=[T| cos(0) (6)

0,=|T[ sin(0) (7)

Once the normal stress and shear stress magnitudes acting upon the fault plane are

calculated, the fault plane's shear stress to normal stress ratio (O,/ O,) may be determined.

5.2 Deriving Bott's Formula

Forafaultplane ofany orientation within a stress field, there will be a maximum shear
stress direction along which slip may occur. Bott (1959) showed that different relative
magnitudes of the principal stresses willresultindifferentdirections of maximum shearstress.
If the orientation of the fault plane relative to the principal stress axes is known, the relative
magnitudes of the principal stresses can be used to determine the maximum shear stress
direction within the fault plane.

To derive this equation, assume a plane XYZ of unit area situated within a north, up,
and east coordinate system (figure 5-3). The principal stress axes 0,, 0,, and O; and their

associated direction cosines 1,, 1,, and 15 coincide with the north, up, and east directions

respectively. Since the XYZ plane is of unit area,

12+ 1,2+ 1,2=1 (8)

and 1, is the area of the OYZ plane, |, is the area of the OXZ plane, and 1;1is the area of the
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Figure 5-2 - Determining the shear stress and normal stress magnitudes from the angle

between the total stress vector acting upon a fault plane and the fault plane's normal vector.



74

Sigma 1

North

East Sigma 2

Figure 5-3 - Relationship between a plane XYZ situated within a geographic coordinate
system where the principal stress axes 0, 0,, and O;and their associated direction cosines 1,

l,, and 15 correspond to the north, up, and east coordinate axes respectively.
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OXY plane. Therefore, the normal force onthe OYZ planeis1,0,,the normal force onthe OXZ

plane is 1,0,, and the normal force on the OXY plane is 1,0;.
Since the system is in equilibrium, the three components of force acting upon the XYZ

plane are (-1,0,, -1,0,, -1;05). The total resultant force (F;) on the XYZ plane is therefore

Fp= '(1120'12 + 122022 + 132032)1/2 9)

and the normal force (Fy) acting upon the XYZ plane, which may be determined by resolving

each component along the normal direction, is

Fy= '(11201 + l220'2 + 13203) (10)

The maximum shear force (Fg)actinguponthe XYZ plane may thenbe calculated using

the relationship

FTZZFNZJFFS2 (11)

which, upon substitution of equations (9) and (10) into equation (11), is

Fg= [1120'12 + 122022 + 132032 - (11201 + 12202 + 13203)2]1/2 (12)

which yields

Fg=1%0,-0;)°+1,%(0,- 05)°-[1,(0, - 05) + 1,5(0,- 03)]° (13)
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afterusing the identity in equation (8) and algebraically rearranging.

The nextstep istocalculate the resolved components of the maximum shear force (Fy)

along the strike direction (Fg_y) and the dip direction (Fg_g4,) using the relationship

FSZZFS-strikez +FS-dip2 (14)

Resolving the components of shear force along the north-east direction yields

Fs wike = [0,/ (12 + ;)] - [11,05 /7 (1,7 + 157 (15)

which reduces to

Fs srike = [1115 (0 - O3)/ (112+ 132)1/2] (16)

Substituting equations (13) and (16) into equation (14) results in

FS-dip = {112(01 - 03)2 + 122(02 - 03)2 - [112(01 -0, + 122(02 - 03)]2}2 -

[L15(0, -0y /(1) + 15)'7)? (17)

which yields

Fs.gp = L[1,°(0,-03) - (1-1,7)(0,-05)]/ (1 -1,)"? (18)

after using the identity in equation (8) and algebraically rearranging.
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The pitch (00) of the maximum shear stress vector within the XYZ plane (i.e. the angle

between the strike of the XYZ plane and the maximum shear stress direction) is given by

tan((x):FS-dip/FS-strike (19)

which, upon substitution of equations (16) and (18), yields

tan(®) = {1, [1,° (0 - 03) - (1 - 1L)(0,- 0]/ (1 - 1,)"?} /

[1,15(0, - 0y) /(1 + 1) (20)

Suitable algebraic rearrangement of equation (20) will result in

o =tan'[1,21, - @1, + P13/ (1,1)] (21)

where @ is a useful value defined by Angelier (1979) as

®-=(0,-0,)/(0,-0, (22)

which ranges from 0.0 to 1.0 and represents the relative magnitudes of the principal stresses
(i.e. represents the shape of the stress ellipsoid).

Bott's formula (equation 21) yields the pitch angle of the slip vector on the fault plane.
For plotting on a stereographic projection, it may be more convenient to represent the slip

vector simply by its plunge and trend. This may be done utilizing the three formulas
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beta =tan '[tan(pitch) cos(dip)] (23)
trend = strike + beta (24)
plunge = cos'[cos(pitch) / cos(beta)] (25)

where the pitch angle of the slip vector in the fault plane and the dip of the fault plane are used
to calculate a value for beta which is the horizontal angle between the trend of the slip vector
and the strike of the fault plane. The plunge ofthe slip vectoris then calculated from the pitch
angle and beta (Ragan, 1985, p. 51).

With some modifications of the above equations, the 0,, 0,, and Oyaxes may have any
arbitrary orientations other than the north, up, and east ones assigned to them. To do so, the
1, 1,, and I; direction cosines must represent the cosines of the angles between the normal

vector to the fault plane and the 0, 0,, and O;axes respectively. Through Cauchy's formula,

the T,, T,, and T, total stress vector components will be resolved parallel to the 0,, 0,, and O,

axes. Bott's formula (equation21) must be modified accordingly and each of the special cases
where the fault plane may be parallel to one of the principal planes must be dealt with

individually. The resultant pitch angle will then be the angle between the intersection of the
plane containing O, and O, with the fault plane and the slip vector within that fault plane

(figure 5-4).

5.3 Program Input

A program was written in Turbo Pascal version 3.01 to perform the above calculations

and graphically display the results. The program requires nine items of information to perform

the calculations -- the orientations of O, and O relative to the north, east, and up coordinate

axes, the magnitudes of O, and O3, the coefficient of friction () of the fault
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plane, the cohesion (C) of the fault plane, the plunge and trend of the fault plane's normal

vector in degrees, and the number of ® values to examine.

This information is obtained interactively by the program as the user enters each value
when prompted (figure 5-5).

The entered magnitudes of O, and 05 have arbitrary units since only their relative

values are important, not their absolute values. The program also requires the 0, 0,, and O,

axestocorrespondtoeitherthe north,up,oreastcoordinate axes. Thisisdone only to simplify
the mathematics involvedin calculating the slip vector orientations and does notsignificantly
limit the program.

The user is required to enter the alphanumeric characters "N", "E", or "U" for the
principal stress orientations, a real number between-100.0 and +100.0 for the principal stress
magnitudes,arecalnumberbetween 0.0 and 100.0 for the coeffient of friction and the cohesion,
a real number between 0.0 and 90.0 for the plunge of the normal to the fault plane, a real

number between 0.0 and 360.0 for the trend of the normal to the fault plane, and an integer
between 2 and 50 for the number of 0, intervals to examine.

Once the initial data has been entered, the program may begin to calculate slip vector

orientations for the specified fault plane.

5.4 Program Procedures

Theslipvectorcalculation program consistsof many procedures tointeractively input,
calculate, and output data. Most of the program procedures in Appendix C are there simply to
enable the program to function interactively, to graphically display the results of the
calculations, and to create the AutoCAD DXF files. The only procedures I will discuss here

are those directly involved with mathematically calculating the slip vector orientations.
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Figure 5-4 - Lower-hemisphere stereographic projection showing three arbitrarily oriented
principal stresses O, 0O,, and Oyinrelation to an arbitrarily oriented fault plane with a normal
vectorn. A, B,and I"are the angles between the normal vectorand 0, 0,, and O respectively.

The pitch angles of any slip vectors will be measured from the intersection P of the plane

containing O, and O, with the fault plane (figure modified from Schimmrich, 1990).



81

SLIP VECTOR PLOTTING PROGRAM

What is the orientation of the maximum compressive
principal stress axis ol (North, East, or Up) ? N

What is the orientation of the minimum compressive
principal stress axis o3 (North, East, or Up) ? E \

Enter the value for ol : 1.0
Enter the value for o3 : -1.0
Enter the coefficient of friction (u) : 0.85
Enter the cohesion (C) : 0.0

Now enter the plunge and trend of the normal
vector to the fault plane you wish to examine

Enter the plunge : 70

Enter the trend : 030

How many values of 02 between ol |
and o3 do you wish to examine ? 20

Figure 5-5 - Interactive screen displayed by the slip vector calculation program as the user

enters the initial data. In this example, the orientation of O, is north with a magnitude of +1.0,
the orientation of O; is east with a magnitude of -1.0, the coefficient of friction is 0.85, the
cohesion is 0.0, the fault plane has a normal vector oriented at 70/030, and 21 ® values will be

examined (since 20 O, intervals equals 21 () values).
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Once the data has been interactively entered through the program procedure 4skData,
the orientation of the O, and O, principal stress axes and the plunge and trend of the fault plane's

normal vector are passed to procedure DirCosines which calculates the three direction cosines

1, 1,, and 1; using the equations

1, = [cos(plunge) cos(trend)]
1, =sin(plunge) (26)

l, = [cos(plunge) sin(trend)]

where 1., 1,, and 1, are the direction cosines relating the fault plane's normal vector to the north,

up, and east coordinate axes respectively (Cheeney, 1983, p. 112). These must be converted to

the proper1,,1,,and l;direction cosines depending upon the given orientations of the 0, 0,, and
O, principal stress axes.

The direction cosines are used, along with the O, and O, magnitudes, to calculate the
three components of the total stress vector acting upon the fault plane by procedure Cauchy.

This procedure initially sets the magnitude of 0,equal to the magnitude of O;and then increases
it through the user-specified number of steps until it is equal in magnitude to O,. For each of
these steps, the magnitudes of 0, 0,, and O, are used to calculate a value for () (equation 22)

and Cauchy's formula is used to calculate the total stress vector (equation 2) for each D value.

This data is stored in two-dimensional arrays.

All of the data is then passed to procedure CalculateStresses which calculates the slip

vector pitch angle and the shear stress to normal stress ratio for each ® value. The principal
stress O,1s once again set equal to the magnitude of Oy and increased by steps until itis equal in

magnitude to O,;. Calculations are then performed for each D value.
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The three direction cosines and components of the total stress vector are first used to
calculate the angle between the fault plane'snormal vector and the total stress vector actingupon
the fault using equations (3), (4), and (5). From this angle, the shear stress and normal stress

acting upon the fault plane may be calculated using equations (6) and (7). The effective shear

stress tonormal stress ratio (0O, / 0,') is then determined using the following equation

(0,/0,)=0,/[()h 0, + Cyl (27)

provided that L or O, are not equal to zero. This equation is used since a Coulomb failure

criterion is assumed (Coulomb, 1776; Handin, 1969).

The program next checks for the special cases where the fault plane is parallel to one of
the principal stress axes since this will result in a division by zero in procedure
CalculateStresses (a fault plane parallel to a principal stress axis will have a direction cosine
equal to zero).

Finally, Bott's formula (equation21)isused to calculate the pitchangle ofthe fault's slip
vector for each @ value. A simplified flow-chart of these procedures is shown in figure 5-6.

The results of these calculations are then numerically or graphically displayed showing
the slip vector orientations on the user-specified fault plane for each value of @ calculated and

the associated shear stress to normal stress ratios.

5.5 Program Output

There are several ways in which the results of the calculations may be displayed. The

easiest way is to display them as a numerical listing (table 5-1). It is often difficult, however,
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to see the relationships between numbers in a table of data, so a better method is to display the
results as a graph of the ® values versus the pitch angles of the slip vectors (figure 5-7).
Alternatively, the same slip vectors may be plotted in a lower-hemisphere stereographic
projection (figure 5-8). Using different symbols for slip vectors on planes with a shear stress to
normal stress ratio above or below a certain chosen value may indicate which slip directions
would have a higher chance of experiencing slip since this ratio is directly proportional to the
coefficient of internal friction (Coulomb, 1776; Handin, 1969).

The slip vector calculation program will display, on the computer's screen, the results
as a table of data, a graph of the ® values versus the pitch angles of the slip vectors, or as a
lower-hemisphere stereographic projection. The data may also be written to an ASCII file or be
usedtocreate AutoCAD-compatible drawing interchange files (DXF files) for plotting the graphs

and stereographic projections via AutoCAD.

5.6 Creating Fault Populations

The slip vector calculation program was used to generate artificial fault populations for

testing paleostress analysis programs. These populations were created using the following steps:

1. Deciding upon the type of fault population to test (i.e. conjugate faults, orthorhombic

symmetry faults, randomly oriented faults).

2. Deciding upon the number of faults to test. Too few or too many faults will adversly

affect the paleostress analysis.

3. Deciding upon the type of stress field in which to situate the fault population. The
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Figure 5-6 - Simplified flow chart demonstrating the mathematical algorithm used by the slip

vector calculation program.



Sigma 1 Sigma 2 Sigma 3 Phi Pitch g /o,

1.00 -1.00 -1.00 0.00 58.43° 0.69
1.00 -0.90 -1.00 0.05 56.64° 0.73
1.00 -0.80 -1.00 0.10 54.67° 0.79
1.00 -0.70 -1.00 0.15 52 .48° 0.87
1.00 -0.60 -1.00 0.20 50.04° 0.98
1.00 -0.50 -1.00 0.25 47 .34° 1.14
1.00 -0.40 -1.00 0.30 44 .32° 1.40
1.00 -0.30 -1.00 0.35 40.96° 1.90
1.00 -0.20 -1.00 0.40 37.22° 3.15
1.00 -0.10 -1.00 0.45 33.07° 11.86
1.00 0.00 -1.00 0.50 28.48° 5.76
1.00 0.10 -1.00 0.55 23.46° 2.20
1.00 0.20 -1.00 0.60 18.03° 1.32
1.00 0.30 -1.00 0.65 12.24° 0.94
1.00 0.40 -1.00 0.70 6.19° 0.72
1.00 0.50 -1.00 0.75 0.00° 0.50
1.00 0.60 -1.00 0.80 - 6.19° 0.51
1.00 0.70 -1.00 0.85 -12.24° 0.45
1.00 0.80 -1.00 0.90 -18.03° 0.41
1.00 0.90 -1.00 0.95 -23.46° 0.38
1.00 1.00 -1.00 1.00 -28.48° 0.36
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Table 5-1 - Table of data generated by the calculationof21 slip vectors representing a D value

ranging from 0.0 to 1.0 on a fault plane with a normal vector oriented at 70/030 degrees. The O,

0,, and O; values are in any arbitrary stress units, the pitch is defined as the angle between the

strike of the fault plane and the slip vector in degrees, and the shear stress to normal stress ratio

(0,/ 0, is dimensionless (table modified from Schimmrich, 1990).
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Slip Vector Plotting Program Fault Plane Sigma 1 = North
Fault Plane Normal at 70 / 30 Q = Slip Sigma2= Up
Cutoff Value = 0.60 o = Locked Sigma 3 = East
Pitch
90 T
45 OO0 o¥e O
0 | | | ) |
e}
]
)
0]
-45
90 T
0.0 0.2 0.4 0.6 0.8 1.0

Phi

Figure 5-7 - Graph of 21 ® values for each slip vector as they range from 0.0 to 1.0 versus the

pitch ofthe slip vectors from the strike of the fault plane with anormal vector oriented at 70/030
degrees. The large circles represent slip vectors with a shear stress to normal stress ratio of 0.6
or greater and the small circles represent slip vectors with a shear stress to normal stress ratio

of less than 0.6.
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Slip Vector Lower-Hemisphere

Plotting Program Stereographic
Fault Plane Normal Projection
at70/ 30

(O =slip Sigma 1 = North

© = Locked Sigma2= Up
Cutoff Value = 0.60 Sigma 3 = East

Figure 5-8 - Lower-hemisphere stereographic projectionof21 slip vectorsrepresenting values
ranging from 0.0 to 1.0 on a fault plane with a normal vector oriented at 70/030 degrees. The
large circles represent slip vectors with a shear stress to normal stress ratio of 0.6 or greater and

the small circles represent slip vectors with a shear stress to normal stress ratio of less than 0.6.
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orientations of O;, 0,, and O; relative to the north, up, and east coordinate axes and

their ratio ® must be determined.

4. Deciding upon values to use for the coefficient of friction (L) and cohesion (Cy).

5. Determining the plunge and trend of the normal vector for each fault plane within the

population which will be tested.

6. Using the slip vector calculation program to determine the pitch of the slip vector and

the shear stress to normal stress ratio for each fault plane at the decided upon value of

D

7. Deciding upon a shear stress to normal stress ratio cutoff value to use since faults with
a sufficiently low ratio will not experience slip under realistic geologic conditions and

tossing out those faults which have a ratio below that cutoff.

8. Creating data files of the fault's orientations and slip directions in the proper format for

entry into the various paleostress analysis programs.

The artificial fault populations generated in this manner were then run through several
paleostress analysis programs to determine if the calculated paleostress tensors corresponded
to the initial stress fields used to create the populations. This provides an independent means
ofassessing the accuracy of computational methods of palostress analysis since the populations
were created using the same initial mathematical assumptions as those used by the analysis

programs.



CHAPTER 6

ANGELIER'S METHOD OF PALEOSTRESS ANALYSIS

In 1975, Jacques Angelier of the Université Pierre et Marie Curie in Paris proposed
anew computational method for paleostress analysis which he subsequently modified over
time (Angelier, 1975; Angelier, 1979; Angelier, et. al., 1982; Angelier, 1984; Angelier,
1989). Angelier's method attempts to iteratively determine a paleostress tensor for a given
fault population such that the angular divergence between the observed striations in the fault
planes and the predicted slip directions are minimized (Angelier, et. al., 1982).

I obtained a compiled version of Angelier's program from Christopher Barton of the
Lamont-Doherty Geological Observatory in June, 1990. The program was written by Angelier
in FORTRAN for an IBM PC or compatible computer with an 80287 math coprocessor.

Idetermined thatthis program was operating correctly by examining several published
fault populations for which Angelier's method paleostress tensors were given and comparing
my results to the published ones (Angelier, et. al., 1982; Angelier, 1984). This done, I began

to evaluate the performance of Angelier's method using artificial fault populations.

6.1 Program Assumptions

Angelier's method of paleostress analysis is based upon the following two very

important initial assumptions (Angelier, 1989).

1. All faults which moved during a single tectonic event moved independently of one

another and in a manner consistent with a unique, static stress tensor.

90
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2. Faults are assumed to slip on pre-existing planar discontinuities in the direction of the
maximum resolved shear stress within the fault plane (i.e. at right angles to the direction of

zero shear stress).

6.2 Theory

The mathematics in this section roughly follow the derivations given in Angelier, et.

al. (1982).
Allow O to be the unknown regional stress tensor acting upon a fault plane with a unit

normal vector N and a unit slip vector S (figure 6-1). The stress vector T acting upon the fault

plane may be defined by

T=0"N (1)

where (O * N) is the inner, or dot, product of tensor O and vector N (Marsden and Tromba,

1981, p. 20) and the components of T on N and S are

N‘T=N-0"N (2)
and

S'T=S-0"-N (3)
respectively.

Since the direction of the striations in the fault plane is taken to be the maximum



92

Figure 6-1 - Geometry of the stresses on a striated fault plane with a unit normal vector (N),

a unit slip vector (S), and a stress vector (O - N) acting upon it (figure modified from

Angelier, et. al., 1982).
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resolved shear stress direction, the following two equations may be written

O N=(N-OG-N)N+(S-0-N)S (4)

S‘-0-N2>0 (5)

Equation (4) may be simplified through the following steps

(S*0-N)S=0-N-(N-0-N)N (6)
(S*0-N)Y?=|0-N-(N-O-N)N | (7)
($:0-N!=|0-N|?-(N-0"-N)? (8)
S-0-N==x[|0-N|*-(N-0-N)"? (9)

and combining equations (5) and (9) yields

S-0O'N=+[|O0-N|*-(N-0-N)I'"? (10)

a mathematical relationship which will be used later in this analysis.

In describing the orientation of the fault planes and their associated striations used in
the paleostress analysis, three independent angles are defined in a north, up, and east
geographic coordinate system. The trend of the fault's dip direction (d), the fault's dip angle
(p), and the pitch angle of the fault's slip vector (i). The pitch angle (i) is defined as the

clockwise angle (looking down the fault normal's plunge at the footwall block) between the

slip vector and the fault's strike direction (the trend of the pole to the fault plane + T0/2) such

that 0 <1< T0 for a normal fault and T <i < 27 for a reverse fault (figure 6-2).

The angles d, p, and i are those commonly measured in the field by geologists with a
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3T7/2

Fault Plane

Figure 6-2 - Diagram of a fault plane looking down the plunge of the normal vector (N) to

the fault at the footwall block showing a slip vector aligned at 37/4. In Angelier's (Angelier,

et. al., 1982) notational system, this implies a normal fault (the slip vector points in the

direction of movement of the lower block).
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compass and clinometer. The advantage in using these angles is that they are all independent
of one another so an error in measuring one angle will not affect the other two.

The three components of the unit normal vector to the fault plane may thus be defined

in terms of d, p,and ias

N, = [sin(d) sin(p)]
N, = [cos(d) sin(p)] (11)

N; = cos(p)

and, similarly, for the slip vector components

S, = - [sin(i) cos(p) sin(d)] + [cos(i) cos(d)]
S, = - [sin(i) cos(p) cos(d)] - [cos(i) sin(d)] (12)

S3 = [sin(i) sin(p)]

If O is the unknown regional stress tensor for a given fault, a tensor O' may be defined

such that

O=1t,0+t,I (13)

where t, and t, are any positive constants and I is any isotropic 3 x 3 tensor. It can be
demonstrated that multiplying O' by a positive constant and adding an isotropic tensor I to it
will not change the sense or direction of the predicted striations on the fault plane.

Since O is a 3 x 3 symmetric tensor, it has six degrees of freedom (i.e. 0,,=0,, O3

= 034, and 0,3 = O;,). The tensor O' is thus termed the reduced deviatoric stress tensor
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(Angelier, 1979; Angelier, et. al., 1984) and has four degrees of freedom since t, and t, may
have any arbitrary positive values. Furthermore, it is always possible to choose positive

values for t; and t, such that

01,1 + 0'2,2Jr 03,3 =0 (14)

and

01,12 + 02,22 + 03,32 =(3/2) (15)

For numbers satisfying equations (14) and (15), a unique number lII (modulo 27T) can

be found such that

0,,= COS(‘D)

0,,=cos[J + (270/3)] (16)

Q
I

= cos[Y + (47/3)]

which yields the reduced stress tensor O'

r 1
i cos(lII) o Y i
| |
| o cos[P + (270/3)] B | (17)
| |
| |
| Y B cos[J + (4T0/3)] |
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where O, B, and Y are the shear stress terms (0, ,, 0,,, 0,3, 03,, 0,3, and O; ) of the tensor.

All tensors O' and O which satisfy equation (13) yield the same eigenvectors and

eigenvalues and thus the principal stress axes orientations and magnitudes are the same for

each.

Let Yy, O, BO, and Y, be values for the a priori estimate of O' and o', 0% 0P, and O
be their standard deviations. If there is no a priori estimate of O', the standard deviations
must be made very large. Also, let (dy, py 1y), be data and (09, oP, G be the standard
deviations of that data for each fault n.

In the general case, no tensor O' exactly satisfies equation (10) on each fault.

Therefore, what is needed is a tensor O' and a new set of data (d, p, i), which exactly satisfies

the equation. Since there are an infinite number of such solutions, the solution which

minimizes the following sum (s) for a population of n faults is used.

s= 2., {[(d-dg)/07 + [(p-po)/O°1> + [(i-i9)/0',7} + [(P-P)/0¥]* +

[(0-000)/ T + [(B-Bo)/0P12 + [(Y-Y,)/07? (18)

Thisisanon-linearleast-squares problem whose solutionisobtainedbyacomplicated

iterative algorithm which may be found in Angelier, et. al. (1982).

6.3 Program Input

The program utilizing Angelier's method of paleostress analysis requires five items

of information to run -- a two letter code (described in more detail below) describing the type

of structure which will be analyzed, the fault's strike (0° - 360°), the fault's dip angle (0° -
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90°), the fault's dip direction (N, E, S, or W for north, east, south, or west respectively), and
the trend (0° ~ 360°) of the striations on the fault surface.

The two letter code used by Angelier is to allow a wide variety of geologic structures
such as faults, joints, tension gashes, dikes, bedding planes, mylonitic foliations, cleavages,
mineral lineations, folds, etc. to be subjected to paleostress analysis. The codes used in my
analyses are CN, CI, CD, and CS for, respectively, striated normal, reverse (inverse), dextral,
or sinistral faults with a known sense of shear.

This information must be written to an ASCII data file in a special format so that it
may be correctly read by Angelier's program. A data file creation program exists which
creates these formatted files when the initial data is interactively entered. Each fault datum
must be entered as a single line of characters and integers separated by a single blank space.

As an example, a conjugate set of two normal faults with an east-west strike and a dip

of 45° (figure 6-3) would be entered into the data file creation program as

CN 09045S 180
CN 27045N 000

since the first fault is normal, has a strike of 090°, is dipping 45° to the south, and has
striations with a trend of 180°. The second fault is also normal, has a strike of 270°, is
dipping 45° to the north and has striations with atrend of000°. The data file creation program
also asks for the magnetic deviation of the measurements in degrees, a value for the
instrument error in degrees, the author's name, the site name, the date, and comments about
the geology of the site.

Once the properly-formatted ASCII data file has been created and read into the

program, the calculations are performed.
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6.4 Program Procedures

When all of the data has been entered into the program, the three angles d,, p,, and i,
are determined for each fault in the population. The standard deviations 0% OF, and O' of

these angles are also determined from the entered measurement error term.

The next step in the program is to set the a priori constraints for the four parameters
(IIIO, oy, BO, and Y,) describing the reduced stress tensor O' (equation 17) to zero and to set the
a priori standard deviations to 4T for 0% and to 100 for g, O'B, and O".

Aniterative algorithm (Angelier, et. al., 1982) is then used todetermine values for [lIJ,
o, B, Y, (d, p,i)y, ... (d, p, i),] such that equation (18) is minimized.

Once a reduced stress tensor O' has been calculated, the three eigenvalues and
eigenvectors of 0' may be determined using standard linear algebra techniques (Anton, 1981,

p-261-284; Froberg, 1985, p.22-26). These eigenvalues and eigenvectors correspond to the

magnitudes and orientations of the three principal stress axes 0,, 0,, and O; respectively.

6.5 Program Output

The program results are displayed onthe computer's screen when the calculations have
finished and the user has the option of saving them to an ASCII data file or performing another

analysis.
The output data consists of the plunges and trends of the three principal stress axes O,
0,, and O;and their relative magnitudes. The stress ratio D, defined as [(0,-04)/(0,-05y],

is also displayed.

The data for each paleostress analysis I obtained was plotted on lower-hemisphere
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Figure 6-3 - Lower-hemisphere stereographic projection showing a conjugate set of two

normal faults with an east-west strike and a dip of45°
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stereographic projections by a Turbo Pascal version 3.01 program I wrote for that purpose
(Appendix D). The program read the fault population data and the predicted principal stress

axes orientations and created AutoCAD script files for plotting stereonets via AutoCAD.

6.6 Discussion

Angelier's method of paleostress analysis was chosen for testing for several reasons.
I had a working copy of the program for an IBM PC or compatible computer, the program
performed calculations for reasonably-sized fault populations in relatively short amounts of
time, Angelier's method of paleostress analysis is widely-used and is the standard by which
most others are judged, and the method has been used in several published field studies

(Angelier, 1984; Angelier, et. al., 1985; Angelier, 1990).



CHAPTER 7

RECHES' METHOD OF PALEOSTRESS ANALYSIS

In1987,Ze'evRechesofthe Hebrew University in Jerusalem proposed whathe claimed
tobe anew and improved method of computational paleostress analysis (Reches, 1987). The
improvement over previous methods was the incorporation of the Coulomb failure criterion
into the calculations. This allows the cohesion and coefficientof friction to be constrained for
the fault populations and uses a linear inversion to calculate a stress tensor rather than
Angelier's much more complicated non-linear one.

I obtained a compiled version of Reches' program from Kenneth Hardcastle of the
University of Massachusetts at Amherst in August, 1989. The program was written by
Hardcastle in Microsoft BASIC version 5.60 for an IBM PC or compatible computer with an
80287 math coprocessor. Using this program, Hardcastle performed paleostress analyses on
fault data from eastern Vermont and western New Hampshire (Hardcastle, 1989).

Idetermined thatthis program was operating correctly by examining several published
fault populations for which Reches' method paleostress tensors were given and comparing my
results to the published ones (Angelier, 1984; Reches, 1987). This done, I began to evaluate

the performance of Reches' method using artificial fault populations.

7.1 Program Assumptions

Reches'method of paleostress analysis is based upon the following three assumptions

(Reches, 1987).

1. Faults are assumed to slip inthe direction of the maximum resolved shear stress within

the fault plane (i.e. at right angles to the direction of zero shear stress).

102
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2. The magnitudes of the shear and normal stresses acting upon a fault plane satisfy the
Coulomb failure criterion (0,> Cy+ L O0,). This assumption implies that faults will

slip under geologically-realistic conditions.

3. Slip on a fault occurs within a relatively static stress field and the coefficient of

friction L and cohesion C,terms for a fault may be represented by their mean values.

7.2 Theory

The mathematicsinthissectionroughly followsthe derivations giveninReches (1987).
For each fault plane in the population to test, the following items of information are
known -- the orientation of the normal vector to the fault plane, the orientation of the fault's
slip vector, and the fault's sense of slip. Assuming a geographic coordinate system with X,
northward, X, eastward, and X; downward, the two unit vectors representing the normal and

slip directions may be represented by

<N17N2=N3> (1)

and

<S,,S,, 83> (2)

where N;and S, are the direction cosines for the normal and slip vectors and the 1, 2, and 3

subscripts refer to the north, east, and down directions respectively.

The direction cosines in equations (1) and (2) satisfy the following identities:
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N2+ N2+ N2 =1 (3)
S + 8,7+ 8=1 4)
N;S;+ NS, + N3S;=0 (5)

Given that S; represents the components of the fault's slip vector, N; represents the
components of the fault's normal vector, and B, represents the components of the vector

orthogonal to both S and N (i.e. B is the normal vector to the movement plane), then

B=NxS§ (6)

wherethe symbolxrepresents the the operationofdetermining the cross productoftwo vectors
(Marsden and Tromba, 1981, p. 25).
Assumption l insection 7.1 statesthattheresolvedshearstress paralleltovector B (i.e.

at right angles to vector S) is equal to zero. Resolving the stresses parallel to B (Jaeger and
Cook, 1979, p. 17-24), denoting nine components of the stress tensor as 0;;(wherei=1, 2, or

3andj=1,2,0r3),and using the identities in equations (3), (4), and (5) allows one to set up

the following relationship:

NB(0,,;-0;3) +N,B,(0,,-0;3) + (N,B;+ B,N;) 0,5+

(N1B3+B1N3)0'1’3+(N1B2+B1N2)0'1’2:O (7

In asimilar manner, the stresses may be resolved parallel to the vector N (which is the

fault's normal stress 0,)



105
0,= [N12 (0,,-0;3 + sz (0,,-0;3) + 053+ N;N;20,;+

N1N3201,3+N1N3201,3+N1N220-1,2] (8)

and the vector S (the fault's shear stress 0).

O0,=N;S;(0,;-033) + NSy (My,- K3 + (N,S;+ S,N3) Wys+

(N;S;+SN3) 0,5+ (NS, + S§,N,) O, 9

Assumption 2 in section 7.1 states that a fault must satisfy the Coulomb failure

criterion.

O-s:COJrIJ'O-n (10)

Substituting equations (8) and (9) into equation (10) yields'

NS;(0,;-033) + N,S,(0,,-0;53) + (N,S;+ S,N;) 0,5+
(N,S;+ S Njy) 0-1,3+ (NS, + SN, 01,2:
Cot “’[N12 (0y,-0;3 + sz (0,,-033) + 055+ N,N;20,;5+

N|N;20,;+N,N;20,;+ N|N,20,,] (11

Equation (11) may be rewritten as

! Equation (3) in Reches' (1987) paper is incorrect with [l,,, [l;3, and W, ; representing what should be 0, ,,

0,3, and T, respectively. This error has been corrected for equation (11).
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[(NS, - ule) (0,,-053)]+[(N,S,- “'sz) (0,,-053)] +
[(N,S;+ S,N3-2UN,N;) O,5] + [(NS;+ SNy -2UN|N3) O 5] +

[(N1sz+SlNz'zuNlNz)Ol,z]:COJr|-103,3 (12)

Equations (7)and (12) may be written foreach faultinapopulation ofn faultsresulting

inatotal of 2n equations. Thus, fora given fault population, the left sides of the two equations
(i.e. the sides which are equal to 0 and Cy+ LO;;respectively) may be used to create a 2nx 5

matrix of the form

[N,B, ], [N;B, ], [ (N;Bs + ByN3) ], [(N;Bs + B)N3) ], [(N;B, + BiNy) 1,
[N,B, ], [N;B,]1, [ (N;B; + ByN3) 1, [ (N;Bs + B;N3) ], [(N;B, + B;Ny) I,
[N;S,-1N;?];  [N,S,~HN,*T,  [N,S5+S,Ny=21uN,Ny], [N;S5+8,Ny-21N; N3], [N;S,+S,N,-2uN,N, ],
[N,S,-1N;?],  [N,S,~HN,*T, [N,S3+S,Ny=21uN,Ny], [N;S5+8,Ny-21N, N5, [N;S,+S,N,-2uN,N, ],

(13)

where the subscripts 1 through n indicate the parameters associated with each of the n faults.

Denoting the matrix in equation (13) as A, the following relationship may be set up

AxD=F (14)

where D is the vector
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<(0,,-033),(0,,-033), 0,5, 0,3 0,,> (15)

of the unknown stresses to be solved for and F is the vector

<[0]1= LR [O]ns [CO+ “’ 03,3]15 [RRE] [COJr IJ" 03,3]n> (16)

where the firstn terms are zero and the lastnterms are (Cy+ [L O, 3) thus satisfying assumptions

number 1 and 2 described in section 7.1.
Equation (14) is an overdetermined linear system (i.e. there are more equations than

unknowns) in which the tensor A is determined from the measured faultnormal and slip vector
orientations and the vector F represents the chosen values for L and C,. The stress vector D is

determined by using a standard least-squares linear inversion method (Schied, 1968; Anton,

1981, p.315-327; Froberg, 1985, p. 155-157,250-254). Since D yields the paleostress tensor

O,., the magnitudes and orientations of the principal stresses O,, O,, and O; may thus be

ij>

determined.

7.3 Program Input

The program utilizing Reches' method of paleostress analysis requires six items of
information to run -- the fault's strike (0° - 360°), the fault's dip angle (0° - 90°), the trend of
a slickenline on the fault surface (0° -~ 360°), the plunge of that slickenline (0° -~ 90°), the
rotation sense of the fault as viewed down the plunge of the rotation axis (1 = clockwise and
2 = counterclockwise), and the confidence level of the fault (1 = excellent -~ 4 = poor).

This information must be in an ASCII data file where each fault datum is written on a

single line as integers separated by blank spaces.
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Figure 7-1 - Lower-hemisphere stereographic projection showing a conjugate set of two

normal faults with an east-west strike and a dip of45°
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As an example, a conjugate set of two normal faults with an east-west strike and a dip

of45° (figure 7-1) would be written to the input file as

090 45 180 45 2 1
270 45 000 45 2 1

since the first fault has a strike of 090°, a dip 0f 45°, a slickenline with a trend of 180° and a
plunge of 45°, a counterclockwise (2) rotation sense, and a confidence level of 1 (excellent).
The second fault has a strike of 270°, a dip of 45°, a slickenline with a trend of 000° and a
plunge of 45°, a counterclockwise (2) rotation sense, and a confidence level of 1 (excellent).

Once the ASCII data file has been read into the program, the user is asked to supply
values for the coefficient of friction [l, the cohesion C, and the fluid pressure Py,,0n the fault.
The fluid pressure term simply results in a lower effective normal stress on the fault and was
setto zero for all tests of the program. The coefficient of friction and cohesion were normally
set equal to the values used when creating the artificial fault populations with the slip vector

calculation program (chapter 5).

7.4 Program Procedures

When all of the data has been entered into the program, the direction cosines of the
normal andslip vectors (equations 1 and 2) are calculated. Using equation (6),the components
of vector B orthogonal to vectors N and S are determined. Next, the coefficients of matrix A

(equation 13) and vector F are calculated using N, S;, B;, L, and C,,.

The overdetermined system A x D = F (equation 14) must now be solved for D by using
standard linear algebra methods for determining a least-squares linearinversion of A (Schied,

1968; Anton, 1981, p. 315-327; Froberg, 1985, p. 155-157,250-254) such that
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D=A'xF (17)

When the five componentsofvector D are calculated, the vertical stress 05 ;issetequal
to 1.0 and scales the magnitudes of 0, ;and 0,,since the firsttwo components of vector D are
(01,1 - 03,3) and (02,2 - 03,3)‘

The components of vector D contain all of the O;;components of the stress tensor O
whichmay, in turn, be used to determine the magnitudes and orientations of the three principal
stress axes O,, 0,, and O;. The three eigenvalues and eigenvectors of the 3 x 3 stress tensor O

correspond to the magnitudes and orientations of the three principal stress axes respectively.
Theseeigenvaluesandeigenvectorsmaybecalculated using standard linearalgebratechniques

(Anton, 1981, p. 261-284; Froberg, 1985, p. 22-26).

The stress tensor components O;;are now substituted into equation (11) for each fault.
The program calculates, for each of the n faults, the normal stress O, shear stress in the slip

direction O, coefficient of friction [, and the misfit angle. The misfit angle, or angular

divergence, isthe angle between the observed slip direction (given by slickenlines on the fault
plane and the fault's shear sense) and the expected slip direction determined by the calculated
paleostresstensor. Themeanangulardivergence and coefficientoffrictionare also calculated
for the population.

The goal of Reches' method is to find a geologically-reasonable coefficient of friction

MU which willresultin a paleostress tensor which yieldsthelowestaverage angulardivergence.

7.5 Program Output

The program results,along with the initial data, are displayed on the computer's screen



il
CFilme e e

ST Fault, dat coec e

s eFPorichiame oo

e e AR -

c e Cahmriam-- - -

B |

SN o o O JCARO.. |

L |

111

L]

CHiamacleccce e cBiamacic s e cBiagma T

s BE-3ASEL-58 0

+- - Confidence ‘Meighting

-H

B TR L VS T

R E T - Y (T -

- A
-Field-Data: -

Seel L 2ETH

ceecsPredicte d-Waluaes A

BT FRES |

‘Fault---Fault--

i
|

[P AT

B1 44

CEEE g
Sl Eg
SLLEsgEc e

S
SLLEET e
SLEEE-. .
e S
: e
A g s
P e

s B lickscc -

B AT T
ClE2:59 -
CLEB2E -

150:45

"lEligs e
flEEcERE -
R LY R
L T
LR R
SRR G 4T
b B B D
T T

[ e N L s

[

""" Fault----Fault----3licks - - --&nglr - - "Hormal
‘o, - - -3tr,Dip-- - "&s,FPlg----fdnc----Class----Class----&n,Flg - - Dwrgnc: - - "Gtress

e T

v ]
..... 179 iEE -

..... RN IR
1672 :44

..... L5 dE-- s
----- LEL:Ehee o oe
..... 186 55 ...t
..... R ULE T
..... 199 5§« - -

CE e
diddsddadd s

@@mmmqml—lmmmm

.

CTAE
T

LBET
R
CEEE
CUEE
'l gl
g R
TR A
g

o T )

L

I
CEE e e

_294.
LESE
S
SELD e
e e
ORI
T e
_232.
B
g

e Loeff A

s FPree'nfl

e ]

0

LRE
|

.E4T
CEET
CEET
LT
LE5
LT
CTET
LE99
LEH
LEL W

- M

-7

e F 1 L F R AR B T I IR DU T3-SRy L, |

- H

Figure 7-2 - Figure showing the graphical output from Reches'method of paleostress analysis

using Kenneth Hardcastle's (1989) program. This is an analysis from a population of 12

artificially generated faults. See text for an explanation ofthe header abbreviations used.
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in the format shown in figure 7-2.

The output data consists of -- the file name containing the original fault population
input data; the fluid pressure Py,,, coefficient of friction b, and cohesion Cyvalues chosen by
the user; the number (N) of faults in the population; the trend and plunge in degrees of the
three principal stress axes O, 0,, and O; and their relative magnitudes; the stress ratio 0]

(denoted by S1-S3/S2-S3); the entered strike and dip in degrees (Str,Dip) of each fault; the
entered trend and plunge in degrees (Az,Plg) of the slickenlines for each fault; the entered
confidence level (Confdnc) for each fault; the fault class obtained from the entered rotation
sense for each fault; the predicted fault class for each fault; the predicted trend and plunge in
degrees (Az,Plg) of the slickenlines for each fault; the angular divergence in degrees (Anglr
Dvrgnc)between the entered slickenline orientations and the predicted slickenline orientations
for each fault; the calculated normal and shear stresses on each fault; the calculated
coefficientof friction (Coeff. Frct'n) foreach fault; and the averages ofthe calculated angular
divergences, normal stresses, shear stresses, and coefficients of friction for the fault
population.

After the data has beendisplayed,the user hasthe optionofsaving the datatoan ASCII
data file and/or running the same population again for a different set of fluid pressure,
coefficient of friction, and cohesion values. The data for each paleostress analysis I obtained
was plotted on lower-hemisphere stereographic projections by a Turbo Pascal version 3.01
program I wrote for that purpose (Appendix D). The program read the fault population dataand
the predicted principal stress axes orientations and created AutoCAD script files for plotting

stereonets via AutoCAD.

7.6 Discussion

Reches'method of paleostressanalysiswaschosen fortesting forseveralreasons. [ had
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a user-friendly copy of the program which worked correctly, the program was written for an
IBM PC or compatible computer, the use of a non-linear inversion allows the program to
perform calculations forreasonably-sized fault populationsinshortamountsoftime (less that
1 minute for most populations), the program is claimed to be an improvement over Angelier's
computational method of paleostress analysis since it takes into account the Coulomb failure
criterion, and the method has been used in several published field studies (Reches, 1987;

Hardcastle, 1989).



CHAPTER 8

PALEOSTRESS ANALYSIS TEST DATA

The artificial fault populations used for testing the two paleostress analysis programs

were created with four specific questions in mind:

1. How accurate are paleostress analysis programs given a geologically-realistic

population of faults?

2. How do the paleostress analysis programs react to special types of fault populations?

3. How sensitive are paleostress analysis programs to errors in the initial fault population
data?

4. How do the results of paleostress analysis programs compare to one another for the

same initial population of faults?

To answer these questions, the fault populations discussed in the following sections

were created.

8.1 Creating the Artificial Fault Populations

For creating the artificial fault populations, a standard stress field was defined. This

allowed for easy comparison between the results of the paleostress analyses and did not

significantly constrain the tests in any way. The slip vector calculation program requires the

user to specify the orientations for the principal stress axes O, and O,, the relative magnitudes

114
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for the most compressive O, and the least compressive O, principal stress axes, and values for

the coefficient of friction [l and cohesion Cjacting upon the fault planes (chapter 5). For all
of the artificial fault populations discussed in this chapter, the above values were set such that

O, had a plunge and trend 0f 90/000 (up) with a relative magnitude of +1.0, O;had a plunge and

trend of 00/000 (north) with a relative magnitude of -1.0, the coefficient of friction [l was set
to 0.85 (Barton and Choubey, 1977; Byerlee, 1978), and the cohesion C,was setto 0.0. Note

that the orientations of O, and O, imply that O, has an orientation of 00/090 (east). The

magnitude of O, is dependant upon the stress ratio ® which is [(O,-05)/(0,-05].

For each fault-slip datum generated by the slip vector calculation program, the shear
stress to normal stress ratio was examined. If this ratio was too low, the fault could not be
expected to slip under any realistic geological conditions. Only those faults with a sufficiently
high shear stress to normal stress ratio were used in all of the analyses.

The fault orientation data (the plunge and trend of the fault's normal vector and the
pitch angle of the slip vectors) for the fault planes in each population discussed in this chapter

are listed in Appendix B.

8.2 Random Fault-Slip Populations

To test the accuracy of the paleostress analysis programs, three random pole fault-slip

populations were created in the following manner:

1. A standard stress field was decided upon (section 8.1).

2. A Turbo Pascal version 3.01 program was written to randomly return two numbers --

one between 0 and 89 inclusive and one between 0 and 359 inclusive. The random
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numbers were chosen through Turbo Pascal's RANDOM function.

3. The two numbers generated were taken to be the plunge and trend respectively of a pole

(normal vector) to a fault plane.

4. The pole to this fault plane was entered into the slip vector calculation program
(chapter 5) and the calculated pitch angles of the slip vector in the fault plane and the

shear stress to normal stress ratios acting upon the fault plane were returned for five

values of @ (® =0.00, P =0.25, D =0.50, P=0.75, and ® = 1.00).

5. If the shear stress to normal stress ratios for each value of @ acting upon the fault plane

were all above a cutoff value of 1.0, the fault could be expected to slip under realistic
geological conditions and the fault plane was included into the random pole fault
population. If one or more of the ratios were below the cutoff value, the fault was not

included in the population.

6. Steps 2 through 5 were repeated until three populations of 18 fault planes each were

created.

While the fault planes in the random-pole fault populations were randomly chosen, it
is important to remember that they do not necessarily have a random spatial distribution. In
addtion, only those randomly-chosen faults which satisfied a failure criteria for the standard
stress field (section 8.1) were included in each population. The purpose of randomly choosing
aplunge and trend for each fault plane was not to insure a random spatial distribution of faults,

but to insure that any bias in selecting faults to include in each population was eliminated.
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Three populations of random-pole faults (labelled RP-01, RP-02, and RP-03), for five

values of @ each, yields a total of 15 fault populations (figures 8-1 - 8-15) to test for each of
the two paleostress analysis program used. By comparing the results of these tests to the
original standard stress field (section 8.1), the accuracy of the paleostress programs was

evaluated.
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Figure 8-1 - Lower-hemisphere stereographic projection of fault population RP-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 0.00 (RP-01-00).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-2 - Lower-hemisphere stereographic projection of fault population RP-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 0.25 (RP-01-25).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-3 - Lower-hemisphere stereographic projection of fault population RP-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 0.50 (RP-01-50).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-4 - Lower-hemisphere stereographic projection of fault population RP-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.75 (RP-01-75).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-5 - Lower-hemisphere stereographic projection of fault population RP-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 1.00 (RP-01-10).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-6 - Lower-hemisphere stereographic projection of fault population RP-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 0.00 (RP-02-00).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-7 - Lower-hemisphere stereographic projection of fault population RP-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 0.25 (RP-02-25).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-8 - Lower-hemisphere stereographic projection of fault population RP-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 0.50 (RP-02-50).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-9 - Lower-hemisphere stereographic projection of fault population RP-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.75 (RP-02-75).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-10 - Lower-hemisphere stereographic projection of fault population RP-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 1.00 (RP-02-10).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-11 - Lower-hemisphere stereographic projection of fault population RP-03 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 0.00 (RP-03-00).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-12 - Lower-hemisphere stereographic projection of fault population RP-03 showing
18 normal faults and their associated slip vectors (circles) for a ® value of 0.25 (RP-03-25).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-13 - Lower-hemisphere stereographic projection of fault population RP-03 showing

circles) for a ® value of 0.50 (RP-03-50).

associated slip vectors (

18 normal faults and their

are up, east, and north

and O,

The orientations of the three principal stress axes O, O,,

respectively.
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Figure 8-14 - Lower-hemisphere stereographic projection of fault population RP-03 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.75 (RP-03-75).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-15 - Lower-hemisphere stereographic projection of fault population RP-03 showing

cles) for a ® value of 1.00 (RP-03-10).

18 normal faults and their associated slip vectors (cir

are up, east, and north

and O,

The orientations of the three principal stress axes O, O,,

respectively.
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8.3 Creating Special-Case Fault Populations

The behavior of paleostress analysis programs to special-case fault populations was
next examined. Hardcastle (1990) claimed that Reches' method (chapter 7) returned
inconsistentresults with simple conjugate fault populations and Allmendinger (1989) indicated
that Gephart and Forsyth's method (chapter 3) gave inconsistent results for thrust faults when
they were all of a very similar orientation. Given the mathematics involved in calculating
paleostress tensors from fault data, faults which have orientations close to the principal stress
planes (the planes normal to the three principal stress axes) may influence the calculations
adversely.

With these thoughts in mind, several special-case fault populations were created --
simple Andersonian conjugate faults, orthorhombic symmetry faults, radial symmetry faults,

and faults which all have approximately the same orientation.

8.4 Andersonian Conjugate Fault Populations

Conjugate fault sets are commonly found in the field and used to estimate paleostress
orientations (Davis, 1984, p.306; Ragan, 1985, p. 135; Suppe, 1985, p.292; Rowland, 1986,
p- 134; Dennis, 1987, p.236; Marshak and Mitra, 1988, p.261; Spencer, 1988, p. 199). Using
Anderson's (1951) theory of faulting (section 2.1), it is a trivial matter to assign possible

principal stress axis orientations for a conjugate fault population. The most compressive

principal stress axis O, bisects the acute angle of the conjugate faults, the intermediate

principal stress axis O, is parallel to the intersection of the conjugate faults, and the least

compressive principal stress axis O, bisects the obtuse angle of the conjugate faults. Two

conjugate fault populations were chosen for testing to see if the paleostress analysis programs

returned the same principal stress axes as Anderson's theory.
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The first conjugate fault population (AC-01), was created such that the strikes of all of

the faults were either parallel, or subparallel (+ 5°), to the principal plane for the O, axis with
their acute angle being bisected by O, (figures 8-16 ~ 8-20). This population is consistent with

Anderson's theory given the standard stress field of up, east, and north for 0, 0O,, and O,

respectively.
The second conjugate fault population (AC-02), was created such that all of the faults

were oriented at 45° from the principal planes for the 0, and O; axes with their acute angle
being bisected by O, (figures 8-21 - 8-25). This population is not consistent with Anderson's

theory since O, and O; are oriented at 45° from their predicted positions.
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Figure 8-16 - Lower-hemisphere stereographic projection of fault population AC-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.00 (AC-01-00).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-17 - Lower-hemisphere stereographic projection of fault population AC-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.25 (AC-01-25).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-18 - Lower-hemisphere stereographic projection of fault population AC-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.50 (AC-01-50).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-19 - Lower-hemisphere stereographic projection of fault population AC-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.75 (AC-01-75).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-20 - Lower-hemisphere stereographic projection of fault population AC-01 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 1.00 (AC-01-10).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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8.5 Orthorhombic Fault Populations

Orthorhombic, or rhombohedral, fault patterns have been described in several areas
(Aydin and Reches, 1982; Krantz, 1986; Krantz, 1989). These faults are termed orthorhombic
since they are arranged in an orthorhombic symmetry about the principal strain axes and
usually consist of two sets of conjugate normal faults. The occurence of these faults is not well
explained by conjugate faulting theory and Krantz (1989) suggested that orthorhombic fault
patterns represent the general, three-dimensional strain case (the odd-axis model) and
conjugate faults are thus relegated to the special case of plane strain.

An orthorhombic fault population consisting of 20 faults was created for testing the
paleostress analysis programs (OS-01). The 20 faults of the population formed five distinct

sets of orthorhombic faults with + 5° offsets in strike and dip from the two conjugate sets at 45°

from the O, and O, principal planes. For all of the conjugate fault sets in the population, O,

bisected their acute angle and O, or 05 bisected their obtuse angles (figures 8-26 - §8-30).
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Figure 8-21 - Lower-hemisphere stereographic projection of fault population AC-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.00 (AC-02-00).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-22 - Lower-hemisphere stereographic projection of fault population AC-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.25 (AC-02-25).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-23 - Lower-hemisphere stereographic projection of fault population AC-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.50 (AC-02-50).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-24 - Lower-hemisphere stereographic projection of fault population AC-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 0.75 (AC-02-75).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-25 - Lower-hemisphere stereographic projection of fault population AC-02 showing
18 normal faults and their associated slip vectors (circles) for a ® value 0f 1.00 (AC-02-10).
The orientations of the three principal stress axes O0,, 0,, and O, are up, east, and north

respectively.
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Figure 8-26 - Lower-hemisphere stereographic projection of fault population OS-01 showing
20 orthorhombic normal faults and their associated slip vectors (circles) for a ® value 0 0.00
(OS-01-00). The orientations of the three principal stress axes 0, 0,, and O, are up, east, and

north respectively.
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Figure 8-27 - Lower-hemisphere stereographic projection of fault population OS-01 showing
20 orthorhombic normal faults and their associated slip vectors (circles) for a ® value 0 0.25
(OS-01-25). The orientations of the three principal stress axes 0, 0,, and O are up, east, and

north respectively.
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Figure 8-28 - Lower-hemisphere stereographic projection of fault population OS-01 showing
20 orthorhombic normal faults and their associated slip vectors (circles) for a ® value 0 0.50
(OS-01-50). The orientations of the three principal stress axes 0, 0,, and O, are up, east, and

north respectively.
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Figure 8-29 - Lower-hemisphere stereographic projection of fault population OS-01 showing
20 orthorhombic normal faults and their associated slip vectors (circles) for a ® value 0 0.75
(OS-01-75). The orientations of the three principal stress axes 0,;, 0,, and O are up, east, and

north respectively.
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Figure 8-30 - Lower-hemisphere stereographic projection of fault population OS-01 showing
20 orthorhombic normal faults and their associated slip vectors (circles) for a ® value 0f 1.00
(OS-01-10). The orientations of the three principal stress axes 0,;, 0,, and O, are up, east, and

north respectively.
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8.6 Radial Symmetry Fault Populations

While creating the conjugate and orthorhombic fault populations, I noticed that
conjugate normal fault sets oriented at a wide range of strike directions would experience slip

in my standard stress field (section 8.1). The only exceptions were those conjugate sets with
a strike of less than 30° from the O, principal stress direction. I therefore created a radial
symmetry fault population (RS-01) consisting of 10 normal faults with strikes of30°, 60°, 90°,
120°, and 150° for each of the five conjugate sets. Their acute angles were bisected by O,
(figures 8-31 - 8-35). While this may notbe a geologically-reasonable fault population, it does

satisfy all of the initial paleostress assumptions and should be solvable by the analysis

programs. For this reason, the population was included in the study.

8.7 Fault Populations of a Similar Orientation

Finally, three special-case fault populations were created such that all of the faults in
each population had a very similar orientation (SO-01, SO-02, and SO-03). This is a type of
fault population which may reasonably be expected to form.

The first population (SO-01) of 15 normal faults was created such that the strikes were
parallel, and subparallel (+ 3° and + 6°), to the O, principal plane. All of the faults were also
oriented such that they made an angle of 30° (£ 5°) from the O, principal stress direction
(figures 8-36 - 8-40).

The second population (SO-02) of 15 normal faults was created such that their strikes
were oriented at 30° (£ 3° and + 6°) from the O, direction. All of the faults were also oriented
such that they made an angle of 30° (£ 5°) from the O, principal stress direction (figures 8-41

-~ 8-45).
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The third population (SO-03) of 15 normal faults was created such that their strikes

were oriented at 45° (£ 3° and + 6°) from the 0, and O; directions. All of the faults were also
oriented such that they made an angle of 30° (+ 5°) from the O, principal stress direction

(figures 8-46 — 8-50).
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Figure 8-31 - Lower-hemisphere stereographic projection of fault population RS-01 showing
10 radial symmetry normal faults and their associated slip vectors (circles) for a D value of
0.00 (RS-01-00). The orientations of the three principal stress axes 0,, 0,, and 05 are up, east,

and north respectively.
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Figure 8-32 - Lower-hemisphere stereographic projection of fault population RS-01 showing
10 radial symmetry normal faults and their associated slip vectors (circles) for a D value of
0.25 (RS-01-25). The orientations of the three principal stress axes 0,, 0,, and 05 are up, east,

and north respectively.
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Figure 8-33 - Lower-hemisphere stereographic projection of fault population RS-01 showing
10 radial symmetry normal faults and their associated slip vectors (circles) for a D value of
0.50 (RS-01-50). The orientations of the three principal stress axes 0,, 0,, and 05 are up, east,

and north respectively.
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Figure 8-34 - Lower-hemisphere stereographic projection of fault population RS-01 showing
10 radial symmetry normal faults and their associated slip vectors (circles) for a D value of
0.75 (RS-01-75). The orientations of the three principal stress axes 0,, 0,, and 05 are up, east,

and north respectively.
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Figure 8-35 - Lower-hemisphere stereographic projection of fault population RS-01 showing

10 radial symmetry normal faults and their associated slip vectors (circles) for a D value of

1.00 (RS-01-10). The orientations of the three principal stress axes 0,, O,, and O;are up, east,

and north respectively.
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Figure 8-36 - Lower-hemisphere stereographic projection of fault population SO-01 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0f 0.00 (SO-01-00). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-37 - Lower-hemisphere stereographic projection of fault population SO-01 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0 0.25 (SO-01-25). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-38 - Lower-hemisphere stereographic projection of fault population SO-01 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0f0.50 (SO-01-50). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-39 - Lower-hemisphere stereographic projection of fault population SO-01 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0 0.75 (SO-01-75). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-40 - Lower-hemisphere stereographic projection of fault population SO-01 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value of 1.00 (SO-01-10). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-41 - Lower-hemisphere stereographic projection of fault population SO-02 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0f 0.00 (SO-02-00). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-42 - Lower-hemisphere stereographic projection of fault population SO-02 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0 0.25 (S0O-02-25). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-43 - Lower-hemisphere stereographic projection of fault population SO-02 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0f0.50 (S0O-02-50). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-44 - Lower-hemisphere stereographic projection of fault population SO-02 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0 0.75 (S0O-02-75). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-45 - Lower-hemisphere stereographic projection of fault population SO-02 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value of 1.00 (SO-02-10). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-46 - Lower-hemisphere stereographic projection of fault population SO-03 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0f 0.00 (SO-03-00). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-47 - Lower-hemisphere stereographic projection of fault population SO-03 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0 0.25 (S0O-03-25). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-48 - Lower-hemisphere stereographic projection of fault population SO-03 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0f0.50 (S0O-03-50). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-49 - Lower-hemisphere stereographic projection of fault population SO-03 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value 0 0.75 (S0O-03-75). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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Figure 8-50 - Lower-hemisphere stereographic projection of fault population SO-03 showing

15 normal faults of approximately the same orientation and their associated slip vectors

(circles) for a ® value of 1.00 (SO-03-10). The orientations of the three principal stress axes

0,, 0, and O, are up, east, and north respectively.
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8.8 Final Fault Population Tests

To test the sensitivity of the paleostress analysis programs, the following steps were

performed to the random-pole fault populations (RP-01,RP-02,and RP-03):

1. Randomly removing one or more planes from the population and observing the change

inthe calculated paleostress tensor.

2. Randomly adding one or more planes to the populations and observing the change in the

calculated paleostress tensor.

3. Giving a random + 5° variability in plunge and trend of the fault normal vectors and
giving a + 5° variability in the pitch angles of the slip vectors for each fault datum in

the population.

In this way, the sensitivity of the two paleostress analysis programs to insufficient data,
extraneous data, and measurement errors was evaluated.

Angelier's (1979) field data (FD-01) of 38 Neogene age normal faults from Central
Crete, Greece (figure 8-51 and table 8-1) were also run through the paleostress analysis
programs. This data population has become an unofficial standard against which other
paleostress analysis methods are tested to see if they yield the same results as Angelier
(Gephart and Forsyth, 1984; Michael, 1984; Reches, 1987) and is only used for a comparison

here --Idid not worry about whether the results were geologically-reasonable or not.
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Figure 8-51 - Lower-hemisphere stereographic projection of fault population FD-01 showing

38 normal faults from Central Crete, Greece (Angelier, 1979) and their associated slip vectors.



FaultPlane Slickenline
Strike Dip Trend Plunge
045° 61° 115° 59°
036° 59° 145° 58°
270° 80° 286° 57°
232° 68° 292° 65°
225° 63° 290° 61°
290° 88° 293° 59°
254° 78° 278° 62°
046° 60° 155° 59°
257° 61° 355° 61°
067° 56° 153° 56°
049° 70° 187° 61°
216° 50° 312° 50°
058° 51° 165° 50°
079° 62° 195° 59°
236° 62° 313° 61°
214° 61° 275° 58°
034° 60° 151° 57°
037° 63° 138° 63°
068° 72° 099° 58°
049° 53° 139° 90°
189° 47° 295° 46°
237° 45° 296° 41°
112° 74° 260° 61°
205° 42° 296° 42°
214° 56° 309° 56°
037° 77° 202° 48°
057° 61° 195° 51°
248° 58° 006° 55°
061° 67° 173° 65°
028° 58° 168° 46°
030° 69° 106° 68°
041° 63° 144° 62°
023° 68° 105° 68°
249° 48° 346° 48°
248° 69° 332° 69°
195° 68° 310° 66°
274° 70° 320° 63°
267° 71° 000° 71°
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Table 8-1 - A listing of the orientations for Angelier's (1979) population of 38 normal faults
from Central Crete, Greece.



CHAPTER 9

TESTING PROCEDURES AND RESULTS

In this chapter, the results of the tests on the artificial fault populations by the two

paleostress analysis program (Reches' method and Angelier's method) are presented.

9.1 Testing Procedures

The testing procedures used were very straightforward. The artificial fault populations

shown in chapter 8 and listed in appendix B, were created in the manner discussed in chapter
5. The fault-slip data for each population at each of the five values of ® examined (0.00,0.25,
0.50, 0.75, and 1.00) were manually converted into input formats compatible with the two

programs. Thisnew faultdata wasthenreadinto the paleostress analysis programs and results

were obtained. The angles between the known and the calculated orientations of the principal
stress axes 0, 0,, and O, were determined using the program listed in appendix E.
These results were carefully examined to see if they were consistent with the initial

assumptions used to create the artificial fault populations. If they were not the same, the

reasons why were ascertained (or at least surmised).

9.2 Random-Pole Fault Population Results

The three random-pole fault populations RP-01, RP-02,and RP-03 were the firstto be

examined. The results of this examination are shown in figures 9-1 through 9-15 for Reches'

method and figures 9-16 through 9-30 for Angelier's method. Comparisons of the results of

Reches'and Angelier's methods are given in tables 9-1 through 9-3.
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Known Program Error
o, 90/000 71/195 19.0°
o, 00/090 17/345 75.7°
o, 00/000 09/078 78.1°
(0) 0.00 0.069 0.069

Figure 9-1 - Lower-hemisphere stereographic projection and table demonstrating the

differences between the known and calculated principal stress axes 0, O,, and Oy and the
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value of @ for fault population RP-01-00 using Reches' method of paleostress analysis. In the

stereographic projection, the known principal stress axes 0,, 0,, and O; are oriented up, east,

and north respectively and the calculated principal stress axes are denoted by the filled circles

labelled 1, 2, and 3.



Known Program Error
o, 90/000 83/205 7.0°
o, 00/090 02/100 10.2°
o, 00/000 07/010 12.2°
(0) 0.25 0.131 0.119

Figure 9-2 - Lower-hemisphere stereographic projection and table demonstrating the

differences between the known and calculated principal stress axes O,, O,, and Oy and the
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value of @ for fault population RP-01-25 using Reches' method of paleostress analysis. In

the stereographic projection, the known principal stress axes 0,, O,, and O are oriented up,

east, and north respectively and the calculated principal stress axes are denoted by the filled

circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 83/205 7.0°
o, 00/090 02/096 6.3°
o, 00/000 07/006 9.2°
(0) 0.50 0.387 0.113

Figure 9-3 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-01-50 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 83/214 7.0°
o, 00/090 04/095 6.4°
o, 00/000 07/005 8.6°
(0) 0.75 0.683 0.112

Figure 9-4 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-01-75 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 82/217 8.0°
o, 00/090 04/095 6.4°
o, 00/000 07/004 g.1°
(0) 1.00 0.903 0.097

Figure 9-5 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-01-10 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 80/347 10.0°
o, 00/090 07/214 56.3°
o, 00/000 08/124 56.4°
(0) 0.00 0.178 0.178

Figure 9-6 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-00 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 83/330 7.0°
o, 00/090 03/084 6.7°
o, 00/000 06/175 7.8°
(0) 0.25 0.178 0.072

Figure 9-7 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-25 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 83/342 7.0°
o, 00/090 02/089 2.2°
o, 00/000 07/179 7.1°
(0) 0.50 0.351 0.149

Figure 9-8 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-50 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 80/321 10.0°
o, 00/090 06/090 6.0°
o, 00/000 07/180 7.0°
(0) 0.75 0.637 0.113

Figure 9-9 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-75 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 74/300 16.0°
o, 00/090 14/089 14.0°
o, 00/000 08/181 g.1°
(0) 1.00 0.903 0.128

Figure 9-10 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-10 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 88/049 2.0°
o, 00/090 02/256 14.1°
o, 00/000 01/156 14.0°
® 0.00 0.070 0.070

Figure 9-11 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault

187

population RP-03-00 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 87/047 3.0°
o, 00/090 02/265 5.4°
o, 00/000 02/175 5.4°
(0) 0.25 0.252 0.002

Figure 9-12 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault

188

population RP-03-25 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 88/076 2.0°
o, 00/090 02/266 4.5°
o, 00/000 00/176 4.0°
(0) 0.50 0.437 0.063

Figure 9-13 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-03-50 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 86/098 4.0°
o, 00/090 04/26 5.7°
o, 00/000 01/356 4.1°
(0) 0.75 0.658 0.092

Figure 9-14 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-03-75 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 69/090 21.0°
o, 00/090 21/266 21.4°
o, 00/000 01/356 4.1°
® 1.00 0.880 0.120

Figure 9-15 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-03-10 using Reches' method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 79/014 11.0°
o, 00/090 00/104 14.0°
o, 00/000 11/194 17.7°
(0) 0.00 0.236 0.236

Figure 9-16 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-01-00 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 82/022 g.0°
o, 00/090 02/279 9.2°
o, 00/000 08/189 12.0°
(0) 0.25 0.390 0.140

Figure 9-17 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-01-25 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 83/059 7.0°
o, 00/090 05/277 8.6°
o, 00/000 04/186 7.2°
(0) 0.50 0.550 0.050

Figure 9-18 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-01-50 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 78/095 12.0°
o, 00/090 12/274 12.6°
o, 00/000 00/004 4.0°
(0) 0.75 0.694 0.056

Figure 9-19 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-01-75 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 66/102 24.0°
o, 00/090 24/271 24.0°
o, 00/000 04/003 5.0°
(0) 1.00 0.796 0.204

Figure 9-20 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-01-10 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 87/304 3.0°
o, 00/090 03/087 4.2°
o, 00/000 02/177 3.6°
(0) 0.00 0.077 0.077

Figure 9-21 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-00 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 86/323 4.0°
o, 00/090 03/092 3.6°
o, 00/000 03/183 4.2°
(0) 0.25 0.253 0.003

Figure 9-22 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-25 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 86/351 4.0°
o, 00/090 01/093 3.2°
o, 00/000 04/183 5.0°
(0) 0.50 0.443 0.060

Figure 9-23 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-50 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 83/349 7.0°
o, 00/090 02/092 2.8°
o, 00/000 07/182 7.3°
(0) 0.75 0.675 0.075

Figure 9-24 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-75 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 82/012 g.0°
o, 00/090 01/272 2.2°
o, 00/000 08/182 g.2°
(0) 1.00 0.846 0.154

Figure 9-25 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-02-10 using Anglier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 82/003 8.0°
o, 00/090 03/251 19.2°
o, 00/000 07/160 21.1°
(0) 0.00 0.149 0.149

Figure 9-26 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-03-00 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 85/357 5.0°
o, 00/090 00/262 g.0°
o, 00/000 05/172 9.24°
(0) 0.25 0.326 0.076

Figure 9-27 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-03-25 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 88/329 2.0°
o, 00/090 01/085 5.1°
o, 00/000 02/175 5.4°
(0) 0.50 0.528 0.028

Figure 9-28 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-03-50 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 86/256 4.0°
o, 00/090 04/087 5.0°
o, 00/000 01/357 3.2°
(0) 0.75 0.728 0.022

Figure 9-29 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault

205

population RP-03-75 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.



Known Program Error
o, 90/000 73/260 17.0°
o, 00/090 16/089 16.0°
o, 00/000 02/358 2.8°
(0) 1.00 0.901 0.099

Figure 9-30 - Lower-hemisphere stereographic projection and table demonstrating the differences

between the known and calculated principal stress axes O, O,, and O, and the value of @ for fault
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population RP-03-10 using Angelier's method of paleostress analysis. In the stereographic projection, the

known principal stress axes O,, O,, and O are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.
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For fault population RP-01, Reches' method returned the largest principal stress

orientation errors for an initial ® value of 0.00 where the orientations of 0,and O, were
reversed. The orientation errors were all less than 15° for an initial @ value of 0.25 and all
less than 10° for initial ® values 0f 0.50,0.75,and 1.00. The errors in magnitude between

the initial and calculated values of @ were all less than 0.15 (fiFigures 9-1 through 9-5).
For fault population RP-02, Reches' method returned the largest principal stress
orientation errors for an initial ® value of 0.00 with the largest errors in the orientations of

0, and O;. The orientation errors were all 10° or less for all other initial ® values. The

errors in magnitute between the initial and calculated values of ® were all less than 0.18

(fiFigures 9-6 through 9-10).
For fault population RP-03, Reches' method returned the largest principal stress

orientation errors for an initial ® value of 1.00 with the largest errors in the orientations of
O,and O,. The orientation errors were all less than 15° for an initial ® value 0f 0.00 and all
less than 10° for initial ® values 0f 0.25,0.50, and 0.75. The errors in magnitude between

the initial and calculated values of ® were all 0.12 or less (fiFigures 9-11 through 9-15).
For fault population RP-01, Angelier's method returned the largest principal stress
orientation errors for an initial ® value of 1.00 with the largest errors in the orientations of

O,and O, The orientation errors were all 20° or less for all other initial ® values. The

errors in magnitude between the initial and calculated values of ® were all less than 0.24

(fiFigures 9-16 through 9-20).

For fault population RP-02, Angelier's method returned principal stress orientation

errors of less than 10° for all initial @ values. The errors in magnitude between the initial

and calculated values of @ were all less than 0.16 for an inital @ value of 1.00 and less than
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0.08 forinitial ® values 0f0.25,0.50,0.75, and 1.00 (fiFigures 9-21 through 9-25).
For fault population RP-03, Angelier's method returned the largest principal stress
orientation errors for initial ® values 0of 0.00 and 1.00 with the largest errors in the
orientations of 0, and O, for an initial ® value 0f0.00 and 0, and O; for an initial D value

of 1.00. The orientation errors were all 10° or less for all other @ values. The errors in

magnitude between the initial and calculated values of ® were all less than 0.15 (fiFigures
9-26 through 9-30).

As a general observation, the calculated orientations of some of the principal stress
axes 0,, 0,, and O;seem to be displaced from their true orientations such that they are
roughly subparallel local concentrations of slip vectors. Figure 9-1 displays this well with
the orientation of 0.

Tables 9-1, 9-2, and 9-3 compare the results of Reches' and Angelier's methods for
each of the three random-pole fault populations RP-01, RP-02, and RP-03 respectively.

Table 9-1 shows Reches' and Angelier's methods to poorly correspond for fault

population RP-01 given initial ® values 0f 0.00 and 1.00 with a 20° or less angular
deviation for intermediate initial ® values. Table 9-2 shows Reches' and Angelier's
methods to similarly poorly correspond given initial ® values 0£0.00 and 1.00 with a 10° or
less angular deviation for intermediate initial ® values. Table 9-3 shows Reches' and
Angelier's methods to poorly correspond given an initial ® value 0of 1.00 with a 10° or less
angular deviation for all other initial ® values. The errors in magnitude between Reches'

and Angelier's methods for the initial and calculated values of ® were 2.25 or less for fault

population RP-01 and 0.10 or less for fault populations RP-02 and RP-3.

These results generally indicate that both Reches' and Angelier's methods return

reasonable (£ 20°) principal stress axis orientation results for intermediate initial D values
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(0.25,0.50,and 0.75) but may not perform well given initial ® values 0f 0.00 or 1.00 (plane
strain). This is most likely due to the fact that for an initial ® value or 0.00, 0,is equal in

magnitude to O; and for an initial ® value of 1.00, 0, is equal in magnitude to O, and the

programs have difficulty in assigning the proper orientations for these stress axes.



Reches' Angelier's Deviation

Known o, 71/195 79/014 30.0°
® of o, 17/345 00/104 62.4°
o oo o, 09/078 11/194 66.7°

[0) 0.069 0.236 0.167
Known o, 83/205 82/022 15.0°
® of o, 02/100 02/279 4.1°
0.25 o, 07/010 08/189 15.0°

[0) 0.165 0.390 0.225
Known o, 83/205 83/059 13.4°
® of o, 02/096 05/277 7.1°
0.50 o, 07/006 04/186 11.0°

[0) 0.378 0.550 0.172
Known o, 83/214 78/095 16.5°
® of o, 04/095 12/274 16.0°
- o, 07/005 00/004 7.1°

[0) 0.638 0.694 0.056
Known o, 82/217 66/102 28.3°
® of o, 04/095 24/271 28.3°
100 o, 07/004 04/003 3.2°

[0) 0.903 0.796 0.107
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Table 9-1 - Table demonstrating the deviation for the orientations of the 0, O,, and O, principal stress

axes and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress

analysis on fault population RP-01 at five different values of d.



Reches' Angelier's Deviation

Known o, 80/347 87/304 8.1°
® of o, 07/214 03/087 53.8°
0.00 o, 08/124 02/177 53.1°

[0) 0.178 0.077 0.101
Known o, 83/330 86/323 3.1°
® of o, 03/084 03/092 8.0°
o s o, 06/175 03/183 8.5°

[0) 0.178 0.253 0.075
Known o, 83/342 86/351 3.1°
® of o, 02/089 01/093 4.1°
o s o, 07/179 04/183 5.0°

[0) 0.351 0.443 0.092
Known o, 80/321 83/349 5.0°
® of o, 06/090 02/092 4.5°
- o, 07/180 07/182 2.0°

[0) 0.637 0.675 0.038
Known o, 74/300 82/012 15.5°
® of o, 14/087 01/272 15.8°
100 o, 08/081 08/182 80.3°

[0) 0.872 0.846 0.026
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Table 9-2 - Table demonstrating the deviation for the orientations of the 0, O,, and O, principal stress

axes and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress

analysis on fault population RP-02 at five known values of 0}



Reches' Angelier's Deviation

Known o, 88/049 82/003 6.8°
® of o, 02/256 03/251 5.1°
0.00 o, 01/166 07/160 8.5°

[0) 0.070 0.149 0.079
Known o, 87/047 85/357 5.6°
® of o, 02/265 00/262 3.6°
o oe o, 02/175 05/172 4.2°

[0) 0.252 0.326 0.074
Known o, 88/076 88/329 3.2°
® of o, 02/266 01/085 3.2°
0.50 o, 00/176 02/175 2.2°

[0) 0.437 0.528 0.091
Known o, 86/098 86/256 7.9°
® of o, 04/266 04/087 8.1°
- o, 01/356 01/357 1.0°

[0) 0.658 0.728 0.070
Known o, 69/090 73/260 37.9°
® of o, 21/266 16/089 37.1°
100 o, 01/356 02/358 2.2°

[0) 0.880 0.901 0.021
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Table 9-3 - Table demonstrating the deviation for the orientations of the 0,, 0,, and O principal stress

axes and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress

analysis on fault population RP-03 at five different values of d.
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9.3 Special-Case Fault Population Results

The first special-case fault populations to be tested were the two conjugate fault

populations AC-01 and AC-02. Inconjugate fault population AC-01, the conjugate fault set was

parallel to the principal stress axis O;and perpendicular the the principal stress axes 0, and O,.
In conjugate fault population AC-02, the conjugate fault set was at 45° to both O, and O; and

perpendicular the the principal stress axis 0.
Utilizing Reches' method, conjugate population AC-01 returned surprising results

(figures 9-31 through 9-35). The ® values returned were the opposite of what one would expect.
A D of 1.00 was returned for an initial ® of 0.00, a ® 0f0.70 was returned for an initial ® of
0.25,a ®D 0f0.49 was returned for an initial ® of0.50 (which is quite good), a D 6f0.27 was
returned for an initial ® of 0.75,and a ®D 0f0.09 was returned for an initial @ of 1.00. This is
most likely related to the fact that the O, and O; principal stress axes were switched and had

opposite orientations from what was expected (i.e. O, had the proper orientation for 0, and vice

versa). This is obviously a systematic error arising within the program algorithms.
Angelier's method produced an exact match between the initial and calculated

orientations of the three principal stress axes for conjugate population AC-01 (figures 9-36

through 9-41). The errors in magnitude between the initial and calculated values of ® however,
were quite large (approaching 0.5) for initial ® values 0f0.00 and 1.00 and smallest (0.004) for
an initial @ value of 0.50.

Conjugate fault population AC-02 also returned surprising result since Reches' method

was totally unable to deal with this set of faults (figures 9-41 through 9-45). The O, and O,

orientations were once again switched and, more importantly, the values for () ranged from
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1.00 to 6.13. The ratio @, by definition, ranges from 0.0 to 1.0 only. This implies that the
program is apparently confusing the O, and O; magnitudes with each other. When the O, and O,
orientations are switched, however, the solutionis correct. Thisisareasonableresultsince most
structural geology textbooks would graphically assign O, to be parallel to the intersection of the
conjugate set (which it isn't in this case).

Angelier's method also returned wildly inaccurate results for conjugate fault population
AC-02 (figures 9-46 through 9-50). Atlow initial ® values (0.00, 0.25, and 0.50), the program
confused the orientations of 0,and O;and at larger initial D values (0.75 and 1.00), the program
confused the orientations of 0, and O,. The errorin magnitude between the initial and calculated
values for @ ranged from a low of 0.155 to a high 0f 0.479 which is unacceptable.

Comparing the results of Reches' and Angelier's methods for conjugate fault population
AC-01 (table 9-4) shows the 90° error in the orientations of the O, and O, principal stress axes
for Reches' method. The deviations in magnitude between the initial and calculated values for
() ranged from a low 0f 0.019 to a high of 0.648.

Comparing the results of Reches' and Angelier's methods for conjugate fault population
AC-02 (table 9-5) shows large deviations in the orientations of the O,, 0,, and O principal stress
axes for initial ® values 0f0.00,0.25,and 0.50 and large deviations in the orientations of the O,
and O, principal stress axes for initial ® values 0f 0.75 and 1.00. The deviations in magnitude
between the initial and calculated values for @ were large (0.521) for an initial ® value 0£0.00
and undefined for all other initial @ values.

A general observation seems to be that both Angelier's and Reches' methods of
paleostress analysis return more reasonable results for conjugate fault sets which parallel

principal stress axes.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
(0] 0.00 1.000 1.000

Figure 9-31 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
d 0.25 0.695 0.305

Figure 9-32 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
()] 0.50 0.485 0.515

Figure 9-33 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of ® for fault population AC-01-
50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
()] 0.75 0.274 0.726

Figure 9-34 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
(0] 1.00 0.089 0.911

Figure 9-35 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/051 0.0°
o, 00/090 00/269 1.0°
o, 00/000 00/179 1.0°
o 0.00 0.453 0.453

Figure 9-36 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/076 0.0°
o, 00/090 00/270 0.0°
o, 00/000 00/180 0.0°
()] 0.25 0.477 0.227

Figure 9-37 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.



222

Known Program Error
o, 90/000 90/050 0.0°
o, 00/090 00/270 0.0°
o, 00/000 00/180 0.0°
()] 0.50 0.504 0.004

Figure 9-38 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/130 0.0°
o, 00/090 00/270 0.0°
o, 00/000 00/360 0.0°
()] 0.75 0.531 0.219

Figure 9-39 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/102 0.0°
o, 00/090 00/270 0.0°
o, 00/000 00/360 0.0°
()] 1.00 0.559 0.441

Figure 9-40 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-01-
10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
(0] 0.00 1.000 1.000

Figure 9-41 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/260 90.0°
o, 00/090 00/350 80.0°
o, 00/000 90/270 90.0°
o 0.25 1.358 ?

Figure 9-42 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/254 90.0°
o, 00/090 00/344 74.0°
o, 00/000 90/270 90.0°
1)) 0.50 2.732 ?

Figure 9-43 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/251 90.0°
o, 00/090 00/341 71.0°
o, 00/000 90/270 90.0°
()] 0.75 6.133 ?

Figure 9-44 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/250 90.0°
o, 00/090 00/340 70.0°
o, 00/000 90/270 90.0°
1)) 1.00 1.312 ?

Figure 9-45 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/179 0.0°
o, 00/090 00/0 46.0°
o, 00/000 90/314 46.0°
()] 0.00 0.479 0.479

Figure 9-46 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.



231

Known Program Error
o, 90/000 90/192 0.0°
o, 00/090 00/060 30.0°
o, 00/000 00/330 30.0°
()] 0.25 0.557 0.307

Figure 9-47 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/170 0.0°
o, 00/090 00/069 21.0°
o, 00/000 90/339 21.0°
()] 0.50 0.772 0.272

Figure 9-48 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/073 90.0°
o, 00/090 90/184 90.0°
o, 00/000 00/343 17.0°
()] 0.75 0.905 0.155

Figure 9-49 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/074 90.0°
o, 00/090 90/167 90.0°
o, 00/000 00/344 17.0°
® 1.00 0.676 0.324

Figure 9-50 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O; and the value of @ for fault population AC-02-
10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, O,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Reches' Angelier's Deviation

Known o, 00/000 90/051 90.0°
O of o, 00/090 00/269 1.0°
0.00 o, 90/270 00/179 90.0°

(0] 1.000 0.453 0.547
Known o, 00/000 90/076 90.0°
O of o, 00/090 00/270 0.0°
0.25 o, 90/270 00/180 90.0°

0] 0.695 0.477 0.218
Known o, 00/000 90/050 90.0°
O of o, 00/090 00/270 0.0°
0.50 o, 90/270 00/180 90.0°

0] 0.485 0.504 0.019
Known o, 00/000 90/130 90.0°
O of o, 00/090 00/270 0.0°
0.75 o, 90/270 00/360 90.0°

0] 0.274 0.531 0.257
Known o, 00/000 90/102 90.0°
O of o, 00/090 00/270 0.0°
1.00 o, 90/270 00/360 90.0°

(0] 0.089 0.559 0.648

Table 9-4 - Table demonstrating the deviation for the orientations of the 0, O,, and O, principal stress axes
and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress analysis

on fault population AC-01 at five different values of 0}
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Reches' Angelier's Deviation
Known o, 00/000 90/179 90.0°
O of o, 00/090 00/044 46.0°
0.00 o, 90/270 00/314 90.0°
(0] 1.000 0.479 0.521
Known o, 00/260 90/192 90.0°
D of o, 00/350 00/060 70.0°
0.25 o, 90/270 00/330 90.0°
(0] 1.358 0.557 ?
Known o, 00/254 90/170 90.0°
O of o, 00/344 00/069 85.0°
0.50 o, 90/270 00/339 90.0°
(0] 2.372 0.772 ?
Known o, 00/251 00/073 2.0°
O of o, 00/341 90/184 90.0°
0.75 o, 90/270 00/343 90.0°
(0] 6.133 0.905 ?
Known o, 00/250 00/074 4.0°
O of o, 00/340 90/167 90.0°
1.00 o, 90/270 00/344 90.0°
(0] 1.312 0.676 ?

Table 9-5 - Table demonstrating the deviation for the orientations of the 0, O,, and O; principal stress axes
and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress analysis

on fault population AC-02 at five different values of 0}
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The next special-case fault population to be examined was the orthorhombic symmetry

population OS-01. The orthorhombic symmetry faults created a situation very similar to the

conjugate fault population AC-01. For Reches' method (figures 9-51 through 9-55), the ()
values returned, once again, seemed to be the opposite of what one would expect. A ®ofi1.00
was returned for an initial @ of 0.00, a ® 0f0.76 was returned for an initial ® of 0.25,a D of
0.51 was returned for an initial @ of 0.50 (which is quite good), a D 0f0.26 was returned for
an initial ® 0f0.75, and a @ of 0.02 was returned for an initial ® of 1.00. Not surprisingly,
the O, and O; were once again switched and a correct solution results if they are changed.

Using Angelier's method (figures 9-56 through 9-60), the orientations of the principal
stress axes 0, 0,, and O;were exactly matched for initial D values 0f0.25,0.50,and 0.75. For
an initial @ value of 0.00, however, the orientations of 0, and O, were reversed and for an
initial @ value of 1.00, the orientations of 0, and O, were reversed. The errors in magnitude
for the calculated value of @ were all less than 0.050 for each initial @ value.

Comparing the results of Reches' to Angelier's methods for orthorhombic fault

population OS-01 (table 9-6) shows large deviations in the orientations of the principal stress
axes and in the calculated values for @ but this is primarily due to the inaccuracy of Reche's

method given this type of fault population.



238

Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
(0] 0.00 1.000 1.000

Figure 9-51 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
()] 0.25 0.755 0.505

Figure 9-52 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
(0] 0.50 0.502 0.002

Figure 9-53 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
()] 0.75 0.261 0.489

Figure 9-54 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
()] 1.00 0.015 0.985

Figure 9-55 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/196 0.0°
o, 00/090 00/360 90.0°
o, 00/000 00/090 90.0°
(0] 0.00 0.000 0.000

Figure 9-56 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/131 0.0°
o, 00/090 00/270 0.0°
o, 00/000 00/000 0.0°
d 0.25 0.266 0.016

Figure 9-57 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/126 0.0°
o, 00/090 00/270 0.0°
o, 00/000 00/000 0.0°
()] 0.50 0.525 0.025

Figure 9-58 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/098 0.0°
o, 00/090 00/270 0.0°
o, 00/000 00/360 0.0°
()] 0.75 0.776 0.026

Figure 9-59 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.



247

Known Program Error
o, 90/000 00/270 90.0°
o, 00/090 90/090 90.0°
o, 00/000 00/180 0.0°
o 1.00 0.981 0.019

Figure 9-60 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O and the value of @ for fault population OS-01-
10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Reches' Angelier's Deviation

Known o, 00/000 90/196 90.0°
O of o, 00/090 00/360 90.0°
0.00 o, 90/270 00/090 90.0°

(0] 1.000 0.000 1.000
Known o, 00/000 90/131 90.0°
O of o, 00/090 00/270 0.0°
0.25 o, 90/270 00/000 90.0°

(0] 0.755 0.266 0.489
Known o, 00/000 90/126 90.0°
O of o, 00/090 00/270 0.0°
0.50 o, 90/270 00/000 90.0°

0] 0.502 0.525 0.023
Known o, 00/000 90/098 90.0°
O of o, 00/090 00/270 0.0°
0.75 o, 90/270 00/000 90.0°

0] 0.261 0.776 0.515
Known o, 00/000 00/270 90.0°
O of o, 00/090 90/090 0.0°
1.00 o, 90/270 00/180 90.0°

(0] 0.015 0.981 0.966

Table 9-6 - Table demonstrating the deviation for the orientations of the O,, O,, and O, principal stress axes
and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress analysis

on fault population OS-01 at five different values of (0]
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The radial symmetry fault population RS-01 was also very similar to the conjugate fault
population AC-01. The ® valuesreturned by Reches' method (figures 9-61 through 9-65), once
again, seemed to be the opposite of what one would expect. A D of 1.00 was returned for an
initial ® of 0.00, a ® 0f0.75 was returned for an initial @ of 0.25, a ®D 0f0.58 was returned
for an initial ® 0f 0.50 (which is quite good), a ® 0f0.39 was returned for an initial ® 0 0.75,

anda ® of 0.18 was returned for an initial ® of 1.00. Not surprisingly, the O, and O;were once
again switched and a correct solution results if they are changed.
Using Angelier's method (figures 9-66 through 9-70), the orientations of the principal

stress axes O, 0,, and O, were exactly matched for initial @ values 0f0.50,0.75, and 1.00. For
initial @ values of 0.00 and 0.25, the orientations of O, and O, were still quite small. The

errors in magnitude for the calculated value of ® were all less than 0.050 for each initial @

value.
Comparing the results of Reches' to Angelier's methods for radial symmetry fault

population RS-01 (table 9-7) shows large deviations in the orientations of the principal stress
axes and in the calculated values for @ but this is primarily due to the inaccuracy of Reche's
method given this type of fault population.

It seems that for conjugate-type fault sets (the orthorhombic and the radial symmetry

fault populations are both types of conjugate fault sets), Reches' method paleostress analysis
program reversed the orientations of the 0, and O, axes and calculated @ values based on that

switch. This seems to be a result of the mathematical algorithms used to calculate the

paleostress axes. Otherwise, the programs do return the correct orientations for the paleostress

axes and would yield a correct solution. The ® values returned likewise are only somewhat
incorrect. The @ value returned for an initial @ of 0.50 is essentially 0.50. For Reches'

method, the ® value returned for 0.25 is essentially 0.75 (and vice versa), and the ® value



250
returned for 0.0 is exactly 1.0 (and vice versa). For Angelier's method, the ® values returned

are essentially correct.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
(0] 0.00 1.000 1.000

Figure 9-61 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O;, O,, and O; and the value of D for fault population RS-01-
00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O0,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
()] 0.25 0.746 0.496

Figure 9-62 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O; and the value of D for fault population RS-01-
25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
(0] 0.50 0.583 0.083

Figure 9-63 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O; and the value of D for fault population RS-01-
50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
d 0.75 0.392 0.358

Figure 9-64 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O; and the value of D for fault population RS-01-
75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/000 90.0°
o, 00/090 00/090 0.0°
o, 00/000 90/270 90.0°
o 1.00 0.184 0.816

Figure 9-65 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O; and the value of D for fault population RS-01-
10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/102 0.0°
o, 00/090 00/263 7.0°
o, 00/000 00/353 7.0°
i)} 0.00 0.036 0.036

Figure 9-66 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes 0, O,, and O and the value of D for fault population RS-01-
00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/012 0.0°
o, 00/090 00/269 1.0°
o, 00/000 00/179 1.0°
(0] 0.25 0.252 0.002

Figure 9-67 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes 0, O,, and O and the value of D for fault population RS-01-
25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/081 0.0°
o, 00/090 00/270 0.0°
o, 00/000 00/180 0.0°
d 0.50 0.493 0.007

Figure 9-68 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes 0, O,, and O and the value of D for fault population RS-01-
50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 90/085 0.0°
o, 00/090 90/270 0.0°
o, 00/000 00/180 0.0°
()] 0.75 0.742 0.008

Figure 9-69 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, O,, and O; and the value of D for fault population RS-01-
75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 00/090 0.0°
o, 00/090 90/270 0.0°
o, 00/000 00/180 0.0°
i)} 1.00 0.997 0.003

Figure 9-70 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes 0, O,, and O and the value of D for fault population RS-01-
10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Reches' Angelier's Deviation

Known o, 00/000 90/102 90.0°
O of o, 00/090 00/263 7.0°
0.00 o, 90/270 00/353 90.0°

(0] 1.000 0.036 0.964
Known o, 00/000 90/012 90.0°
D of o, 00/090 00/269 1.0°
0.25 o, 90/270 00/179 90.0°

(0] 0.746 0.252 0.494
Known o, 00/000 90/081 90.0°
O of o, 00/090 00/270 0.0°
0.50 o, 90/270 00/180 90.0°

(0] 0.583 0.493 0.090
Known o, 00/000 90/085 90.0°
O of o, 00/090 00/270 0.0°
0.75 o, 90/270 00/180 90.0°

0] 0.392 0.742 0.350
Known o, 00/000 00/090 90.0°
O of o, 00/090 90/270 90.0°
1.00 o, 90/270 00/180 90.0°

(0] 0.184 0.997 0.813

Table 9-7 - Table demonstrating the deviation for the orientations of the 0,, 0,, and O, principal stress axes
and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress analysis

on fault population RS-01 at five different values of 0}
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Finally, the three faultpopulations SO-01,S0-02,and SO-03 consisting of faultplanes
ofsimilarorientations were tested. These faultsalso gave somewhatunexpectedresults which
were a bit different from the results given for the other special-case fault populations tested.

First, consider the results for Reches' method on fault population SO-01 (figures 9-71

through 9-75). The orientations for the O, principal stress axes are correct, which is not too
surprising considering that the faults are all parallel to the east-west axis, but the O, and O,
axes are quite a bit off (= 18°). The ® values returned by the program are also very odd. The
® value returned for an initial ® 0£ 0.00 is negative and the ® values returned for initial @

values 0f0.75 and 1.00 are both greater than 1.0. Since ® is defined as being between 0.0 and

1.0 inclusive, these valuesareobviouslyinerror. Inthiscase,however,switchingthe axes will

not help.

For Angelier's method, in a similar fashion, the orientations for the O, principal stress
axes are essentially correct and the O, and O; axes are quite a bit off (£ 16°). The errors in
magnitude for the calculated values of ® were largest (almost 0.4) atan initial ® value 0f0.50
and somewhat smaller for larger and smaller initial D values.

Comparing the results of Reches' to Angelier's methods for similar orientation fault

population SO-01 (table 9-8) shows large deviations (£ 36°) in the orientations ofthe principal

stress axes O, O,, and O, for an initial ® value of 0.00 but rather small deviations (less than

10°) for all of the principal stress axis orientations at initial ® values 0f0.25,0.50,0.75, and

1.00.
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Known Program Error
o, 90/000 66/180 24.0°
o, 00/090 00/090 0.0°
o, 00/000 24/000 24.0°
()] 0.00 -0.047 ?

Figure 9-71 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 72/000 18.0°
o, 00/090 00/090 0.0°
o, 00/000 18/180 18.0°
()] 0.25 0.581 0.331

Figure 9-72 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 72/000 18.0°
o, 00/090 00/090 0.0°
o, 00/000 18/180 18.0°
()] 0.50 0.847 0.347

Figure 9-73 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 72/000 18.0°
o, 00/090 00/090 0.0°
o, 00/000 18/180 18.0°
o 0.75 1.125 ?

Figure 9-74 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 72/000 18.0°
o, 00/090 00/090 0.0°
o, 00/000 18/180 18.0°
o 1.00 1.364 1.000

Figure 9-75 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 77/002 13.0°
o, 00/090 01/268 2.2°
o, 00/000 13/178 13.2°
o 0.00 0.136 0.136

Figure 9-76 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 81/000 9.0°
o, 00/090 00/270 0.0°
o, 00/000 09/180 9.0°
d 0.25 0.334 0.084

Figure 9-77 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 76/002 14.0°
o, 00/090 01/270 1.0°
o, 00/000 14/180 14.0°
) 0.50 0.880 0.380

Figure 9-78 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
50 using Angelier's method of paleostress analysis. Inthe stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 74/004 16.0°
o, 00/090 01/270 1.0°
o, 00/000 16/180 16.0°
o 0.75 0.939 0.189

Figure 9-79 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-01-
75 using Angelier's method of paleostress analysis. Inthe stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 74/007 16.0°
o, 00/090 02/270 2.0°
o, 00/000 16/180 16.0°
(i) 1.00 0.967 0.033

Figure 9-80 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of ® for fault population SO-01-
10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Reches' Angelier's Deviation
Known o, 66/180 77/002 37.0°
O of o, 00/090 01/268 2.2°
0 00 o, 24/000 13/178 37.1°
0] -0.047 0.136 ?
Known o, 72/000 81/000 9.0°
O of o, 00/090 00/270 0.0°
0.25 o, 18/180 09/180 9.0°
0] 0.581 0.334 0.218
Known o, 72/000 76/002 4.0°
O of o, 00/090 01/270 1.0°
0 50 o, 18/180 14/180 4.0°
0] 0.847 0.880 0.019
Known o, 72/000 74/004 2.3°
O of o, 00/090 01/270 1.0°
0.75 o, 18/180 16/000 2.0°
o 1.125 0.939 ?
Known o, 72/000 74/007 2.9°
O of o, 00/090 02/270 2.0°
1.00 o, 18/180 16/180 2.0°
® 1.364 0.967 ?

Table 9-8 - Table demonstrating the deviation for the orientations of the O,, 0,, and O, principal stress axes
and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress analysis

on fault population SO-01 at five different values of 0}
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The results from Reches' method (figures 9-81 through 9-85) and Angelier's method
(figures 9-86 through 9-90) for similar orientation fault population SO-02 are even worse than
those for SO-01. None of the three principal stress axes are correct and none of the D values
are even close to being what they should be. Comparing Reches'to Angelier's method (table
9-9) shows that, while both incorrect, they are also both consistent.

The results from Reches' method (figures 9-90 through 9-95) and Angelier's method
(figures 9-96 through 9-100) for similar orientation fault population SO-03 has a similar
problem. None of the three principal stress axes are correct and none of the ® valuesare even
close to being what they should be. Comparing Reches' to Angelier's method (table 9-10)
shows that these results are also consistent.

I am not able to give a satisfactory explanation of why these two fault populations
should be so far off. It is probably due to the fact that when you have a population of faults

where all of them are of a similar orientation, there is not enough of a constraint upon the
location of the principal stress axes. The rationale behind a negative D value being returned
for SO-02 when D is initially 0.00 is a mystery. I was not able to ascertain why negative ()
values should be returned. The reason is undoubtably contained within the source code of the
programsand simple errorcheckingshouldhavebeenable toconstrain D tobebetween 0.0 and

1.0 inclusive. A value outside of that range should not be allowed.
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Known Program Error
o, 90/000 66/225 24.0°
o, 00/090 24/045 49.8°
o, 00/000 00/315 45.0°
()] 0.00 0.045 0.045

Figure 9-81 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-02-
00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 81/175 9.0°
o, 00/090 01/272 2.2°
o, 00/000 09/002 9.2°
()] 0.25 0.110 0.140

Figure 9-82 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-02-
25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 70/148 20.0°
o, 00/090 15/287 22.5°
o, 00/000 13/020 23.7°
()] 0.50 0.275 0.225

Figure 9-83 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-02-
50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 55/135 35.0°
o, 00/090 30/282 32.1°
o, 00/000 16/021 26.2°
()] 0.75 0.464 0.286

Figure 9-84 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-02-
75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 34/123 56.0°
o, 00/090 52/270 52.0°
o, 00/000 17/022 27.5°
() 1.00 0.469 0.531

Figure 9-85 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-02-
10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 7/047 13.0°
o, 00/090 01/313 43.0°
o, 00/000 13/223 44.6°
) 0.00 0.130 0.130

Figure 9-86 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-02-
00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 77/051 13.0°
o, 00/090 07/285 16.5°
o, 00/000 10/194 17.1°
) 0.25 0.252 0.002

Figure 9-87 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-02-
25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 75/082 15.0°
o, 00/090 14/284 19.7°
o, 00/000 05/192 13.0°
()] 0.50 0.615 0.015

Figure 9-88 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-02-
50 using Angelier's method of paleostress analysis. Inthe stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 61/103 29.0°
o, 00/090 29/279 30.2°
o, 00/000 01/010 10.0°
()] 0.75 0.746 0.004

Figure 9-89 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-02-
75 using Angelier's method of paleostress analysis. Inthe stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 37/101 53.0°
o, 00/090 52/270 52.0°
o, 00/000 05/0070 8.6°
()] 1.00 0.786 0.214

Figure 9-90 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-02-
10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 49/210 41.0°
o, 00/090 41/030 67.8°
o, 00/000 00/120 60.0°
) 0.00 0.202 0.202

Figure 9-91 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O,, 0,, and O, and the value of @ for fault population SO-03-
00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes 0,, 0,, and O; are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 59/203 31.0°
o, 00/090 30/036 59.4°
o, 00/000 06/303 57.2°
o 0.25 0.191 0.059

Figure 9-92 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 59/191 31.0°
o, 00/090 20/065 31.6°
o, 00/000 23/326 40.3°
) 0.50 0.082 0.418

Figure 9-93 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 57/175 33.0°
o, 00/090 05/273 5.8°
o, 00/000 33/007 33.7°
()] 0.75 0.207 0.543

Figure 9-94 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.



289

Known Program Error
o, 90/000 50/155 40.0°
o, 00/090 19/270 19.0°
o, 00/000 33/013 35.2°
() 1.00 0.408 0.592

Figure 9-95 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 80/202 10.0°
o, 00/090 02/302 32.1°
o, 00/000 10/032 33.4°
(0] 0.00 0.000 0.000

Figure 9-96 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 79/189 11.0°
o, 00/090 02/287 17.1°
o, 00/000 11/017 20.2°
) 0.25 0.190 0.060

Figure 9-97 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 79/184 11.0°
o, 00/090 01/090 1.0°
o, 00/000 11/360 11.0°
) 0.50 0.299 0.201

Figure 9-98 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
50 using Angelier's method of paleostress analysis. Inthe stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 79/187 11.0°
o, 00/090 01/090 1.0°
o, 00/000 11/359 11.0°
()] 0.75 0.584 0.166

Figure 9-99 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
75 using Angelier's method of paleostress analysis. Inthe stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Known Program Error
o, 90/000 69/130 21.0°
o, 00/090 16/270 16.0°
o, 00/000 13/004 13.6°
o 1.00 0.865 0.135

Figure 9-100 - Lower-hemisphere stereographic projection and table demonstrating the differences between
the known and calculated principal stress axes O, 0,, and O; and the value of @ for fault population SO-03-
10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress
axes O,, 0,, and O, are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.
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Reches' Angelier's Deviation

Known o, 66/225 77/047 37.0°
® of o, 24/045 01/313 88.6°
0.00 o, 00/315 13/223 88.1°

0] 0.045 0.130 0.085
Known o, 81/175 77/051 19.5°
O of o, 01/272 07/285 14.3°
0 o5 o, 09/002 10/194 22.4°

0] 0.110 0.252 0.142
Known o, 70/148 75/082 19.3°
O of o, 15/287 14/284 3.1°
0 50 o, 13/020 05/192 19.7°

0] 0.275 0.615 0.340
Known o, 55/135 61/103 17.8°
O of o, 30/282 29/279 2.8°
0.75 o, 16/021 01/010 18.5°

0] 0.464 0.746 0.282
Known o, 34/123 37/101 18.1°
O of o, 52/270 52/270 0.0°
1.00 o, 17/022 05/007 19.0°

0] 0.469 0.786 0.317

Table 9-9 - Table demonstrating the deviation for the orientations of the 0, O,, and O; principal stress axes
and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress analysis

on fault population SO-02 at five different values of 0}
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Reches' Angelier's Deviation

Known o, 49/210 80/202 36.1°
® of o, 41/030 02/302 87.2°
0.00 o, 00/120 10/032 88.0

(0] 0.202 0.000 0.202
Known o, 59/203 79/189 20.5°
O of o, 30/036 02/287 74.7°
0.25 o, 06/303 11/017 73.2

(0] 0.191 0.190 0.001
Known o, 59/191 79/184 20.1°
® of o, 20/065 01/090 31.0°
0.50 o, 23/326 11/360 34.5

(0] 0.082 0.299 0.217
Known o, 57/175 79/187 22.3°
® of o, 05/273 01/090 6.7°
0.75 o, 33/007 11/359 23.2

(0] 0.202 0.584 0.382
Known o, 50/155 69/130 22.5°
® of o, 19/270 16/270 3.0°
1.00 o, 33/013 13/004 21.6

(0] 0.408 0.865 0.457

Table 9-10 - Table demonstrating the deviation for the orientations of the O,, 0,, and O, principal stress axes
and the principal stress magnitude ratio ® between Reches' and Angelier's methods of paleostress analysis

on fault population SO-01 at five different values of 0}
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9.4 Other Test Results

The paleostress analysis programs were next checked for their sensitivity to a
variability in the orientations of the fault planes and in the pitch angles of the slip vectors.
This was done by arbitrarily changing the orientations of one or more of the fault datums and
then recalculating the paleostress tensor for that population. These tests were done with the
RP-01,RP-02,and RP-03 faultpopulations. The preliminary resultsindicate thatthe programs
are not very sensitive to minor changes (+ 5°) in either the strike, dip, or pitch angles of the
fault data.

The paleostress analysis programs were also checked for theirsensitivity forrandomly
inserting or removing a fault plane from the population. These tests were performed on all of
the fault populations discussed. Adding or removing a fault plane from a population usually
had little effect except in cases where the fault planes were parallel to one of the principal
planes orifthey were the only fault planes at some specific orientation which was sufficiently
far from the other fault planes.

In general, the two paleostress analysis programs tested returned consistent results
(withsomenotableexceptions). Thisisimportantsinceiftwo separate programsreturnwidely

differing results, then one or both of them are wrong.
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Figure 9-101 - Lower-hemisphere stereographic projection and table showing the calculated principal stress

axes 0, 0,, and O, and the value of D for fault population FD-01-00 using Reches' method of paleostress

analysis. [38 Neogene-age normal faults from central Crete (Angelier, 1979); see p. 173, and Table 8-1,p. 175]
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Known Program Error
(o} ? 79/237
g, ? 11/053
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()] ? 0.225

Figure 9-102 - Lower-hemisphere stereographic projection and table showing the calculated principal stress

axes 0, 0,, and O, and the value of @ for fault population FD-01-00 using Angelier's method of paleostress

analysis. [38 Neogene-age normal faults from central Crete (Angelier, 1979);seep. 173, and Table 8-1,p. 175]



CHAPTER 10

CONCLUSIONS

Now that the rationale for the tests, the testing procedures, and the test results have

been explained, it is time to put it all together.

10.1

What do the Results Mean?

One may draw several conclusions from the data presented in chapter 9.

The two methods of paleostress analysis examined seem to work fairly well for fault
populations with moderately-scattered faults such as those in populations RP-01, RP-
02,and RP-03. A population of faults with some scatter evidently acts to constrain the
possible positions of the principal stress axes. With such fault populations, the

programs seemed to return better stress axes orientations and better calculated values
of @ for cases where @ was not equal to 0.0 or 1.0. This is reasonable since it is

impossible to distinguish between two of the stress axes when they have the same

magnitudes (i.e. at ®=0.0, 0,=0;and at D =10, 0,=0)).

The two methods of paleostress analysis examined seemed not to work very well for
special-case faultpopulations. Thisis most-likely due to the factthatsuch populations
can not well-constrain the paleostress axes (chapter 2). While such special-case
populations would probably never be used for a paleostress analysis, more work is
needed to determine if conjugate or orthorhombic fault sets within moderately-

scattered fault populations would have an adverse effect.

300
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The two methods of paleostress analysis examined seemed to be fairly immune to mild
measurement errors and a small amount of extraneous data. Much of the sensitivity is
a result of exactly which planes are removed or added and more work is needed to
quantify this. Thisisneeded in order for people who use paleostress analysis programs
to realize what type of accuracy their results have. The calculation of error cones
around the returned principal stress axes would be a useful addition to paleostress

programs.

Finally, the two paleostress analysis programs examined seemed to compare to one
another fairly well. The results returned for most populations were close enough for
either program to be used with approximately equal accuracy. The exceptions to this
were when one or the other of the programs "blew up" (as in the case of conjugate fault
sets) and returned totally incorrect data. More work is needed to see if these favorable

comparisons hold up with additional tests.

In most regards, Reches' and Angelier's methods of paleostress analysis seemed to

perform fairly well. Caution must be used when applying these methods, however, and more

systematic tests are needed to further outline the two program's limitations for certain types

of fault populations.

10.2

Practical Problemsin Evaluating Paleostress Analysis Programs

There are several important practical problems which may arise when attempting to

compare and evaluate paleostress analysis programs. A few ofthem are listed below.

When using a program written by someone else for performing paleostress analysis
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techniques, one must be sure that the program does what it's supposed to do. It is virtually
impossible to test a program such that one will have 100% confidence in its performance.
Therefore, itisusually advisableto carefully check the program's source code for any possible
errors. Thismaybeanextremely difficultand time-consuming projectsince programmers may
not write theirsource codeinaclearand consistentmanner. Poorly documented programs may
be almost impossible to read and understand since the source code for paleostress analysis
programs may easily run into hundreds of printed pages. There is also the problem of
programmers who will not allow you to see their source code (such as Angelier). One must
then make a decision as to whether or not to use their program. Since published field studies
have made use of Angelier's method "as is",[ chosetotestiteven thoughlhadnoaccessto the
original source code. A possible way around this problem might be to write your own
paleostressanalysis programsbased upontheirpublished mathematicalalgorithms. Since such
programs would often use similar procedures, a modular and highly-structured programming
language such as C would be preferable to most others since that would allow the sharing of
many subroutines by several different programs. A drawback of this solution, however, is that
it would be very time-consuming and also somewhat frustrating since published descriptions
ofthe mathematical algorithms used by paleostress analysis programs are notalways clearand
easy to follow. It is obviously a less-appealing prospect than obtaining a working (and

presumably tested) program from someone else.

2. Closely related to the above problem is that paleostress analysis programs are written
in many different computer languages for several differenttypes of computers. [ have
programs written in FORTRAN foranIBM PC, BASIC foranIBM PC, FORTRAN for

a Macintosh II, FORTRAN fora VAX-8650 mainframe, and a
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paleostressanalysisprogram called ROMSA from Lisle (1988)inanoddversionof BASIC that
does not seem to run correctly on any computer I've used. When comparing programs written
indifferentlanguages for different machines, itis difficultto determine ifan erroris due to the
mathematical algorithm used, the language used, orthe machine used. Differentlanguages and
machines will have their own ways of truncating numbers, rounding-off numbers, and error

handling.

3. When a paleostress analysis program returns an incorrect result, it is difficult to
evaluate the source of that error. Is the error a mechanical error (a plus sign where
there should be a minus sign in the program) or the result of an inherent flaw in the
technique? Did the error arise as a result of the mathematical techniques used or
because the initial assumptions underlying the whole concept are incorrect. These are
very difficult problems to address and only by thorough testing can they be evaluated.

4. Another problem faced when attempting to compare various methods of paleostress
analysis is that most of them, based upon personal experience, require their initial
fault-slip data to be formatted in different ways. Should the fault orientation data be
entered as a strike, dip, and dip direction for each fault plane or as a strike and dip for
each faultplane where the strike isassumed to follow aright-hand rule (the strike is the
trend of the fault's pole + 90°) or simply as a plunge and trend for the pole to each fault
plane? Should the orientations of the striations on the fault plane be entered as pitch
angles or as plunge and trend values or simply as a trend (since the plunge will be
constrained by the fault's orientation)? Should the fault's sense of slip be given as up,
down, left, or right or should it be specified by the pitch angle of the striations or
should it be given as a clockwise or counterclockwise rotation about some axis?

Finally, should the fault data be assigned some type of weighting scheme?
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Everyone writing paleostress analysis programs has theirown preferences and, unfortunately,
they never seem to correspond. A way around this mess would be to write all of the analysis
programs yourself and use a consistent scheme for entering the data -- this option has the
drawbacks listed in number 1 above. Another possible solution is to write a program to do the
conversions and then write the converted datato aninputfile foreachtype of analysis program
used. Such a program would have the advantage of receiving data in any format you were
comfortable withand automatically converting it foryou. Doingallofthe conversions by hand
for several different paleostress analysis methods can be extremely time-consuming and is

obviously more prone to random errors than is an automated conversion system.

5. Using programs written by someone else has other problems as well. I've received
paleostress analysis programs with several pages of fairly clear documentation, I've
received programs with several pages of documentation in French, and I've received
programs with absolutely no documentation whatsoever. Attempting to use
undocumented programs is a "trial and error" procedure which involves much wasted
time and effort. Angelier's program (chapter 6) is probably the worst in that regard.
I found his program to be exceedingly difficult to use -- even after having experience
with several othermethods of paleostress analysis. [t wasanundocumented, compiled
program with unclear and misleading interactive prompts and I found it to be very
counter-intuitive in the way it worked. The program using Reches' method of
paleostressanalysis which was writtenby Kenneth Hardcastle (chapter 7), onthe other
hand, was very easy to use. Most paleostress analysis programs lie between those two

extremes.

6. Some methodsofpaleostressanalysisare very computationally-intensive. Gephartand
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Forsyth's method (1984) was notexamined in my study for the simple reason that a population
of 20 faults takes a full 24-hour day to run! Testing dozens of such faults (especially without
owning an appropriate computer) is a major project. Testing non-linear inversion methods,
such as Angelier's, may also be very time-intensive for large fault populations. As faults are
added to the populations arithmatically, the time needed to perform an analysis increases
exponentially due to the mathematics involved in performing matrix inversions (where the

matrices may have arank of 2n where nis the number of faults in the population examined).

7. Since most of the pioneers in paleostress analysis are French, many of the important
papersandevensome of the program documentation is written in that language. If one
does not possess a reading knowledge of French, it is difficult to learn all that one
should about paleostress analysis techniques. I was fortunate in having access to
someone (Debra Lenard of SUNY Albany) who was able to translate French technical
papersinto English withouttoo much difficulty. The process did, however, take some

time and effort.

8. Finally, itis very difficult to choose artificial fault populations for testing the various
methods of paleostress analysis. Since an infinite variety of populations may be
created, careful thought must go into the problem. Obviously, it is desirable to test
special-cases (e.g. apopulation containing a fault plane parallelto one of the principal
stress axes) and geologically-realistic fault populations (e.g. orthorhombic symmetry
fault sets). Every possible type of fault population can not be tested, however, so the
best one may hope for is to be able to formulate general rules or guidelines for using
paleostress analysis techniques (e.g. stating that method A is better for testing small

populations of faults while method B is better for larger ones or method C can not be
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used for fault populations containing conjugate sets of faults, etc.).

Anticipating the obligatory question "Ifyou had todo italloveragain, whatwould you
do differently?", I would reply as follows. IfI had to doitall over again, I would first take the
time to write my own computer programs -- in a language such as C and for an IBM PC -- to
perform several different methods of paleostress analysis. The programs would read the data
from a single type of ASCII fault-slip data file and write the results in a standardized format.
Once this were done (notatrivial task), the testing ofthese methods would be much easier than
itis by using other people's programs. [ had no way of knowing this, however, before [ began

this study.

10.3 Suggestions for Future Work

There is a great need for more work on the problems of paleostress analysis. As more
people use paleostress analysis programs, such as those written by Angelier, a greater need
exists for people to evaluate their effectiveness. While Angelier may be aware of the
limitations of his method, those who use his program may notbe. Irealize thatthis thesis study
is only a beginning in the systematic examination of paleostress analysis, but at least it's a
beginning. Since the obvious time constraints for my thesis defense have prevented me from
including muchmore of the preliminary dataI've gathered,Iplanto continue with the analyses
of these paleostress programs (possibly with the addition of one or two more such as
Etchecopar's method and/or Gephartand Forsyth's method) with the goal of sending the results
for publication before the summerof1991.

The majorsuggestion I would leave for anyone (including myself) planning to further
examine paleostress analysistechniques,istodo whatloutlinedinthe previoussection. Write

the programs yourselfand standardize them. I would also suggest quantifying graphical
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methods of paleostress analysis such as Lisle's (1988) so that they may be run on a computer
as well. Finally, the comparison of the dynamic paleostress analysis techniques to the various
kinematic analysis techniques which have been proposed (Marrettand Allmendinger, 1990) is
sure toyield some fruitfulinsightsintothe mechanicsoffaultingand therelationshipsbetween

stress and strain.



APPENDIX A

GLOSSARY OF SYMBOLS

The following is a list of mathematical symbols used in this thesis. The symbols are
listed inalphabetical order with the Latin alphabetlisted before the Greek alphabet. Arbitrary
constants are not listed and in cases where the same symbol has been used in two different

contexts, both are listed separately.

Cy = Cohesion term of the Coulomb failure criterion

d = Trend of a fault plane's dip direction

Fy = Normal force acting upon a plane

Fq = Shear force acting upon a plane

F; = Total force acting upon a plane

i = Pitch angle of a fault plane's slip vector

1 = Direction cosine wherei= 1,2, or 3

1 = Direction cosine equivalent to 1,

1, = Direction cosine between a fault normal and east
1, = Direction cosine between a fault normal and north
1, = Direction cosine between a fault normal and the vertical axis
m = Direction cosine equivalent to 1,

N = Normal force acting upon a plane

N = Normal vector to a fault plane

n = Normal force acting upon a plane

n = Direction cosine equivalent to 14

o = Normal vector to a movement plane

P = A fault plane's dip angle
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Ratio of the principal stress axes
Pitch of a slip vector on a plane
Shear force acting upon a plane
Slip vector in a fault plane
Shear force acting upon a plane
Total stress vector acting upon a plane
Total stress vector component i wherei= 1, 2, or 3
A positive constant

A positive constant

The shear stress term O, or O,

The shear stress term O, ; or 05,

The shear stress term O, ; or Oy

Tensor aspect ratio of the principal stress axes

Dip angle of a plane

Meaurement error

Difference between average strike and true strike

Strike measurement error

Trend measurement error

Coefficient of friction term of the Coulomb failure criterion

The standard deviation of a variable x

The geologic stress tensor

The reduced geologic stress tensor

Most compressive principal stress axis

Intermediate principal stress axis



Least compressive principal stress axis

Stress tensor component (i,j) whereiand j=1, 2, or 3

Normal stress acting upon a plane

Shear stress acting upon a plane

Principal stress axis in the X-direction

Principal stress axis in the Y-direction

Principal stress axis in the Z-direction

Ratio of the principal stress axes

Angular measure modulo 27T
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APPENDIX B

ARTIFICIAL FAULT POPULATION DATA

This is a listing of all the artificial fault population data shown in stereographic

projection in chapter 8. The change in slip vector orientations is shown for each of the five

values of ® examined (0.00, 0.25,0.50,0.75,1.00) and the format for each fault datum is:

46 192 86

where 46° is the plunge of the fault's normal vector, 192° is the trend of the fault's normal
vector, and 86° is the pitch of the slip vector. The pitch angle is the angle, in the plane of the
fault, between the strike vector and the slip vector. The strike vector points in the direction
defined by the trend of the fault plane's normal vector + 90° (i.e. 282°). A pitch is negative if
the angle is measured from the opposite side of the strike vector (i.e. the trend of the fault
plane's normal vector - 90°). All of the faults are normal faults so no additional information

is needed regarding sense-of-slip.



®=0.00

46 192 90
2701490
5202590
4133190
3932690
2302390
3501390
2534090
3133990
3821190
5503690
40054 90
49018 90
3422190
5804090
36 024 90
4103090
2632990

d=0.25

46 192 86
27014 83
52025 83
41331 -80
39326 -79
23023 77
35013 84
25340 -79
31339 -80
38211 79
55036 81
40 054 78
49018 84
34221 76
58040 81
36 024 81
41030 80
26 329 -75

d=0.50

46 192 82
27014 75
52025 75
41331-70
39326 -66
23 023 64
35013 79
25340 -68
31339 -71
38211 68
55036 71
40 054 61
49018 78
34221 61
58040 70
36 024 71
41030 69
26329 -60

RP-01 FAULT POPULATION

d=0.75

46 192 78
27014 68
52025 67
41331 -59
39326 -54
23 023 52
35013 73
25340 -58
31339 -62
38211 56
55036 60
40 054 43
49018 73
34221 43
58040 58
36 024 62
41030 59
26 329 -47

d=1.00

46 192 74
27014 61
52025 59
41331 -50
39326 -43
23 023 43
35013 68
25340 -49
31339 -53
38211 46
55036 48
40 054 25
49018 67
34221 33
58 040 45
36 024 53
41030 49
26329 -36
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®=0.00

36 002 90
2402290
58143 90
6103090
2823290
5135990
5622090
3520590
65184 90
4022090
60 15290
3634290
3233690
5013690
3116990
5313990
2823590
5013890

d=0.25

36 002 89
24 022 78
58 143 -81
61030 82
28232 73
51359 90
56 220 81
35205 80
65 184 89
40220 78
60 152 -83
36342 -83
32336 -80
50136 -79
31169 -85
53139 -80
28235 73
50 138 -80

d=0.50

36 002 88
24 022 65
58 143 -71
61030 74
28232 53
51359 90
56220 89
35205 69
65 184 88
40220 64
60 152 -75
36342 -75
32336 -69
50136 -67
31169 -80
53139 -68
28 235 53
50138 -67

RP-02 FAULT POPULATION

d=0.75

36 002 87
24 022 54
58 143 -60
61030 65
28 232 35
51359 -89
56 220 57
35205 60
65184 87
40220 50
60 152 -67
36342 -68
32336 -59
50136 -53
31169 -74
53139 -56
28 235 34
50138 -40

d=1.00

36 002 87
24 022 45
58 143 -48
61030 57
28232 20
51359 -89
56 220 45
35205 51
65 184 86
40220 37
60 152 -58
36342 -61
32336 -50
50136 -38
31169 -69
53139 -43
28235 18
50138 -40

313



®=0.00

25028 90
3831290
3503190
64 349 90
2531390
60 15290
3134490
5218290
30 148 90
4321990
5331990
25046 90
3504990
61 188 90
4330590
3133690
3135390
26296 90

d=0.25

25
38
35
64
25
60
31
52
30
43
53
25
35
61
43
31
31
26

028 75
312 -77
031 78
349 -87
313 -71
152 -83
344 -83
182 89
148 -76
219 79
319 -80
046 71
049 76
188 88
305 -78
336 -79
353 -87
296 -74

RP-03 FAULT POPULATION

d=0.50

25
38
35
64
25
60
31
52
30
43
53
25
35
61
43
31
31
26

028 61
312 -61
031 66
349 -84
313 -51
152 -75
344 -75
182 89
148 -62
219 66
319 -68
046 51
049 59
188 85
305 -63
336 -69
353 -83
296 -53

d=0.75

25
38
35
64
25
60
31
52
30
43
53
25
35
61
43
31
31
26

028 49
312 -44
031 54
349 -81
313 -34
152 -67
344 -68
182 88
148 -50
219 53
319 -56
046 35
049 42
188 83
305 -44
336 -53
353 -80
296 -30

d=1.00

25028 38
38312 -29
35031 44
64 349 -78
25313 -22
60 152 -58
31344 -61
52182 87
30 148 -39
43219 40
53319 -43
25046 22
35049 27
61 188 81
43305 -26
31336 -49
31353 -77
26296 -12
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®=0.00

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

00090
00590
35590
18090
17590
18590
00090
00590
35590
18090
17590
18590
00090
00590
35590
18090
17590
18590

d=0.25

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

000 90
005 88
355 -88
180 90
175 -88
185 88
000 90
005 87
355 -87
180 90
175 -87
185 87
000 90
005 88
355 -88
180 90
175 -88
185 88

d=0.50

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

000 90
005 85
355 -85
180 90
175 -85
185 85
000 90
005 84
355 -84
180 90
175 -84
185 84
000 90
005 86
355 -86
180 90
175 -86
185 86

AC-01 FAULT POPULATION

d=0.75

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

000 90
005 83
355 -83
180 90
175 -83
185 83
000 90
005 81
355 -81
180 90
175 -81
185 81
000 90
005 83
355 -83
180 90
175 -83
185 83

d=1.00

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

000 90
005 80
355 -80
180 90
175 -80
185 80
000 90
005 78
355 -78
180 90
175 -78
185 78
000 90
005 81
355 -81
180 90
175 -81
185 81
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®=0.00

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

13590
140 90
13090
31590
31090
32090
13590
140 90
13090
31590
31090
32090
13590
140 90
13090
31590
31090
32090

d=0.25

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

135 -74
140 -75
130 -74
315 -74
310 -74
320 -75
135 -71
140 -72
130 -71
315 -71
310 -71
320 -72
135 -76
140 -77
130 -76
315 -76
310 -76
320 -77

AC-02 FAULT POPULATION

d=0.50

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

135 -56
140 -58
130 -55
315 -56
310 -55
320 -58
135 -52
140 -54
130 -51
315 -52
310 -51
320 -54
135 -60
140 -62
130 -59
315 -60
310 -59
320 -62

d=0.75

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

135 -40
140 -43
130 -37
315 -40
310 -37
320 -43
135 -35
140 -38
130 -33
315 -35
310 -33
320 -38
135 -44
140 -47
130 -41
315 -44
310 -41
320 -47

d=1.00

30
30
30
30
30
30
25
25
25
25
25
25
35
35
35
35
35
35

135 -27
140 -31
130 -23
315 -27
310 -23
320 -31
135 -23
140 -27
130 -20
315 -23
310 -20
320 -27
135 -30
140 -34
130 -26
315 -30
310 -26
320 -34
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®=0.00

3004590
3013590
3022590
3031590
3005090
3004090
2504590
3504590
3013090
30 14090
2513590
3513590
3022090
3023090
2522590
3522590
3031090
3032090
2531590
3531590

d=0.25

30 045 74
30135 -74
30225 74
30315 -74
30050 74
30 040 75
25045 71
35045 76
30130 -74
30 140 -75
25135 -71
35135 -76
30220 75
30230 74
25225 71
35225 76
30310 -74
30320 -75
25315 -71
35315 -76

d=0.50

30 045 56
30 135 -56
30225 56
30315 -56
30050 55
30 040 58
25045 52
35045 60
30130 -55
30 140 -58
25135 -52
35135 -60
30220 58
30230 55
25225 52
35225 60
30310 -55
30320 -58
25315 -52
35315 -60

O0S-01 FAULT POPULATION

d=0.75

30 045 40
30 135 -40
30225 40
30315 -40
30050 37
30 040 43
25045 35
35045 44
30130 -37
30 140 -43
25135 -35
35135 -44
30220 43
30230 37
25225 35
35225 44
30310 -37
30320 -43
25315 -35
35315 -44

d=1.00

30 045 27
30 135 -27
30225 27
30315 -27
30050 23
30 040 31
25045 23
35045 30
30130 -23
30 140 -31
25135 -23
35135 -30
30220 31
30230 23
25225 23
35225 30
30310 -23
30320 -31
25315 -23
35315 -30
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®=0.00

3000090
3003090
3006090
3012090
3015090
3018090
3021090
3024090
3030090
3033090

d=0.25

30000 90
30030 77
30060 75
30120 -75
30150 -77
30180 90
30210 77
30240 75
30300-75
30330-77

d=0.50

30000 90
30030 64
30060 55
30120 -55
30150 -64
30180 90
30210 64
30240 55
30300 -55
30330 -64

RS-01 FAULT POPULATION

d=0.75

30000 90
30030 51
30060 34
30120 -34
30150 -51
30180 90
30210 51
30240 34
30300 -34
30330-51

d=1.00

30000 90
30030 41
30060 16
30120 -16
30150 -41
30180 90
30210 41
30240 16
30300-16
30330 -41
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®=0.00

3000090
3500090
2500090
3000690
3500690
2500690
3035490
3535490
2535490
3000390
3500390
2500390
3035790
3535790
2535790

d=0.25

30000
35000
25000
30006
35006
25006
30354
35354
25354
30003
35003
25003
30357
35357
25357

90
90
90
87
87
86

-87
-87
-86

89
89
88

-89
-89
-88

SO-01 FAULT POPULATION

d=0.50

30000
35000
25000
30006
35006
25006
30354
35354
25354
30003
35003
25003
30357
35357
25357

90
90
90
84
85
83

-84
-85
-83

87
87
86

-87
-87
-86

d=0.75

30000
35000
25000
30006
35006
25006
30354
35354
25354
30003
35003
25003
30357
35357
25357

90
90
90
81
82
79

-81
-82
-79

86
86
85

-86
-86
-85

d=1.00

30000
35000
25000
30006
35006
25006
30354
35354
25354
30003
35003
25003
30357
35357
25357

90
90
90
78
80
76

-78
-80
-76

84
85
83

-84
-85
-83
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®=0.00

5503090
5003090
6003090
5503390
5003390
6003390
5503690
5003690
60036 90
5502790
5002790
60027 90
5502490
5002490
60024 90

d=0.25

5503082
5003081
60 030 82
5503381
5003381
60 033 82
55036 82
50036 80
60 036 81
55027 83
50027 82
60027 83
55024 83
50024 83
60 024 84

SO-02 FAULT POPULATION

d=0.50

5503073
5003072
60 030 74
5503372
5003371
6003373
5503671
50036 69
60 036 72
5502775
50027 74
6002775
5502476
5002475
60 024 77

d=0.75

55030 64
5003062
60 030 65
5503362
5003360
60033 63
55036 60
5003658
60036 61
55027 66
50027 65
60027 67
55024 69
50024 67
60024 70

d=1.00

5503055
5003053
60 03056
5503352
5003350
6003353
5503648
5003647
6003650
5502758
5002756
60027 60
5502461
50024 60
60024 63
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®=0.00

3004590
2504590
3504590
30048 90
25048 90
35048 90
3005190
2505190
3505190
3004290
2504290
3504290
3003990
2503990
3503990

d=0.25

30 045
25045
35045
30 048
25048
35048
30051
25051
35051
30 042
25042
35042
30039
25039
35039

74
71
76
74
71
76
74
71
76
74
72
76
75
73
76

SO-03 FAULT POPULATION

d=0.50

3004556
2504552
3504560
30048 56
2504851
35048 59
3005155
2505150
3505159
3004257
2504263
3504261
3003959
25039 54
3503962

d=0.75

30 045 40
25045 35
35045 44
30 048 38
25048 34
35048 42
3005137
2505132
35051 41
30042 42
25042 37
35042 46
30039 44
25039 39
35039 48

d=1.00

30 04527
2504523
3504530
30 048 24
25048 21
35048 27
3005122
2505119
3505125
30 042 29
2504225
35042 33
3003932
25039 28
35039 35
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APPENDIX C

SLIP VECTOR CALCULATION PROGRAM

Complete listing of the slip vector calculation program discussed in chapter five. The
program consists of three files -- the main program SLIP.PAS, the include file DXF.INC which
contains AutoCAD DXF file creation procedures, and the help file SLIP.TXT. The program

is written in Turbo Pascal version 3.01 for an IBM PC or compatible computer.

program Slip;

s sk sk ok oskoskoskoskockoskoskoskosk sk sk sk sk sk ok sk sk ok ok sk ok sk ok ok sk sk sk ok sk ok ook ok ok sk

This is a program to calculate the slip vector and stress ratios
on planes of random orientations in a stress field given the mean
and deviatoric stresses. Read the help file SLIP.TXT to learn more
about this program.

s sk sk oskoskoskoskoskockoskoskoskosk sk ok sk sk sk ok sk ok ok ok sk ok sk sk ok sk sk sk ok sk ok sk ok ok sk

SLIP.PAS - Version 2.0

Copyright (C) 1989 -- Steven H. Schimmrich
For educational and research purposes only
All commercial rights reserved

Steven H. Schimmrich
Department of Geological Sciences
State University of New York at Albany

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{ Albany, New York 12222
{

{

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

s sk sk oskoskoskoskoskockoskoskoskosk sk ok sk sk sk ok sk ok ok ok sk ok sk sk ok sk sk sk ok sk ok sk ok ok sk

{ Initializations }
label 1;

const

HELPFILE = 'SLIP.TXT;
PAGES = 5;

PI = 3.1415927;

type
RegisterList =
record
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AX,BX,CX,DX,BP,SI,DI,.DS,ES, Flags :
end;

linarray2d

chararray3

linarray51

linarray3

string12

string78

var
Sigmal, Sigma3, Mu, Cohesion,
Plunge, Trend, CutOff
DMin, DMax
Choice, Intervals
Cosines
Sigma
Stresses, SlipVector
Ratios, SlipAngle
Quitlt, IsThereData
FileName

{ General program functions }

function Exists(FileName : stringl2): boolean;
{ Checks to see if a file exists on the disk }
var
Name : file;
begin
Assign(Name,FileName);
{$I-}
Reset(Name);
{$1+)}
Exists := (IOResult = 0);
end;

function Zero(Value : real): boolean;
{ Checks to see if a value is essentially 0.0 }
begin
if (abs(Value) < 0.00001)
then Zero := true
else Zero := false;
end;

function DegToRad(DegreeMeasure : real): real;
{ Converts an angle in degrees to one in radians }

begin
DegToRad := ((DegreeMeasure * PI)/ 180.0);
end;

function RadToDeg(RadianMeasure : real): real;
{ Converts an angle in radians to one in degrees }

begin

323
integer;

array[1..3,1..51] of real;
array[1..3] of string[5];
array[1..51] of real;
array[1..3] of real;
string[12];

string[78];

real;

char;
integer;
linarray3;

chararray3;
linarray2d;
linarray51;
boolean;
string12;



RadToDeg := ((RadianMeasure * 180.0) / PI);
end;

function Tan(Angle : real): real;

{ Returns the tangent of an angle }
begin

Tan :=sin(Angle) / cos(Angle);
end;

function ArcCos(AValue : real): real;
{ Returns the arccosine of a value }

var

X,Y : real;
begin
if (AValue = 0.0)
then ArcCos := (PI/2.0)
else if (AValue = 1.0)
then ArcCos := 0.0
else if (AValue = -1.0)
then ArcCos := PI
else
begin
X = (AValue / sqrt(1.0 - sqr(AValue)));
Y :=arctan(abs(1.0 / X));
if (X>0.0)
then ArcCos ;=Y
else ArcCos :=(PI-Y);
end;
end;

function ArcSin(AValue : real): real;
{ Returns the arcsine of a value }
var
X, Y :real;
begin
if (AValue = 0.0)
then ArcSin := 0.0
else
if (AValue = 1.0)
then ArcSin := (PI/2.0)
else
if (AValue = -1.0)
then ArcSin := (-PI/2.0)
else
begin
X := (AValue / sqrt(1.0 - sqr(AValue)));
if (X =0.0)
then ArcSin := 0.0
else
begin
Y := arctan(abs(X));
if (X > 0.0)
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then ArcSin ;=Y
else ArcSin :=-Y;
end;
end;
end;

{ General program procedures }

procedure Alarm;
{ Sounds an alarm }
var
Count : integer;
begin
for Count := 1 to 4 do
begin
sound(880);
delay(50);
sound(0);
delay(50);
nosound;
end;
end;

procedure Beep;
{ Sounds a beep }
begin
sound(880);
delay(50);
nosound;
end;

procedure HoldScreen(var Quitlt

: boolean);

{ Holds the screen until any key is pressed }

var
Key : char;
begin
write(' Press any ');
textcolor(12);
write('key");
textcolor(14);
write(' to continue (');
textcolor(12);
write('Q");
textcolor(14);
write(' to quit)...");
read(kbd,Key);
if (upcase(Key) ='Q")
then Quitlt := true
else Quitlt := false;
end;

procedure EndGraphics;
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{ Ends a graphics display }
begin

Beep;

repeat until (keypressed);

textmode;

textcolor(11);

clrser;
end;

procedure Cursor(On : boolean);
{ Turns cursor on and off }

var
Register : RegisterList;
begin
if (On)
then
if (mem[0:$449] =7)
then
Register.CX := $0C0OD
else
Register.CX := $0607
else

Register.CX := $2000;
Register.AX := $0100;
intr($10,Register);

end;

procedure DrawBox(ULX, ULY, LRX, LRY
{ Draws a box around text in text mode }
var
X, Y, XDistance : integer;
begin
gotoxy(ULX,ULY);
write(#201);
XDistance := LRX - ULX - 1;
for X := 1 to XDistance do
write(#205);
write(#187);
for Y := (ULY + 1) to (LRY - 1) do
begin
gotoxy(LRX,Y);
write(#186);
gotoxy(ULX,Y);
write(#186);
end;
gotoxy(ULX,LRY);
write(#200);
for X := 1 to XDistance do
write(#205);
write(#188);
end;

: integer);
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{ Error display procedure }

procedure ShowError(ErrorType : integer);
{ Displays appropriate error messages }
begin
clrser;
Alarm;
gotoxy(28,2);
textcolor(12);
writeln('Slip Vector Plotting Program');
gotoxy(37,10);
textcolor(28);
writeln("* ERROR *");
textcolor(11);
case (ErrorType) of
1 : begin
gotoxy(21,14);
write('File "HELPFILE,' does not exist on the disk');
end;
2 : begin
gotoxy(22,14);
writeln('01 and 03 must be between -100 and +100");
end;
3 : begin
gotoxy(30,14);
writeln('03 must be less than 01');
end;
4 : begin
gotoxy(26,14);
writeln("w must be between 0.0 and 100.0");
end;
5 : begin
gotoxy(26,14);
writeln('C must be between 0.0 and 100.0");
end;
6 : begin
gotoxy(20,14);
writeln('The plunge must be between 0 and 90 degrees');
end;
7 : begin
gotoxy(20,14);
writeln('The trend must be between 0 and 360 degrees');
end;
8 : begin
gotoxy(20,14);
writeln('Can only examine between 2 and 50 intervals');
end;
9 : begin
gotoxy(19,14);
writeln('Do not specify an extension for the filename');
end;
10 : begin
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gotoxy(23,14);
writeln('That file already exists on this disk');
end;
11 : begin
gotoxy(29,14);
writeln('Data must be entered first');
end;
12 : begin
gotoxy(18,14);
writeln('"The number entered must be a positive real value');
end;
13 : begin
gotoxy(21,14);
writeln('01 and 03 cannot have the same orientation');
end;
end;
gotoxy(30,15);
write('Recheck and try again...");
delay(5000);
end;

{ Informational page display procedures }

procedure IntroPage;
{ Displays an introduction page }
begin
textmode;
clrser;
cursor(false);
textcolor(12);
DrawBo0x(20,9,61,18);
textcolor(11);
gotoxy(27,10);
writeln('Slip Vector Plotting Program');
gotoxy(32,12);
writeln('Program written by');
gotoxy(31,14);
writeln('Steven H. Schimmrich');
gotoxy(24,15);
writeln('Department of Geological Sciences');
gotoxy(22,16);
writeln('State University of New York at Albany');
gotoxy(30,17);
writeln('Albany, New York 12222');
textcolor(11);
delay(5000);
cursor(true);
end;

procedure Working;
{ Displays a message that the program is working }
begin
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clrser;
Cursor(false);
textcolor(12);
DrawBo0x(26,10,57,16);
textcolor(11);
gotoxy(28,11);
writeln('Slip Vector Plotting Program');
gotoxy(36,13);
writeln('Don"t Panic!');
gotoxy(33,15);
writeln('I'"'m working on it');
delay(1000);

end;

procedure Writing(FileName : stringl2);

{ Displays a message that the program is writing to a file }

var
Lenl, Len2 : integer;
begin
clrser;
Lenl := length(FileName);
Len2 :=trunc((12 - Lenl) / 2);
cursor(false);
textcolor(12);
DrawBox((21 + Len2),9,(50 + Lenl + Len2),15);
textcolor(11);
gotoxy(28,10);
writeln('Slip Vector Plotting Program');
gotoxy(36,12);
writeln('Don"t Panic!");
gotoxy((23 + Len2),14);
write('Writing data to disk file ');
textcolor(12);
write(FileName);
textcolor(11);
delay(1000);
end;

procedure CreatePage(FileName : stringl2);

{ Displays a page that DXF is being created for AutoCAD }

var
Lenl, Len2 : integer;
begin
clrser;
Lenl := length(FileName);
Len2 :=trunc((12 - Lenl) / 2);
cursor(false);
textcolor(12);
DrawBox((18 + Len2),9,(52 + Lenl + Len2),15);
textcolor(11);
gotoxy(28,10);
writeln('Slip Vector Plotting Program');
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gotoxy(36,12);
writeln('Don"t Panic!');
gotoxy((20 + Len2),14);
write('Writing data to AutoCAD DXFile');
textcolor(12);
write(FileName);
textcolor(11);
delay(1000);
end;

procedure ExitPage;
{ Displays an exit page }
begin
textmode;
clrser;
cursor(false);
textcolor(12);
DrawBo0x(26,10,57,16);
textcolor(11);
gotoxy(28,11);
writeln('Slip Vector Plotting Program');
gotoxy(35,13);
writeIn('POET Software');
gotoxy(33,14);
writeln('Copyright (C) 1989");
gotoxy(32,15);
writeln('Steven H. Schimmrich');
delay(5000);
cursor(true);
textmode;
clrser;
end;

{ Main menu procedures }

procedure MainMenuChoice(var Choice : integer);
{ Returns the number of the menu item selected }

var
Key : char;
begin
repeat
read(kbd,Key);
Choice := ord(Key) - 48;
if (not(Choice in [1..7]))
then Beep;
until (Choice in [1..7]);
end;

procedure MainMenu(var Choice : integer);
{ Displays main operations menu }

var
Count : integer;
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begin
clrser;
textcolor(12);
DrawBo0x(25,2,56.,4);
textcolor(11);
gotoxy(27,3);
writeln('Slip Vector Plotting Program');
gotoxy(2,9);
writeln("What do you wish to do ?");

writeln;
for Count :=1 to 7 do
begin

textcolor(12);

write(" ',Count);
textcolor(11);
case (Count) of
1 : writeln(' - Learn more about the program');

2 : writeln(' - Perform the slip vector calculations');
3 : writeln(' - Display a graph of the results');
4 : writeln(' - Display a stereonet of the results');
5 : writeln(' - Display a listing of the results');
6 : writeln(' - Print the results');
7 : writeln(' - Exit the program');
end;

end;

writeln;

write(' Press the ');

textcolor(12);

write('number’);

textcolor(11);

write(' of you choice...");

MainMenuChoice(Choice);
end;

{ Main menu option # 1 - Help pages display }

procedure HelpPages;
{ Sequentially displays help file }

label 1;

var
Line : string78,;
Page, Row : integer;
Key : char;
DataFile : text[1024];

begin
assign(DataFile, HELPFILE);
reset(DataFile);

for Row :=1to 5 do
readln(DataFile,Line);
for Page := 1 to PAGES do
begin
clrscr;

331



332

for Row := 1 to 23 do
begin
readln(DataFile,Line);
if (copy(Line,1,1) = "*")
then
begin
textcolor(12);
delete(Line,1,1);
end;
writeln(Line);
textcolor(11);
end;
write(' Press any ');
textcolor(12);
write('key");
textcolor(11);
write(' to continue (');
textcolor(12);
write('Q");
textcolor(11);
write(' to quit)...");
read(kbd,Key);
if (upcase(Key) ='Q")
then goto 1;
end;
1:close(DataFile);
end;

{ Main menu option # 2 - Perform calculations }

procedure AskData(var Sigma : chararray3; var Sigmal, Sigma3, Mu, Cohesion, Plunge,
Trend : real; var DMin, DMax : char; var Intervals : integer);
{ Asks for user supplied data }
label 1;
begin
1:{Continue}
clrser;
textcolor(12);
DrawBox(25,1,56,3);
gotoxy(27,2);
textcolor(11);
writeln('Slip Vector Plotting Program');
gotoxy(2,5);
writeln("W hat is the orientation of the maximum compressive');
gotoxy(2,6);
write('principal stress axis 01 (');
textcolor(12);
write('N'");
textcolor(11);
write('orth, ');
textcolor(12);
write('E");



textcolor(11);
write('ast, or');
textcolor(12);
write('U");
textcolor(11);
write('p) ?');
repeat
read(kbd,DMax);
if (not(upcase(DMax) in ['N",'E','U"]))
then Beep;
until (upcase(DMax) in ['N','E','U"]);
gotoxy(50,6);
textcolor(12);
writeln(upcase(DMax));
textcolor(11);
gotoxy(2,8);
writeln("W hat is the orientation of the minimum compressive');
gotoxy(2,9);
write('principal stress axis 03 (');
textcolor(12);
write('N');
textcolor(11);
write('orth, ');
textcolor(12);
write('E");
textcolor(11);
write('ast, or');
textcolor(12);
write('U");
textcolor(11);
write('p) ?');
repeat
read(kbd,DMin);
if (not(upcase(DMin) in ['N",'E','U"]))
then Beep;
until (upcase(DMin) in ['N','E",'U"]);
gotoxy(50,9);
textcolor(12);
writeln(upcase(DMin));
textcolor(11);
if (upcase(Dmax) = upcase(DMin))
then
begin
ShowError(13);
goto 1;
end;
case (upcase(DMax)) of
'N': Sigma[1l] := 'North';
'U': Sigma[l] :=" Up"
'E': Sigma[1] := "' East";
end;
case (upcase(DMin)) of
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'N': Sigma[3] := 'North';
'U': Sigma[3] :=" Up"
'E': Sigma[3] := "' East;
end;
if ((not(upcase(DMin) in ['N'])) and (not(upcase(DMax) in ['N'])))
then Sigma[2] := 'North';
if ((not(upcase(DMin) in ['U'])) and (not(upcase(DMax) in ['U'])))
then Sigma[2]:="' Up';
if ((not(upcase(DMin) in ['E'])) and (not(upcase(DMax) in ['E'])))
then Sigma[2] := "' East;
gotoxy(2,11);
write('Enter the value for o1 :');
Sigmal :=-999.9;
textcolor(12);
readln(Sigmal);
textcolor(11);
if ((Sigmal < -100.0) or (Sigmal > 100.0))
then
begin
ShowError(2);
goto 1;
end;
gotoxy(2,12);
write('Enter the value for 03 :');
Sigma3 :=-999.9;
textcolor(12);
readln(Sigma3);
textcolor(11);
if ((Sigma3 < -100.0) or (Sigma3 > 100.0))
then
begin
ShowError(2);
goto 1;
end;
if (Sigma3 > Sigmal)
then
begin
ShowError(3);
goto 1;
end;
gotoxy(2,14);
write('"Enter the coefficient of friction (W) : ');
textcolor(12);
Mu :=-999.9;
readln(Mu);
textcolor(11);
if (Mu < 0.0) or (Mu > 100.0))
then
begin
ShowError(4);
goto 1;
end;
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gotoxy(2,15);
write('Enter the cohesion (C) :');
textcolor(12);
Cohesion :=-999.9;
readln(Cohesion);
textcolor(11);
if ((Cohesion < 0.0) or (Cohesion > 100.0))
then
begin
ShowError(5);
goto 1;
end;
gotoxy(2,17);
writeln('Now enter the plunge and trend of the normal');
writeln(' vector to the fault plane you wish to examine');
gotoxy(2,20);
write('Enter the plunge : ");
Plunge :=-999.9;
textcolor(12);
readln(Plunge);
textcolor(11);
if ((Plunge < 0.0) or (Plunge >= 90.0))
then
begin
ShowError(6);
goto 1;
end;
gotoxy(2,21);
write('Enter the trend : '");
Trend :=-999.9;
textcolor(12);
readln(Trend);
textcolor(11);
if ((Trend < 0.0) or (Trend >= 360.0))
then
begin
ShowError(7);
goto 1;
end;
if (Trend = 360.0)
then Trend := Trend - 360.0;
gotoxy(2,23);

write('How many values of 02 between 01 and 03 do you wish to examine ? ');

Intervals := -9;
textcolor(12);
readln(Intervals);
textcolor(11);
if ((Intervals < 2) or (Intervals > 50))
then
begin
ShowError(8);
goto 1;
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end;
end;

procedure DirCosines(Plunge, Trend : real; DMin, DMax : char; var Cosines :

{ Returns the direction cosines of the normal vector }
begin
Plunge := DegToRad(Plunge);
Trend := DegToRad(Trend);
if ((upcase(DMax) = 'N') and (upcase(DMin) = 'E'))
then
begin
Cosines[1] := (cos(Plunge) * cos(Trend));
Cosines[2] := sin(Plunge);
Cosines[3] := (cos(Plunge) * sin(Trend));
end;
if ((upcase(DMax) = 'N') and (upcase(DMin) = 'U"))
then
begin
Cosines[1] := (cos(Plunge) * cos(Trend));
Cosines[2] := (cos(Plunge) * sin(Trend));
Cosines[3] := sin(Plunge);
end;
if ((upcase(DMax) = 'E') and (upcase(DMin) = 'N'))
then
begin
Cosines[1] := (cos(Plunge) * sin(Trend));
Cosines[2] := sin(Plunge);
Cosines[3] := (cos(Plunge) * cos(Trend));
end;
if ((upcase(DMax) = 'E'") and (upcase(DMin) = 'U"))
then
begin
Cosines[1] := (cos(Plunge) * sin(Trend));
Cosines[2] := (cos(Plunge) * cos(Trend));
Cosines[3] := sin(Plunge);
end;
if ((upcase(DMax) = 'U') and (upcase(DMin) = 'N"))
then
begin
Cosines[1] := sin(Plunge);
Cosines[2] := (cos(Plunge) * sin(Trend));
Cosines[3] := (cos(Plunge) * cos(Trend));
end;
if ((upcase(DMax) = 'U') and (upcase(DMin) = 'E'))
then
begin
Cosines[1] := sin(Plunge);
Cosines[2] := (cos(Plunge) * cos(Trend));
Cosines[3] := (cos(Plunge) * sin(Trend));
end;
end;

linarray3);
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procedure Cauchy(Intervals : integer; Sigmal, Sigma3 : real; Cosines : linarray3;
var Stresses : linarray2d);
{ Uses Cauchy's Formula to calculate the total stress components }

var
Count, Value : integer;
Sigma2, Step, Temp, Deviator : real;
begin

Deviator := (Sigmal - Sigma3);

Step := (Deviator / Intervals);

Sigma?2 := Sigma3;

for Count := 1 to (Intervals + 1) do

begin
Stresses[1,Count] := Sigmal * Cosines[1];
Stresses[2,Count] := Sigma2 * Cosines[2];
Stresses[3,Count] := Sigma3 * Cosines[3];
Sigma2 := Sigma2 + Step;

end;

end;

procedure CalculateStresses(Intervals : integer; Mu, Cohesion, Trend, Plunge : real;

Cosines : linarray3; Stresses : linarray2d;

var SlipVector : linarray2d; DMin, DMax : char;

var SlipAngle, Ratios : linarray51);
{ Calculates slip vector and shear to normal stress ratio for each phi }

var

Count : integer;
DotProduct, StressVectorNormalized, Angle,
ShearStress, NormalStress, Phi, Sigmal,

Sigma2, Sigma3, Beta, Strike : real;
begin

for Count := 1 to (Intervals + 1) do

begin

StressVectorNormalized := (sqrt(sqr(Stresses[1,Count]) + sqr(Stresses[2,Count]) +
sqr(Stresses[3,Count])));

DotProduct := ((Cosines[1] * Stresses[1,Count]) + (Cosines[2] * Stresses[2,Count]) +

(Cosines[3] * Stresses[3,Count]));

Angle := (ArcCos(DotProduct / StressVectorNormalized));
ShearStress := (abs(StressVectorNormalized * sin(Angle)));
NormalStress := (abs(StressVectorNormalized * cos(Angle)));
if (((Zero(NormalStress)) or (Zero(Mu))) and (Zero(Cohesion)))

then Ratios[Count] := 0.0

else Ratios[Count] := (ShearStress / (NormalStress * Mu) + Cohesion));
if (Cosines[1] <> 0.0)

then Sigmal := Stresses[1,Count] / Cosines[1]

else Sigmal := 0.0;
if (Cosines[2] <> 0.0)

then Sigma?2 := Stresses[2,Count] / Cosines[2]

else Sigma?2 := 0.0;
if (Cosines[3] <> 0.0)

then Sigma3 := Stresses[3,Count] / Cosines[3]

else Sigma3 := 0.0;
if ((upcase(DMax) = 'N') and (upcase(DMin) = 'E"))
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then
begin
Phi := ((Sigma2 - Sigma3) / (Sigmal - Sigma3));
if (Zero(Cosines[2]))
then SlipAngle[Count] := 0.0;
if (Zero(Cosines[1]))
then SlipAngle[Count] := 0.0;
if (Zero(Cosines[3]))
then SlipAngle[Count] := (PI/2.0);
if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and
(not(Zero(Cosines[3]))))
then SlipAngle[Count] := arctan(((sqr(Cosines[1]) * Cosines[2]) - (Phi * Cosines[2]) +

(Phi * sqr(Cosines[2] * Cosines[2])) / (Cosines[3] * Cosines[1]));

end;
if ((upcase(DMax) = 'N') and (upcase(DMin) = 'U"))
then
begin
if (Sigmal = Sigma?2)
then SlipAngle[Count] := (PI/2.0)
else
begin
Phi := ((Sigma3 - Sigma2) / (Sigmal - Sigma?2));
if (Zero(Cosines[3]))
then SlipAngle[Count] := 0.0;
if (Zero(Cosines[1]))
then SlipAngle[Count] := 0.0;
if (Zero(Cosines[2]))
then SlipAngle[Count] := (PI/2.0);
if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and
(not(Zero(Cosines[3]))))
then SlipAngle[Count] := arctan(((sqr(Cosines[1]) * Cosines[3]) - (Phi * Cosines[3])
+ (Phi * sqr(Cosines[3]) * Cosines[3])) /
(Cosines[2] * Cosines[1]));
end;
end;
if ((upcase(DMax) = 'U') and (upcase(DMin) = 'N"))
then
begin
if (Sigma3 = Sigma?2)
then SlipAngle[Count] := (PI/2.0)
else
begin
Phi := ((Sigmal - Sigma2) / (Sigma3 - Sigma?2));
if (Zero(Cosines[1]))
then SlipAngle[Count] := (PI/2.0);
if (Zero(Cosines[2]))
then SlipAngle[Count] := (PI/2.0);
if (Zero(Cosines[3]))
then SlipAngle[Count] := (PI/2.0);
if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and
(not(Zero(Cosines[3]))))
then SlipAngle[Count] := arctan(((sqr(Cosines[3]) * Cosines[1]) - (Phi * Cosines[1])
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+ (Phi * sqr(Cosines[1]) * Cosines[1])) /
(Cosines[2] * Cosines[3]));
end;
end;
if ((upcase(DMax) = 'U") and (upcase(DMin) = 'E"))
then
begin
if (Sigma2 = Sigma3)
then SlipAngle[Count] := (PI/2.0)
else
begin
Phi := ((Sigmal - Sigma3) / (Sigma2 - Sigma3));
if (Zero(Cosines[1]))
then SlipAngle[Count] := (PI/2.0);
if (Zero(Cosines[2]))
then SlipAngle[Count] := (PI/2.0);
if (Zero(Cosines[3]))
then SlipAngle[Count] := (PI/2.0);
if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and
(not(Zero(Cosines[3]))))
then SlipAngle[Count] := arctan(((sqr(Cosines[2]) * Cosines[1]) - (Phi * Cosines[1])
+ (Phi * sqr(Cosines[1]) * Cosines[1])) /
(Cosines[3] * Cosines[2]));
end;
end;
if ((upcase(DMax) = 'E') and (upcase(DMin) = 'U"))
then
begin
if (Sigmal = Sigma?2)
then SlipAngle[Count] := (PI/2.0)
else
begin
Phi := ((Sigma3 - Sigmal) / (Sigma?2 - Sigmal));
if (Zero(Cosines[3]))
then SlipAngle[Count] := 0.0;
if (Zero(Cosines[1]))
then SlipAngle[Count] := 0.0;
if (Zero(Cosines[2]))
then SlipAngle[Count] := (PI/2.0);
if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and
(not(Zero(Cosines[3]))))
then SlipAngle[Count] := arctan(((sqr(Cosines[2]) * Cosines[3]) - (Phi * Cosines[3])
+ (Phi * sqr(Cosines[3]) * Cosines[3])) /
(Cosines[1] * Cosines[2]));
end;
end;
if ((upcase(DMax) = 'E') and (upcase(DMin) = 'N"))
then
begin
Phi := ((Sigma2 - Sigmal) / (Sigma3 - Sigmal));
if (Zero(Cosines[2]))
then SlipAngle[Count] := 0.0;
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if (Zero(Cosines[1]))
then SlipAngle[Count] := 0.0;
if (Zero(Cosines[3]))
then SlipAngle[Count] := (PI/2.0);
if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and (not(Zero(Cosines[3]))))
then SlipAngle[Count] := arctan(((sqr(Cosines[3]) * Cosines[2]) - (Phi * Cosines[2]) +
(Phi * sqr(Cosines[2]) * Cosines[2])) /
(Cosines[1] * Cosines[3]));
end;
SlipAngle[Count] := RadToDeg(SlipAngle[Count]);
if (not(Zero(SlipAngle[Count])))
then Beta := RadToDeg(arctan(cos(DegToRad(90 - Plunge)) *
Tan(DegToRad(SlipAngle[Count]))))
else Beta := 0.0;
Strike := Trend + 90.0;
if (Strike > 360.0)
then Strike := Strike - 180.0;
SlipVector[2,Count] := Strike + Beta;
if (not(Zero(abs(Beta) - 90.0)))
then SlipVector[1,Count] := RadToDeg(ArcCos(cos(DegToRad(SlipAngle[Count])) /
cos(DegToRad(Beta))))
else SlipVector[1,Count] := 90.0 - Plunge;
if ((SlipAngle[Count] < 0.0) or (SlipAngle[Count] = 90.0))
then SlipVector[2,Count] := SlipVector[2,Count] + 180.0;
if (Trend > 270)
then SlipVector[2,Count] := SlipVector[2,Count] + 180.0;
if (SlipVector[2,Count] > 360.0)
then SlipVector[2,Count] := SlipVector[2,Count] - 360.0;
end;
end;

{ Main menu option # 3 - Examine a graph of the results }

procedure Circle(XVal, YVal : integer; Radius : real);
{ Draws a circle of a given radius about a given center point }
var
Angle, X, Y : integer;
Radian : real;
begin
for Angle := 0 to 180 do
begin
Radian := (((Angle * 2.0) * PI) / 180.0);
Y :=round(YVal - (Radius * cos(Radian)));
X :=round(XVal + (Radius * (sin(Radian) / 0.416)));
plot(X,Y,1);
end;
end;

procedure AskCutOff(var CutOff : real);

{ Asks cutoff value for the shear to normal stress ratios }
begin

repeat
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clrscr;
textcolor(12);
DrawBox(25,1,56,3);
textcolor(11);
gotoxy(27,2);
writeln('Slip Vector Plotting Program');
gotoxy(2,8);
write('"Enter minimum shear to normal stress ratio (default is 0.0) : ');
textcolor(12);
CutOff := 0.0;
readln(CutOff);
textcolor(11);
if (CutOff < 0.0)
then ShowError(12);
until (CutOff >= 0.0);
end;

procedure DrawGraphAxes(CutOff, Trend, Plunge : real; Sigma : chararray3);
{ Draws the axes of the graph }

var
IntPlunge, IntTrend : integer;

begin
hires;
palette(1);
hirescolor(4);
gotoxy(2,1);
writeln('Slip Vector Plotting Program');
gotoxy(2,2);
IntPlunge := round(Plunge);
IntTrend := round(Trend);
writeln('Fault plane normal at ',IntPlunge:2,' /", IntTrend:3);
gotoxy(2,3);
writeln('Cutoff value = ',CutOff:4:2);
gotoxy(40,1);
writeln('Fault Planes');
Circle(318,11,2.0);
gotoxy(42,2);
writeln(' = Slipped");
Circle(318,20,1.0);
gotoxy(42,3);
writeln(' = Locked");
gotoxy(62,1);
writeln('Sigma 1 = '",Sigma[1l]);
gotoxy(62,2);
writeln('Sigma 2 = ',Sigma[2]);
gotoxy(62,3);
writeln('Sigma 3 = ',Sigma[3]);
draw(71,115,590,115,1);
gotoxy(2,24);
writeln('Phi');
gotoxy(9,24);
writeln('0.0");



draw(178,113,178,117,1);
gotoxy(22,24);
writeln('0.2");
draw(281,113,281,117,1);
gotoxy(35,24);
writeln('0.4");
draw(384,113,384,117,1);
gotoxy(48,24);
writeln('0.6");
draw(487,113,487,117,1);
gotoxy(61,24);
writeln('0.8");
draw(590,113,590,117,1);
gotoxy(74,24);
writeln('1.0");
draw(75,180,75,50,1);
gotoxy(2,5);
writeln('Pitch');
draw(79,180,71,180,1);
gotoxy(6,23);
writeln('-90");
draw(79,147,71,147,1);
gotoxy(6,19);
writeln('-45");
draw(79,115,71,115,1);
gotoxy(8,15);
writeln('0");
draw(79,83,71,83,1);
gotoxy(7,11);
writeln('45");
draw(79,50,71,50,1);
gotoxy(7,7);
writeln('90");

end;

procedure PlotPoints(Intervals : integer; CutOff, Sigmal, Sigma3

SlipAngle : linarray51);
{ Plots the phi versus pitch points }

var
Count, XVal, YVal : integer;
Deviator, Phi, Step, Sigma2 : real;
begin

Deviator := (Sigmal - Sigma3);
Step := (Deviator / Intervals);
Sigma?2 := Sigma3;
for Count := 1 to (Intervals + 1) do
begin
Phi := ((Sigma2 - Sigma3) / (Sigmal - Sigma3));
XVal := round(75.0 + (Phi * 515.0));
YVal := round(115.0 - ((SlipAngle[Count] * 130.0) / 180.0));
if (Ratios[Count] >= CutOff)
then Circle(XVal,YVal,2.0)

. real;

Ratios,
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else Circle(XVal,YVal,1.0);

if (abs(abs(SlipAngle[Count]) - 90.0) < 0.0001)
then
begin

YVal := round(115.0 - ((abs(SlipAngle[Count]) * 130.0) / 180.0));

if (Ratios[Count] >= CutOff)
then Circle(XVal,YVal,2.0)
else Circle(XVal,YVal,1.0);

YVal := round(115.0 - ((-abs(SlipAngle[Count]) * 130.0) / 180.0));

if (Ratios[Count] >= CutOff)
then Circle(XVal,YVal,2.0)
else Circle(XVal,YVal,1.0);
end;
Sigma2 := Sigma2 + Step;
end;
end;

{ Main menu option # 4 - Display a stereonet of the results }

procedure Draw Stereonet(CutOff, Plunge, Trend : real; Sigma :

{ Draws stereonet on the screen }
var
Angle, X, Y, IntPlunge, IntTrend : integer;
Radian : real;
begin
hires;
palette(1);
hirescolor(4);
IntPlunge := round(Plunge);
IntTrend := round(Trend);
for Angle := 0 to 3600 do
begin
Radian := DegToRad(Angle / 10.0);
X :=round(315.0 + (90.0 * (sin(Radian) / 0.416)));
Y :=round(102.0 - (90.0 * cos(Radian)));
plot(X,Y,1);
end;
draw(315,100,315,104,1);
draw(313,102,317,102,1);
draw(315,14,315,10,1);
gotoxy(40,1);
writeln('N');
gotoxy(3,2);
writeln('Slip Vector');
gotoxy(3,3);
writeln('Plotting Program');
gotoxy(3,4);
writeln('Fault Plane Normal');
gotoxy(3,5);
writeln('at ',IntPlunge:2,' / ,IntTrend:3);
gotoxy(63,2);
writeln('Lower-Hemisphere');

chararray3);
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gotoxy(66,3);
writeln('Stereographic');
gotoxy(69,4);
writeln('Projection’);
gotoxy(63,22);
writeln('Sigma 1 = '",Sigma[1l]);
gotoxy(63,23);
writeln('Sigma 2 = ',Sigma[2]);
gotoxy(63,24);
writeln('Sigma 3 = ',Sigma[3]);
gotoxy(5,22);
writeln('= Slip");
gotoxy(5,23);
writeln('= Locked');
gotoxy(3,24);
writeln('Cutoff Value = ',CutOff:4:2);
circle(18,170,2.0);
circle(18,179,1.0);

end;

procedure DrawFaultPlane(Plunge, Trend, Radius : real);
{ Draws a great circle on a Wulff net }

var

Step, XVal, YVal :
Strike, Dip, ApparentDip, Distance, Beta real;
begin
if (Plunge = 0.0)
then Plunge := Plunge + 0.0001;
Dip := DegToRad(90.0 - Plunge);
if ((Trend >= 90.0) and (Trend < 270.0))
then Strike := Trend - 90.0
else Strike := Trend + 90.0;
if (Strike >=360.0)
then Strike := Strike - 360.0;
for Step := 0 to 1800 do
begin
Beta := DegToRad(Step / 10.0);
ApparentDip := arctan(Tan(Dip) * sin(Beta));
Distance := Radius * Tan((PI/4.0) - (ApparentDip / 2.0));
if (Distance < 1.0)
then
begin
Distance := RadToDeg(Beta);
if (Distance > 90.0)
then Distance := 90.0 - Distance;
Beta := DegToRad(Strike);
Beta := (((5.0 * PI) / 2.0) - Beta);
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
end

integer;
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else
begin
if ((Trend >= 90.0) and (Trend < 270.0))
then Beta := DegToRad(Strike) - Beta
else Beta := DegToRad(Strike) + Beta;
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
Beta := (((5.0 * PI) / 2.0) - Beta);
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
end;
XVal := round(315.0 + ((Distance * cos(Beta)) / 0.416));
YVal := round(102.0 - (Distance * sin(Beta)));
plot(XVal,YVal,1);
end;
end;

procedure DataPlot(Intervals : integer; CutOff, Trend : real; Cosines : linarray3;
SlipVector : linarray2d; Ratios : linarray51);
{ Plots slip vectors on the fault plane }

var
Count, XVal, YVal : integer;
Distance, Theta, ZeroTrend : real;
begin
for Count := 1 to (Intervals + 1) do
begin

Distance := (90.0 * Tan((PI/4.0) - (DegToRad(SlipVector[1,Count]) / 2.0)));
if (SlipVector[1,Count] = 0.0)
then
begin
ZeroTrend := (SlipVector[2,Count] + 180.0);
if (ZeroTrend >= 360.0)
then ZeroTrend := ZeroTrend - 360.0;
Theta := (((5.0 * PI) / 2.0) - DegToRad(ZeroTrend));
XVal := round(315.0 + ((Distance * cos(Theta)) / 0.416));
YVal := round(102.0 - (Distance * sin(Theta)));
if (Ratios[Count] >= CutOff)
then Circle(XVal,YVal,2.0)
else Circle(XVal,YVal,1.0);
end;
Theta := (((5.0 * PI) / 2.0) - DegToRad(SlipVector[2,Count]));
XVal := round(315.0 + ((Distance * cos(Theta)) / 0.416));
YVal := round(102.0 - (Distance * sin(Theta)));
if (Ratios[Count] >= CutOff)
then Circle(XVal,YVal,2.0)
else Circle(XVal,YVal,1.0);
if ((Count = 1) and (not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and
(not(zero(Cosines[3]))))
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then
begin
if ((Trend > 337.5) or (Trend <= 22.5))
then gotoxy(round(XVal/8),round((Y Val-15)*3/25));
if ((Trend > 22.5) and (Trend <= 67.5))
then gotoxy(round((XVal+30)/8),round((Yval-15)*3/25));
if ((Trend > 67.5) and (Trend <= 112.5))
then gotoxy(round((XVal+30)/8),round(Y Val*3/25));
if ((Trend > 112.5) and (Trend <= 157.5))
then gotoxy(round((XVal+30)/8),round((Yval+15)*3/25));
if ((Trend > 157.5) and (Trend <= 202.5))
then gotoxy(round(XVal/8),round((Y Val+15)*3/25));
if ((Trend > 202.5) and (Trend <= 247.5))
then gotoxy(round((XVal-30)/8),round((Yval+15)*3/25));
if ((Trend > 247.5) and (Trend <= 292.5))
then gotoxy(round((XVal-30)/8),round(Y Val*3/25));
if ((Trend > 292.5) and (Trend <= 337.5))
then gotoxy(round((XVal-30)/8),round((Yval-15)*3/25));
writeln(chr(232),' = 0");
end;
if ((Count = (Intervals + 1)) and (not(Zero(Cosines[1]))) and
(not(Zero(Cosines[2]))) and (not(Zero(Cosines[3]))))
then
begin
if ((Trend > 337.5) or (Trend <= 22.5))
then gotoxy(round(XVal/8),round((Y Val-15)*3/25));
if ((Trend > 22.5) and (Trend <= 67.5))
then gotoxy(round((XVal+30)/8),round((Yval-15)*3/25));
if ((Trend > 67.5) and (Trend <= 112.5))
then gotoxy(round((XVal+30)/8),round(Y Val*3/25));
if ((Trend > 112.5) and (Trend <= 157.5))
then gotoxy(round((XVal+30)/8),round((Yval+15)*3/25));
if ((Trend > 157.5) and (Trend <= 202.5))
then gotoxy(round(XVal/8),round((Y Val+15)*3/25));
if ((Trend > 202.5) and (Trend <= 247.5))
then gotoxy(round((XVal-30)/8),round((Yval+15)*3/25));
if ((Trend > 247.5) and (Trend <= 292.5))
then gotoxy(round((XVal-30)/8),round(Y Val*3/25));
if ((Trend > 292.5) and (Trend <= 337.5))
then gotoxy(round((XVal-30)/8),round((Yval-15)*3/25));
writeln(chr(232),' = 1");
end;
end;
end;

{ Main menu option # 5 - Display a numerical listing of the results }

procedure WriteList(Intervals : integer; Sigmal, Sigma3, Trend, Plunge : real;
SlipAngle, Ratios : linarray51; Sigma : chararray3);
{ Displays a numerical listing of the results }
label 1;
var
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Count, IntPlunge, IntTrend, Page : integer;
Deviator, Step, Sigma2, Pages, Phi : real;
begin
Sigma?2 := Sigma3;
Pages := ((Intervals + 1.0) / 12.0);
if ((Pages - trunc(Pages)) > 0.00001) then Pages := Pages + 1.0;
for Page := 0 to (trunc(Pages) - 1) do
begin
clrscr;
writeln;
textcolor(12);
writeln(' Slip Vector Plotting Program Results');
textcolor(11);
writeln;
write(' Data for a plane with a normal oriented at : ');
IntPlunge := round(Plunge);
IntTrend := round(Trend);
writeln(IntPlunge:2,' /', IntTrend:3);
writeln;
write(' Sigma 1 =",Sigma[l],’ Sigma 2 ="',Sigmal[2]);
writeln(" Sigma 3 ="',Sigma[3]);
writeln;
writeln(" Sigma 1 Sigma 2 Sigma3 Phi Pitch Shear/Normal');
writeln;
Deviator := (Sigmal - Sigma3);
Step := (Deviator / Intervals);
for Count := ((Page * 12) + 1) to ((Page * 12) + 12) do
begin
Phi := ((Sigma2 - Sigma3) / (Sigmal - Sigma3));
if (Count > (Intervals + 1)) then goto 1;
write(Sigmal:6:2,' 'Sigma2:6:2,' 'Sigma3:6:2, ");
writeln(Phi:6:2," ',SlipAngle[Count]:6:2," 'Ratios[Count]:6:2);
Sigma2 := Sigma?2 + Step;
1: end;
gotoxy(2,24);
write('Press any ');
textcolor(12);
write('key");
textcolor(11);
write(' to continue...");
repeat until (keypressed);
end;
end;

{ Main menu option # 6 - Procedures to print the results }

procedure AskDiskFileName(var FileName : Stringl2);
{ Asks for the name of a disk data file }

var
FileLength, Count : integer;
Extension : boolean;

Key : char;



begin
repeat
clrscr;
textcolor(12);
DrawBox(25,1,56,3);
textcolor(11);
gotoxy(27,2);
writeln('Slip Vector Plotting Program')
gotoxy(2,10);
write('"Enter a filename (');
textcolor(12);
write("DAT");
textcolor(11);
write(') 1 ");
textcolor(12);
readln(FileName);
textcolor(11);
FileLength := length(FileName);
Extension := false;
for Count := 1 to FileLength do
if (copy(FileName,Count,1) ="")
then

Extension := true;
FileName := FileName + '.dat";
if ((Exists(FileName)) or (Extension))

then
if (Extension)
then
ShowError(9)
else
ShowError(10);

until ((not(Exists(FileName))) and (not(Extension)));

end;

procedure AskAcadFileName(var FileName :

{ Asks for the name of a disk data file }
var

FileLength, Count : integer;
Extension : boolean;

Key : char;
begin
repeat
clrscr;
textcolor(12);
DrawBox(25,1,56,3);
textcolor(11);
gotoxy(27,2);

writeln('Slip Vector Plotting Program');

gotoxy(2,10);
write('"Enter a filename (');
textcolor(12);
write("DXF");

String12);
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textcolor(11);
write(') 1 ");
textcolor(12);
readln(FileName);
textcolor(11);
FileLength := length(FileName);
Extension := false;
for Count := 1 to FileLength do
if (copy(FileName,Count,1) ="")
then

Extension := true;
FileName := FileName + '.dxf";
if ((Exists(FileName)) or (Extension))

then
if (Extension)
then
ShowError(9)
else
ShowError(10);
until ((not(Exists(FileName))) and (not(Extension)));
end;

procedure PrintMenuChoice(var Choice : integer);

{ Returns the number of the print menu item selected }

var
Key : char;
begin
repeat
read(kbd,Key);
Choice := ord(Key) - 48;
if (not(Choice in [1..4]))
then Beep;
until (Choice in [1..4]);
end;

procedure PrintMenu(var Choice : integer);
{ Displays the print menu }

var
Count : integer;
begin
clrser;
textcolor(12);

DrawBox(25,2,56,4);
textcolor(11);
gotoxy(27,3);
writeln('Slip Vector Plotting Program');
gotoxy(2,10);
writeln("What do you wish to do ?");
writeln;
for Count := 1 to 4 do
begin
textcolor(12);
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write(" ',Count);
textcolor(11);
case (Count) of
1 : writeln(' - Write the numerical results to a disk file');
2 : writeln(' - Create a DXFile of the stereonet for AutoCAD');
3 : writeln(' - Create a DXFile of the graph for AutoCAD");
4 : writeln(' - Return to the main menu');

end;

writeln;

write(' Press the ');

textcolor(12);

write('number’);

textcolor(11);

write(' of you choice...");

MainMenuChoice(Choice);
end;

{ Procedure to write the results to a disk file }

procedure WriteFile(Intervals : integer; Sigmal, Sigma3, Mu, Cohesion, Trend,
Plunge : real; SlipAngle, Ratios : linarray51;
FileName : stringl2; Sigma : chararray3);
{ Writes a disk data file of the results }
var
Count, IntPlunge, IntTrend : integer;
Deviator, Phi, Step, Sigma2 : real;
DataFile : text;
begin
assign(DataFile,FileName);
rewrite(DataFile);
writeln(DataFile,'");
writeln(DataFile,'");
writeln(DataFile,'");
writeln(DataFile,' Slip Vector Plotting Program');
writeln(DataFile,'");
writeln(DataFile,'");
writeln(DataFile,'");
write(DataFile,' Data for a plane with a normal oriented at : ');
IntPlunge := round(Plunge);
IntTrend := round(Trend);
writeln(DataFile,IntPlunge:2,' /', IntTrend:3);
writeln(DataFile,'");
writeln(DataFile,'");
write(DataFile,' Sigma 1 = ',Sigma[1],’ Sigma 1 =',Sigmal:5:2);
writeln(DataFile,! Coefficient of friction = ,\Mu:5:2);
write(DataFile,' Sigma 2 = ',Sigma[2],' Sigma 3 =',Sigma3:5:2);
writeln(DataFile,’ Cohesion =".Cohesion:5:2);
write(DataFile,' Sigma 3 = ",Sigma[3]);
writeln(DataFile,'");
writeln(DataFile,'");
writeln(DataFile,'");
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write(DataFile,' Sigma 1 Sigma 2 Sigma3 Phi');

writeln(DataFile,”  Pitch  Stress ratio');

writeln(DataFile,'");

Deviator := (Sigmal - Sigma3);

Step := (Deviator / Intervals);

Sigma?2 := Sigma3;

for Count := 1 to (Intervals + 1) do

begin
Phi := ((Sigma2 - Sigma3) / (Sigmal - Sigma3));
write(DataFile,Sigmal:6:2,' 'Sigma2:6:2,' 'Sigma3:6:2,' ");
write(DataFile,Phi:6:2,' ',SlipAngle[Count]:6:2," ');
writeln(DataFile,Ratios[Count]:6:2);
Sigma2 := Sigma2 + Step;

end;

writeln(DataFile,'");

close(DataFile);

end;

{ AutoCAD DXFile creation procedures }
{SIDXF.INC}
{ Main Program }

begin
Quitlt := false;
IsThereData := false;
IntroPage;
repeat
MainMenu(Choice);
case (Choice) of

1 : HelpPages;

2 : begin
AskData(Sigma,Sigmal,Sigma3,Mu,Cohesion,Plunge,Trend,DMin,DMax,Intervals);
Working;

DirCosines(Plunge,Trend,Dmin,DMax,Cosines);
Cauchy(Intervals,Sigmal,Sigma3,Cosines,Stresses);
CalculateStresses(Intervals,Mu,Cohesion,Trend,Plunge,Cosines,
Stresses,SlipVector,DMin,DMax,SlipAngle,Ratios);

Cursor(true);
IsThereData := true;
Beep;

end;

3 : begin

if (IsThereData)

then

begin
AskCutOff(CutOff);
DrawGraphAxes(CutOff,Trend,Plunge,Sigma);
PlotPoints(Intervals,CutOff,Sigmal,Sigma3,Ratios,SlipAngle);
EndGraphics;

end
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else
ShowError(11);
end;
4 : begin
if (IsThereData)

then

begin

AskCutOff(CutOff);
DrawStereonet(CutOff,Plunge,Trend,Sigma);
DrawFaultPlane(Plunge,Trend,90.0);

DataPlot(Intervals,CutOff,Trend,Cosines,SlipVector,Ratios);
EndGraphics;

end
else
ShowError(11);
end;
5 : begin
if (IsThereData)
then
WriteList(Intervals,Sigmal,Sigma3,Trend,

Plunge,SlipAngle,Ratios,Sigma)
else

ShowError(11);
end;
6 : begin
if (IsThereData)
then
begin
Printmenu(Choice);
case (Choice) of
1 : begin
AskDiskFileName(FileName);
Writing(FileName);
WriteFile(Intervals,Sigmal,Sigma3,Mu,Cohesion,Trend,

Plunge,SlipAngle,Ratios,FileName,Sigma);
Cursor(true);

Beep;
end;
2 : begin
AskCutOff(CutOff);
AskAcadFileName(FileName);
CreatePage(FileName);
DXFileNet(Intervals,CutOff,Plunge,Trend,Cosines,

SlipVector,Ratios,FileName,Sigma);
Cursor(true);

Beep;
end;
3 : begin
AskCutOff(CutOff);
AskAcadFileName(FileName);
CreatePage(FileName);
DXFileGraph(Intervals,CutOff,Plunge,Trend,Sigmal,



Cursor(true);
Beep;
end;
4 : {Continue}
end;
end
else
ShowError(11);
end;
7 : Quitlt := true;
end;
Until (Quitlt);
ExitPage;

end.

Sigma3,Ratios,SlipAngle,FileName);
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Listing of the include file DXF.INC which creates AutoCAD DXF files.

Procedures available:

{
{
{
{
{
{
{
{
{
{
{
{
{
{

DXF.INC

Procedures to create AutoCAD DXFiles for SLIP.PAS

s sk sk oskoskoskoskoskockoskoskoskosk ook sk sk sk sk ok sk ok ok ok sk ok sk sk ok ok sk sk ok sk ok ook ok ok sk

s sk sk oskoskoskoskoskockoskoskoskosk sk sk sk sk sk ok sk ok ok ok sk ok sk sk ok sk sk sk ok sk ok ook sk ok sk

DXFileNet - Creates an AutoCAD DXfile for the stereonet
DXFileGraph - Creates an AutoCAD DXFile for the graph

s sk sk sk oskoskoskoskockoskoskoskosk sk ok sk sk ok ok sk ok ok ok sk ok sk ok ok sk sk sk ok sk ok ook ok ok sk

procedure DXFileNet(Intervals : integer; CutOff, Plunge, Trend : real;

Cosines
Ratios :
Sigma :

{ Creates an AutoCAD DXFile for the stereonet }

var
Count, IntPlunge, IntTrend
Strike, Dip, ApparentDip, Theta,

chararray3);

Distance, Beta, XVAIl, YVAI, ZeroTrend

DataFile

begin
IntPlunge := round(Plunge);
IntTrend := round(Trend);
assign(DataFile,FileName);
rewrite(DataFile);
writeln(DataFile,'0");
writeln(DataFile,'SECTION");
writeln(DataFile,'2");
writeln(DataFile, HEADER");
writeln(DataFile,'9");

writeln(DataFile, STEXTSTYLE");

writeln(DataFile,'7");
writeln(DataFile,'SIMPLEX");
writeln(DataFile,'0");
writeln(DataFile,ENDSEC");
writeln(DataFile,'0");
writeln(DataFile,'SECTION");
writeln(DataFile,"2");
writeln(DataFile, ENTITIES");
writeln(DataFile,'0");
writeln(DataFile,'CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");

: linarray3; SlipVector :
linarray51; FileName

real;

linarray2d;

: string12;

integer;

text;

}
}
}
}
}
}
}
}
}
}
}
}
}
}
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writeln(DataFile,'10");
writeln(DataFile,'7.500");
writeln(DataFile,20");
writeln(DataFile,'4.500");
writeln(DataFile,'40");
writeln(DataFile,'4.000");
writeln(DataFile,'0");
writeln(DataFile,'LINE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'7.350");
writeln(DataFile,20");
writeln(DataFile,'4.500");
writeln(DataFile,'11");
writeln(DataFile,'7.650");
writeln(DataFile,21");
writeln(DataFile,'4.500");
writeln(DataFile,'0");
writeln(DataFile,'LINE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'7.500");
writeln(DataFile,20");
writeln(DataFile,'4.350");
writeln(DataFile,'11");
writeln(DataFile,'7.500");
writeln(DataFile,21");
writeln(DataFile,'4.650");
writeln(DataFile,'0");
writeln(DataFile,'LINE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'7.500");
writeln(DataFile,20");
writeln(DataFile,'8.350");
writeln(DataFile,'11");
writeln(DataFile,'7.500");
writeln(DataFile,21");
writeln(DataFile,'8.650");
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'7.45");
writeln(DataFile,20");
writeln(DataFile,'8.800");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
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writeln(DataFile,'l");
writeln(DataFile,'N");
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.500");
writeln(DataFile,20");
writeln(DataFile,'8.300");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Slip Vector');
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.500");
writeln(DataFile,20");
writeln(DataFile,'7.900");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Plotting Program');
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.500");
writeln(DataFile,20");
writeln(DataFile,'7.500");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Fault Plane Normal');
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.500");
writeln(DataFile,20");
writeln(DataFile,'7.100");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'at ',IntPlunge:2,' / ", IntTrend:3);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
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writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'11.000");
writeln(DataFile,20");
writeln(DataFile,'8.300");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Lower-Hemisphere');
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'11.600");
writeln(DataFile,20");
writeln(DataFile,'7.900");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Stereographic');
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'12.200");
writeln(DataFile,20");
writeln(DataFile,'7.500");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Projection');
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'11.200");
writeln(DataFile,20");
writeln(DataFile,'1.300");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Sigma 1 = ',Sigma[1]);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'11.200");
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writeln(DataFile,20");
writeln(DataFile,'0.900");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Sigma 2 = ',Sigma(2]);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'11.200");
writeln(DataFile,20");
writeln(DataFile,'0.500");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Sigma 3 = ',Sigma([3]);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.800");
writeln(DataFile,20");
writeln(DataFile,'1.300");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,' = Slip");
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.800");
writeln(DataFile,20");
writeln(DataFile,'0.900");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,' = Locked");
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.500");
writeln(DataFile,20");
writeln(DataFile,'0.500");
writeln(DataFile,'40");
writeln(DataFile,'0.20");



writeln(DataFile,'l");
writeln(DataFile,'Cutoff Value = ',CutOff:4:2);
writeln(DataFile,'0");
writeln(DataFile,'CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.600");
writeln(DataFile,20");
writeln(DataFile,'1.400");
writeln(DataFile,'40");
writeln(DataFile,'0.150");
writeln(DataFile,'0");
writeln(DataFile,'CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'0.600");
writeln(DataFile,20");
writeln(DataFile,'1.000");
writeln(DataFile,'40");
writeln(DataFile,'0.050");
if (Plunge = 0.0)
then Plunge := Plunge + 0.0001;
Dip := DegToRad(90.0 - Plunge);
if ((Trend >= 90.0) and (Trend < 270.0))
then Strike := Trend - 90.0
else Strike := Trend + 90.0;
if (Strike >=360.0)
then Strike := Strike - 360.0;
for Count := 0 to 1800 do
begin
Beta := DegToRad(Count / 10.0);
ApparentDip := arctan(Tan(Dip) * sin(Beta));
Distance := 4.000 * Tan((PI/4.0) - (ApparentDip / 2.0));
if (Distance < 0.05)
then
begin
Distance := (RadToDeg(Beta) * (2.0 / 45.0));
if (Distance > 4.000)
then Distance := 4.000 - Distance;
Beta := DegToRad(Strike);
Beta := (((5.0 * PI) / 2.0) - Beta);
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
end
else
begin
if ((Trend >= 90.0) and (Trend < 270.0))
then Beta := DegToRad(Strike) - Beta
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else Beta := DegToRad(Strike) + Beta;
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
Beta := (((5.0 * PI) / 2.0) - Beta);
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
end;
XVal := (7.500 + (Distance * cos(Beta)));
YVal := (4.500 + (Distance * sin(Beta)));
writeln(DataFile,'0");
writeln(DataFile,'POINT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile, XVAL);
writeln(DataFile,'20");
writeln(DataFile,YVAL);
end;
for Count := 1 to (Intervals + 1) do
begin
Distance := (4.000 * Tan((PI/4.0) - (DegToRad(SlipVector[1,Count]) / 2.0)));
if (SlipVector[1,Count] = 0.0)
then
begin
ZeroTrend := (SlipVector[2,Count] + 180.0);
if (ZeroTrend >= 360.0)
then ZeroTrend := ZeroTrend - 360.0;
Theta := (((5.0 * PI) / 2.0) - DegToRad(ZeroTrend));
XVal := (7.500 + (Distance * cos(Theta)));
YVal := (4.500 + (Distance * sin(Theta)));
writeln(DataFile,'0");
writeln(DataFile, CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,XVAL);
writeln(DataFile,'20");
writeln(DataFile,YVAL);
writeln(DataFile,'40");
if (Ratios[Count] >= CutOff)
then writeln(DataFile,'0.150")
else writeln(DataFile,'0.050");
end;
Theta := (((5.0 * PI) / 2.0) - DegToRad(SlipVector[2,Count]));
XVal := (7.500 + (Distance * cos(Theta)));
YVal := (4.500 + (Distance * sin(Theta)));
writeln(DataFile,'0");
writeln(DataFile, CIRCLE");
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writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile, XVAL);
writeln(DataFile,'20");
writeln(DataFile,YVAL);
writeln(DataFile,'40");
if (Ratios[Count] >= CutOff)
then writeln(DataFile,'0.150")
else writeln(DataFile,'0.050");
if ((Count = 1) and (not(Zero(Cosines[1]))) and (not(Zero(Cosines[2])))
and (not(Zero(Cosines[3]))))
then
begin
writeln(DataFile,'0");
writeln(DataFile, TEXT');
writeln(DataFile,'8");
writeln(DataFile,'0");
if ((Trend > 337.5) or (Trend <= 22.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL));
writeln(DataFile,'20");
writeln(DataFile,(YVAL+0.50));
end;
if ((Trend > 22.5) and (Trend <= 67.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL+0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL+0.50));
end;
if ((Trend > 67.5) and (Trend <= 112.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL+0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL));
end;
if ((Trend > 112.5) and (Trend <= 157.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL+0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL-0.50));
end;
if ((Trend > 157.5) and (Trend <= 202.5))
then



begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL));
writeln(DataFile,'20");
writeln(DataFile,(YVAL-0.50));
end;
if ((Trend > 202.5) and (Trend <= 247.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL-0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL-0.50));
end;
if ((Trend > 247.5) and (Trend <= 292.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL-0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL));
end;
if ((Trend > 292.5) and (Trend <= 337.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL-0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL+0.50));
end;
writeln(DataFile,'40");
writeln(DataFile,'0.15");
writeln(DataFile,'l");
writeln(DataFile,'Phi = 0");
end;

if ((Count = (Intervals + 1)) and (not(Zero(Cosines[1]))) and
(not(Zero(Cosines[2]))) and (not(Zero(Cosines[3]))))

then
begin
writeln(DataFile,'0");
writeln(DataFile, TEXT');
writeln(DataFile,'8");
writeln(DataFile,'0");
if ((Trend > 337.5) or (Trend <= 22.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL));
writeln(DataFile,'20");
writeln(DataFile,(YVAL+0.50));
end;
if ((Trend > 22.5) and (Trend <= 67.5))
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then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL+0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL+0.50));
end;
if ((Trend > 67.5) and (Trend <= 112.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL+0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL));
end;
if ((Trend > 112.5) and (Trend <= 157.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL+0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL-0.50));
end;
if ((Trend > 157.5) and (Trend <= 202.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL));
writeln(DataFile,'20");
writeln(DataFile,(YVAL-0.50));
end;
if ((Trend > 202.5) and (Trend <= 247.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL-0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL-0.50));
end;
if ((Trend > 247.5) and (Trend <= 292.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL-0.50));
writeln(DataFile,'20");
writeln(DataFile,(YVAL));
end;
if ((Trend > 292.5) and (Trend <= 337.5))
then
begin
writeln(DataFile,'10");
writeln(DataFile,(XVAL-0.50));
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writeln(DataFile,'20");
writeln(DataFile,(YVAL+0.50));
end;
writeln(DataFile,'40");
writeln(DataFile,'0.15");
writeln(DataFile,'l");
writeln(DataFile,'Phi = 1");
end;
end;
writeln(DataFile,'0");
writeln(DataFile,ENDSEC");
writeln(DataFile,'0");
writeln(DataFile,'EOF");
close(DataFile);
end;

procedure DXFileGraph(Intervals : integer; CutOff, Plunge, Trend, Sigmal, Sigma3
Ratios, SlipAngle : linarray51; FileName : stringl2);
{ Creates an AutoCAD DXFile for the graph }
var
Count, IntPlunge, IntTrend : integer;
Deviator, Phi, Step, Sigma2, XVal, YVal : real;
DataFile : text;
begin
assign(DataFile,FileName);
rewrite(DataFile);
writeln(DataFile,'0");
writeln(DataFile,'SECTION");
writeln(DataFile,"2");
writeln(DataFile, HEADER");
writeln(DataFile,'9");
writeln(DataFile, STEXTSTYLE");
writeln(DataFile,'7");
writeln(DataFile,'SIMPLEX");
writeln(DataFile,'0");
writeln(DataFile,ENDSEC");
writeln(DataFile,'0");
writeln(DataFile,'SECTION");
writeln(DataFile,'2");
writeln(DataFile, ENTITIES");
writeln(DataFile,'0");
writeln(DataFile,'LINE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'3.000");
writeln(DataFile,20");
writeln(DataFile,2.000");
writeln(DataFile,'11");
writeln(DataFile,'3.000");
writeln(DataFile,21");
writeln(DataFile,'7.000");

. real;
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writeln(DataFile,'0");
writeln(DataFile,'LINE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'3.000");
writeln(DataFile,20");
writeln(DataFile,'4.5");
writeln(DataFile,'11");
writeln(DataFile,'13.000");
writeln(DataFile,21");
writeln(DataFile,'4.5");
for Count := 0 to 5 do
begin

XVal := ((2.0 * Count) + 3.000);

writeln(DataFile,'0");
writeln(DataFile,'LINE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile, XVAL);
writeln(DataFile,'20");
writeln(DataFile,'4.35");
writeln(DataFile,'11");
writeln(DataFile, XVAL);
writeln(DataFile,'21");
writeln(DataFile,'4.65");
writeln(DataFile,'0");
writeln(DataFile, TEXT');
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");

writeln(DataFile,(XVal - 0.20));

writeln(DataFile,'20");
writeln(DataFile,'1.600");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");

writeln(DataFile,(Count * 0.2):2:1);

end;
for Count := 0 to 4 do
begin

YVal := ((1.25 * Count) + 2.000);

writeln(DataFile,'0");
writeln(DataFile,'LINE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'2.850");
writeln(DataFile,'20");
writeln(DataFile,YVAL);
writeln(DataFile,'11");
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writeln(DataFile,'3.150");
writeln(DataFile,'21");
writeln(DataFile,YVAL);
writeln(DataFile,'0");
writeln(DataFile, TEXT');
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'2.05");
writeln(DataFile,'20");
writeln(DataFile,(YVal - 0.1));
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
case (Count) of

0 : writeln(DataFile,'-90");

1 : writeln(DataFile,'-45");
: writeln(DataFile,' 0');
: writeln(DataFile,' 45");
: writeln(DataFile,' 90");

end;
end;
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'1.800");
writeln(DataFile,20");
writeln(DataFile,'8.800");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Slip Vector Plotting Program');
IntPlunge := round(Plunge);
IntTrend := round(Trend);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'1.800");
writeln(DataFile,20");
writeln(DataFile,'8.500");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Fault Plane Normal at ',IntPlunge:2,' / ", IntTrend:3);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
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writeln(DataFile,'10");
writeln(DataFile,'1.800");
writeln(DataFile,20");
writeln(DataFile,'8.200");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");

writeln(DataFile,'Cutoff Value = ',CutOff:4:2);

writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'1.800");
writeln(DataFile,20");
writeln(DataFile,'7.600");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Pitch');
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'8.000");
writeln(DataFile,20");
writeln(DataFile,'8.800");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Fault Plane');
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'8.200");
writeln(DataFile,20");
writeln(DataFile,'8.500");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,' = Slip");
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'8.200");
writeln(DataFile,20");
writeln(DataFile,'8.200");

367



368

writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,' = Locked");
writeln(DataFile,'0");
writeln(DataFile,'CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'8.000");
writeln(DataFile,20");
writeln(DataFile,'8.550");
writeln(DataFile,'40");
writeln(DataFile,'0.150");
writeln(DataFile,'0");
writeln(DataFile,'CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'8.000");
writeln(DataFile,20");
writeln(DataFile,'8.250");
writeln(DataFile,'40");
writeln(DataFile,'0.050");
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'11.000");
writeln(DataFile,20");
writeln(DataFile,'8.800");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Sigma 1 = ',Sigma[1]);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'11.000");
writeln(DataFile,20");
writeln(DataFile,'8.500");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Sigma 2 = ',Sigma(2]);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");



writeln(DataFile,'10");
writeln(DataFile,'11.000");
writeln(DataFile,20");
writeln(DataFile,'8.200");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Sigma 3 = ',Sigma([3]);
writeln(DataFile,'0");
writeln(DataFile, TEXT");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,'7.800");
writeln(DataFile,20");
writeln(DataFile,'1.000");
writeln(DataFile,'40");
writeln(DataFile,'0.20");
writeln(DataFile,'l");
writeln(DataFile,'Phi');
Deviator := (Sigmal - Sigma3);
Step := (Deviator / Intervals);
Sigma?2 := Sigma3;
for Count := 1 to (Intervals + 1) do
begin
Phi := ((Sigma2 - Sigma3) / (Sigmal - Sigma3));
XVal := (3.000 + (Phi * 10.0));
YVal := (4.500 + ((SlipAngle[Count] * 5.0) / 180.0));
writeln(DataFile,'0");
writeln(DataFile, CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile, XVAL);
writeln(DataFile,'20");
writeln(DataFile,YVAL);
writeln(DataFile,'40");
if (Ratios[Count] >= CutOff)
then writeln(DataFile,'0.150")
else writeln(DataFile,'0.050");
if (abs(abs(SlipAngle[Count]) - 90.0) < 0.0001)
then
begin
YVal := (4.500 + ((SlipAngle[Count] * 5.0) / 180.0));
writeln(DataFile,'0");
writeln(DataFile, CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,XVAL);
writeln(DataFile,'20");
writeln(DataFile,YVAL);
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writeln(DataFile,'40");
if (Ratios[Count] >= CutOff)
then writeln(DataFile,'0.150")
else writeln(DataFile,'0.050");
YVal := (4.500 - ((SlipAngle[Count] * 5.0) / 180.0));
writeln(DataFile,'0");
writeln(DataFile, CIRCLE");
writeln(DataFile,'8");
writeln(DataFile,'0");
writeln(DataFile,'10");
writeln(DataFile,XVAL);
writeln(DataFile,'20");
writeln(DataFile,YVAL);
writeln(DataFile,'40");
if (Ratios[Count] >= CutOff)
then writeln(DataFile,'0.150")
else writeln(DataFile,'0.050");

end;

Sigma2 := Sigma2 + Step;
end;
writeln(DataFile,'0");
writeln(DataFile,ENDSEC");
writeln(DataFile,'0");
writeln(DataFile,'EOF");
close(DataFile);

end;
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Listing of the help file SLIP.TXT called by SLIP.PAS, the program listed above.

SLIP.TXT - A 6 page help file for the program SLIP.PAS

An asterisk before a line causes it to be highlighted when the help option
is chosen in the program. The first five lines of this file are not read.

Slip Vector Plotting Program

This is a program to calculate the slip vector and the stress ratios
acting upon a fault plane of any arbitrary orientation with a varying
magnitude of 02 given fixed magnitudes for 01 and 03 where the principal
stress axes may be oriented either north/south, east/west, or vertical at
your choosing. The results of this program are then displayed as a graph
of the ratio of the principal stresses versus the pitch of the slip vector
from the strike of the fault plane, as a lower-hemisphere stereographic
projection of the fault plane and the slip vectors resulting from differing
values of 02, or as a numerical listing of the values of 01, 02, and 03 and
the pitch of the slip vectors and the stress ratios which are associated
with them. The stress ratios are defined as [0s / (Lon + C)] where Os is
the shear stress, on is the normal stress, W is the coefficient of friction,
and C is the cohesion.

The idea for this program came from a paper in volume 96 of Geological
Magazine by M. H. P. Bott entitled "The Mechanics of Oblique Slip Faulting"
published in 1959. Bott showed that the position of the slip vector in the
fault plane is dependant upon the ratios of the three principal stresses.

Slip Vector Plotting Program

When you begin program execution, you will be asked to provide a value
for 01 and 03. The program will accept any positive real numbers as valid
values provided, of course, that the value for 01 is greater than that for
03. A value for the coefficient of friction (i) and the cohesion must then
be supplied. Next, the values of the plunge and trend of the normal to the
fault plane you wish to examine must be entered. The plunge may be any real
number between 0 and 89.9 inclusive and the trend may be any real number
between 0 and 359.9 inclusive. The program will then ask for the number of
intervals of 02 you wish to examine as 02 varies between 03 and 01 in
however many increments you specify. The program will accept any integer
between 2 and 50 inclusive for this value.

Although the program will accept any real numbers greater than or equal
to zero for the values of 01, 03, u, and C, it must be kept in mind that
there are many values which could be entered which may not have any real
geological significance. Always try to keep in mind as to what might be
realistic values for the deviatoric stress (01 - 03) and for the isotropic
stress [(01 + 02 + 03) / 3.0].
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Slip Vector Plotting Program

After this program has run, you may examine the data in several ways.
First, you may examine a graph plotting @ versus the pitch of the slip
vector from the strike direction. @ is defined as [(02 - 03) / (01 - 03)]
and the pitch varies from -90.0 to +90.0 degrees as an angle from the strike
direction which is always between 0.0 and 180.0 degrees inclusive. Second,
a lower-hemisphere stereograph projection may be examined which plots the
fault plane and the positions of the different slip vectors on it for the
differing values of 02. Third, the numerical values of 01, 02, and 03 may
be written along with the values for the pitch of the slip vectors and the
ratio of the shear to normal stresses associated with them. This data may
also be printed by writing it to a disk data file and then using the DOS
command:

* PRINT filename.ext

The graph and the stereonet may also be written to an AutoCAD drawing
interchange file (DXF).

Slip Vector Plotting Program

To create and print an AutoCAD drawing interchange file, first write the
data to a file with the extension .DXF and then read that file into AutoCAD

using the DXFIN command. Once in AutoCAD, changes may be made if desired and

the drawing may then be plotted using a laser printer or pen plotter.

Before creating the graph or stereonet plots, the program will ask for a
cutoff value for the shear to normal stress ratio. When a value greater than
0.0 is specified, any slip vector with a stress ratio above the cutoff will
be plotted as a circle and any slip vector with a value below the cutoff will be
plotted as a square. The rational for doing this is that faulting will occur
only when the stress ratio exceeds a certain value. When a geologically
reasonable value is entered, it may be assumed that any vector plotting as
a circle may initiate slip while any vector plotting as a square will leave
the fault remaining locked.

The main purpose of this program is to generate a data set of known fault
orientations and their slip directions given a specified stress field. This
data will then be used to test and evaluate different computer methods for
determining principal stress orientations from faults and their slip vectors.

Slip Vector Plotting Program

This program was written by Steven H. Schimmrich in Turbo Pascal (Borland,
Inc. - registered trademark) for an IBM AT personal computer with a numeric
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coprocessor, 512 K memory, and color graphics capabilities. The program may
not run properly on other machines. Version 1.0 of this program was written
in April of 1988, version 2.0 in July of 1988. This help file that you are
reading is called SLIP.TXT and must be on the same disk as the main program
SLIP.PAS is. The compiled version of this program is called SLIP.COM and may
be run from the DOS level by simply typing SLIP at the DOS prompt.

If at any time during the program execution it becomes "stuck" or the
keyboard freezes, pressing the Ctrl key and the C letter key at the same
time will usually return you to the DOS level. If that fails try pressing
the Ctrl, Alt, and Del keys all at the same time to reboot the computer.

* SLIP.PAS
* Copyright (C) 1988
* Steven H. Schimmrich



APPENDIX D

FAULT PLANE PLOTTING PROGRAM

Complete listing of the fault plane plotting program discussed in chapters six and seven. The

program FPLANE.PAS is written in Turbo Pascal version 3.01 for an IBM PC or compatible computer.

program FPlane;

****************************************}

This is a program to create an AutoCAD script file of planes and
their associated slip directions for plotting on a lower-hemisphere
equal-angle stereographic projection.

s sk sk oskoskoskoskoskoskoskoskoskoskoskosk sk sk ok sk sk sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

FPLANE.PAS - Version 1.0

For educational and research purposes only
All commercial rights reserved

Steven H. Schimmrich
Department of Geological Sciences
State University of New York at Albany

{

{

{

{

{

{

{

{

{

{

{ Copyright (C) 1989 -- Steven H. Schimmrich
{

{

{

{

{

{

{ Albany, New York 12222
{

{

e M e e S am e o e e S e e e e e -

s sk sk ok oskoskoskoskoskoskoskoskoskoskosk sk sk ook sk sk sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

{ Initializations }

type
RegisterList =
record
AX,BX,CX,DX,BP,SI,DI,DS,ES, Flags : integer;
end;
RATrr = array[1..100] of real;
String25 = string[25];
var
Plunge, Trend, Pitch : RATr;
Number : integer;
FileName : String25;
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{General program functions }

function Exists(FileName : String25): boolean;
{ Checks to see if a file exists on the disk }
var
Name : file;
begin
Assign(Name,FileName);
{$I-}
Reset(Name);
{$1+)}
Exists := (IOResult = 0);
end;

procedure Cursor(On : boolean);
{ Turns cursor on and off }
var
Register : RegisterList;
begin
if (On)
then
if (mem[0:$449] =7)
then
Register.CX := $0C0D
else
Register.CX := $0607
else
Register.CX := $2000;
Register.AX := $0100;
intr($10,Register);
end;

function Zero(Value : real): boolean;
{ Checks to see if a value is essentially 0.0 }
begin
if (abs(Value) < 0.00001)
then Zero := true
else Zero := false;
end;

function DegToRad(DegreeMeasure : real): real;
{ Converts an angle in degrees to one in radians }
begin
DegToRad := ((DegreeMeasure * PI) / 180.0);
end;

function RadToDeg(RadianMeasure : real): real;
{ Converts an angle in radians to one in degrees }
begin
RadToDeg := ((RadianMeasure * 180.0) / PI);
end;
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function Tan(Angle : real): real;

{ Returns the tangent of an angle }
begin

Tan :=sin(Angle) / cos(Angle);
end;

function ArcCos(AValue : real): real;
{ Returns the arccosine of a value }
var
X,Y : real;
begin
if (AValue = 0.0)
then ArcCos := (PI/2.0)
else if (AValue = 1.0)
then ArcCos := 0.0
else if (AValue = -1.0)
then ArcCos := PI
else
begin

X = (AValue / sqrt(1.0 - sqr(AValue)));

Y := arctan(abs(1.0 / X));
if (X>0.0)
then ArcCos ;=Y
else ArcCos := (PI-Y);
end;
end;

{ General program procedures }

procedure DrawBox(ULX, ULY, LRX, LRY :

{ Draws a box around text in text mode }
var
X, Y, XDistance : integer;
begin

gotoxy(ULX,ULY);

write(#201);

XDistance := LRX - ULX - 1;

for X := 1 to XDistance do
write(#205);

write(#187);

forY := (ULY + 1) to (LRY - 1) do

begin
gotoxy(LRX,Y);
write(#186);
gotoxy(ULX,Y);
write(#186);

end;

gotoxy(ULX,LRY);

write(#200);

for X := 1 to XDistance do
write(#205);

write(#188);

integer);
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end;

procedure DisplayPage;
{ Displays an introduction page }
begin
textmode;
clrser;
cursor(false);
textcolor(12);
DrawBo0x(20,9,61,18);
textcolor(11);
gotoxy(27,10);
writeln('Fault Plane Plotting Program"');
gotoxy(32,12);
writeln('Program written by');
gotoxy(31,14);
writeln('Steven H. Schimmrich');
gotoxy(24,15);
writeln('Department of Geological Sciences');
gotoxy(22,16);
writeln('State University of New York at Albany');
gotoxy(30,17);
writeln('Albany, New York 12222");
delay(5000);
cursor(true);
clrser;
end;

procedure IntroPage;
{ Displays a short introduction to the program }
var
Key : char;
begin
gotoxy(27,2);
textcolor(12);
writeln('Fault Plane Plotting Program"');
textcolor(11);
writeln;
writeln;
writeln(" This is a quick and dirty program to plot fault planes and their associated');
writeln(' slip directions onto an equal-angle stereographic projection using an AutoCAD");
writeln(' SCRipt file. This program was written because the RockWare stereonet program');
writeln(' on this computer can not plot planes as great circles easily.");
writeln(" This program first asks for a filename of a disk file containing the fault');
writeln(' data. This data must have the following format : ');
writeln;
textcolor(12);
writeln(' 25 125 13");
textcolor(11);
writeln;
writeln(' where 25 is the plunge and 125 is the trend of the fault plane normal and 13");
writeln(' is the pitch of the slip vector within the fault plane. The pitch is the angle');
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writeln(' between the strike (the trend of the normal + 90 degrees) and the slip vector');
writeln(' which varies from -90 to 90 degrees. If you do not wish to plot the slip');
writeln(' vectors, enter a 99 for the pitch. Entering a 999 for the pitch will treat');
writeln(' the plunge and trend values as an axis and plot a circle.");
write(' The program will then create an AutoCAD file named FPLANE.SCR ');
writeln('overwriting');
writeln(' any old versions of FPLANE.SCR if they exist on the disk. The file may then');
writeln(' be read into AutoCAD and plotted using the laser printer. If any text is');
writeln(' desired, it may be added while in AutoCAD.");
writeln;
gotoxy(2,25);
write('Press any ');
textcolor(12);
write('key");
textcolor(11);
write(' to continue...");
read(kbd,Key);
clrser;

end;

procedure AskFileName(var FileName : String25);
{ Asks for the name of the data file }
begin
gotoxy(27,2);
textcolor(12);
writeln('Fault Plane Plotting Program"');
textcolor(11);
writeln;
writeln;
writeln(' The program now needs the name of the disk file');
writeln(' containing the fault normals and slip directions.");
repeat
writeln;
write(' Enter the name of the data file : ');
textcolor(12);
readln(FileName);
textcolor(11);
if (not(Exists(FileName)))
then
begin
sound(880);
delay(50);
nosound;
writeln;
textcolor(12);
writeln(" * ERROR * That file does not exist on this disk');
textcolor(11);
end;
until (Exists(FileName));
clrser;
end;
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procedure ReadData(FileName : String25; var Number : integer;
var Plunge, Trend, Pitch : RArr);
{ Reads in the data from a disk file }

var
DataFile : text;
begin

Number := 0;
gotoxy(27,2);
textcolor(12);

writeln('Fault Plane Plotting Program"');
textcolor(11);
gotoxy(2,8);
write('Creating AutoCAD file...");
assign(DataFile,FileName);
reset(DataFile);
while (not(EOF(DataFile))) do
begin
Number := Number + 1;
readln(DataFile,Plunge[Number],Trend[Number],Pitch[Number]);
end;
close(DataFile);
end;

procedure CreatePlot(var Number : integer; var Plunge, Trend, Pitch : RArr);
{ Creates the AutoCAD plot of data }

label 1;

label 2;

const
ACADFILE = 'FPLANE.SCR";

var
Strike, Dip, ApparentDip, Theta,
Distance, Beta, XVal, YVal, XVall,
Yvall, XVal2, YVal2, XVal3, YVal3,
ZeroTrend, SlipTrend, SlipPlunge : real;
Count, Counter : integer;
DataFile : text;

begin
assign(DataFile, ACADFILE);
rewrite(DataFile);
writeln(DataFile,'CIRCLE");
writeln(DataFile,'7.500,4.500");
writeln(DataFile,'4.000");
writeln(DataFile,'LINE");
writeln(DataFile,'7.350,4.500");
writeln(DataFile,'7.650,4.500");
writeln(DataFile," ');
writeln(DataFile,'LINE");
writeln(DataFile,'7.500,4.350");
writeln(DataFile,'7.500,4.650");
writeln(DataFile," ');
writeln(DataFile,'LINE");
writeln(DataFile,'7.500,8.350");
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writeln(DataFile,'7.500,8.650");
writeln(DataFile," ');
writeln(DataFile, TEXT");
writeln(DataFile, MIDDLE");
writeln(DataFile,'7.500,8.800");
writeln(DataFile,'0.200");
writeln(DataFile,'0");
writeln(DataFile,'N");
for Count := 1 to Number do
begin
if (Pitch[Count] = 999.0) then goto 1;
if (Plunge[Count] = 0.0)
then Plunge[Count] := Plunge[Count] + 0.0001;
Dip := DegToRad(90.0 - Plunge[Count]);
if ((Trend[Count] >= 90.0) and (Trend[Count] < 270.0))
then Strike := Trend[Count] - 90.0
else Strike := Trend[Count] + 90.0;
if (Strike >= 360.0)
then Strike := Strike - 360.0;
for Counter := 0 to 2 do
begin
Beta := DegToRad(Counter * 90.0);
ApparentDip := arctan(Tan(Dip) * sin(Beta));
Distance := 4.000 * Tan((PI/4.0) - (ApparentDip / 2.0))
if (Distance < 0.05)
then
begin
Distance := (RadToDeg(Beta) * (2.0 / 45.0));
if (Distance > 4.000)
then Distance := 4.000 - Distance;
Beta := DegToRad(Strike);
Beta := (((5.0 * PI) / 2.0) - Beta);
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
end
else
begin

if ((Trend[Count] >= 90.0) and (Trend[Count] < 270.0))

then Beta := DegToRad(Strike) - Beta
else Beta := DegToRad(Strike) + Beta;
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
Beta := (((5.0 * PI) / 2.0) - Beta);
if (Beta >= (2.0 * PI))
then Beta := (Beta - (2.0 * PI));
if (Beta < 0.0)
then Beta := (Beta + (2.0 * PI));
end;
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XVal := (7.500 + (Distance * cos(Beta)));
YVal := (4.500 + (Distance * sin(Beta)));
case (Counter) of
0 : begin
XVall := XVal;
YVall := YVal;
end;
1 : begin
XVal2 := XVal;
YVal2 := YVal;
end;
2 : begin
XVal3 := XVal;
YVal3 := YVal;
end;
end;
end;
if ((abs(XVall - XVal2) >=0.01) or (abs(YVall - YVal2) >= 0.001))
then
begin
writeln(DataFile,/ARC");
writeln(DataFile,XVall:5:3,," Y Vall:5:3);
writeln(DataFile,XVal2:5:3,," Y Val2:5:3);
writeln(DataFile,XVal3:5:3,.," Y Val3:5:3);
end
else
begin
writeln(DataFile,'LINE");
writeln(DataFile,XVall:5:3,," Y Vall:5:3);
writeln(DataFile,XVal3:5:3,.," Y Val3:5:3);
writeln(DataFile," ');
end;
if (Pitch[Count] = 99.0) then goto 2;
if (not(Zero(Pitch[Count])))
then Beta := RadToDeg(arctan(cos(DegToRad(90 - Plunge[Count])) *
Tan(DegToRad(Pitch[Count]))))
else Beta := 0.0;
Strike := Trend[Count] + 90.0;
if (Strike > 360.0)
then Strike := Strike - 180.0;
SlipTrend := Strike + Beta;
if (not(Zero(abs(Beta) - 90.0)))
then SlipPlunge := RadToDeg(ArcCos(cos(DegToRad(Pitch[Count])) /
cos(DegToRad(Beta))))
else SlipPlunge := 90.0 - Plunge[Count];
if ((Pitch[Count] < 0.0) or (Pitch[Count] = 90.0))
then SlipTrend := SlipTrend + 180.0;
if (Trend[Count] > 270)
then SlipTrend := SlipTrend + 180.0;
if (SlipTrend > 360.0)
then SlipTrend := SlipTrend - 360.0;
Distance := (4.000 * Tan((PI/4.0) - (DegToRad(SlipPlunge) / 2.0)));
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if (SlipPlunge = 0.0)
then
begin
ZeroTrend := (SlipTrend + 180.0);
if (ZeroTrend >= 360.0)
then ZeroTrend := ZeroTrend - 360.0;
Theta := (((5.0 * PI) / 2.0) - DegToRad(ZeroTrend));
XVal := (7.500 - (Distance * cos(Theta)));
YVal := (4.500 - (Distance * sin(Theta)));
writeln(DataFile, CIRCLE");
writeln(DataFile, XVAL:5:3,",',YVAL:5:3);
writeln(DataFile,'0.060");
end;
Theta := (((5.0 * PI) / 2.0) - DegToRad(SlipTrend));
if (Pitch[Count] = 90.0)
then
begin
XVal := (7.500 - (Distance * cos(Theta)));
YVal := (4.500 - (Distance * sin(Theta)));
end
else
begin
XVal := (7.500 + (Distance * cos(Theta)));
YVal := (4.500 + (Distance * sin(Theta)));
end;
writeln(DataFile, CIRCLE");
writeln(DataFile, XVAL:5:3,",,YVAL:5:3);
writeln(DataFile,'0.060");
goto 2;
1: {continue};
Distance := (4.000 * Tan((PI/4.0) - (DegToRad(Plunge[Count]) / 2.0)));
Theta := (((5.0 * PI) / 2.0) - DegToRad(Trend[Count]));
XVal := (7.500 + (Distance * cos(Theta)));
YVal := (4.500 + (Distance * sin(Theta)));
writeln(DataFile, CIRCLE");
writeln(DataFile, XVAL:5:3,",,YVAL:5:3);
writeln(DataFile,'0.090");
2: {continue};
end;
writeln(DataFile, REGEN");
close(DataFile);
gotoxy(2,12);
write('"AutoCAD file ');
textcolor(12);
write('(FPLANE.SCR");
textcolor(11);
write(' created...");
sound(880);
delay(50);
nosound;
delay(5000);
end;
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{ Main program }

begin
DisplayPage;
IntroPage;
AskFileName(FileName);
ReadData(FileName,Number,Plunge,Trend,Pitch);
CreatePlot(Number,Plunge,Trend,Pitch);
DisplayPage;

end.



APPENDIX E

VECTOR ANGLE CALCULATION PROGRAM

Complete listing ofthe vectorangle calculation program discussed inchapternine. The
program ANGLE.PAS is written in Turbo Pascal version 3.01 for an IBM PC or compatible

computer.

program Angle;

s sk sk oskoskoskoskoskockoskoskoskosk ook sk sk sk sk ok sk ok ok ok sk ok sk sk ok ok sk sk ok sk ok ook ok ok sk

This is a program to calculate the angles between two vectors
given their stereographic plunges and trends in degrees.

s sk sk oskoskoskoskoskockosk sk sk sk sk sk sk sk sk ok sk ok ok ok ok ok sk sk ok sk sk sk ok sk ok ook ok ok sk

ANGLE.PAS - Version 1.0

For educational and research purposes only
All commercial rights reserved

Steven H. Schimmrich
Department of Geological Sciences
State University of New York at Albany

Albany, New York 12222

s sk sk oskoskoskoskoskockoskosk o sk sk sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok sk sk sk ok sk sk sk ok ok sk

{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ Copyright (C) 1989 -- Steven H. Schimmrich }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }

{ Initializations }

var
Plungel, Plunge2, Trendl, Trend2 : integer;
Angle, DotProduct, X1, Y1, Z1, X2,Y2,Z2 : real;
Loop : boolean;
Key : char;

function DegtoRad(DegreeMeasure : real): real;
{ Converts an angle in degrees to one in radians }
begin

DegtoRad := ((DegreeMeasure * PI) / 180.0);
end;

function RadtoDeg(RadianMeasure : real): real;
{ Converts an angle in radians to one in degrees }
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begin
RadtoDeg := ((RadianMeasure * 180.0) / PI);
end;

function ArcCos(AValue : real): real;
{ Returns the arccosine of a value }
var
X,Y : real;
begin
if (AValue = 0.0)
then ArcCos := (PI/2.0)
else if (AValue = 1.0)
then ArcCos := 0.0
else if (AValue = -1.0)
then ArcCos := PI
else
begin
X = (AValue / sqrt(1.0 - sqr(AValue)));
Y := arctan(abs(1.0 / X));
if (X > 0.0)
then ArcCos :=Y
else ArcCos := (PI-Y);
end;
end;

{ Main program }

begin

Loop := true;

while (Loop) do

begin
clrscr;
textcolor(12);
writeln(' Angle Calculation Program’);
textcolor(14);
writeln;
writeln;
writeln(" Given the plunge and trend values in degrees of two');
writeln('vectors, this program will calculate the angle between');
writeln('them in degrees.");
writeln;
writeln;
write("Vector');
textcolor(12);
writeln(' 1');
textcolor(14);
writeln;
write(' Enter the plunge :');
textcolor(12);
readln(Plungel);
textcolor(14);
write(" Enter the trend :');
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textcolor(12);
readln(Trend1);
textcolor(14);
writeln;
write("Vector');
textcolor(12);
writeln(' 2');
textcolor(14);
writeln;
write(' Enter the plunge :');
textcolor(12);
readln(Plunge2);
textcolor(14);
write(" Enter the trend :');
textcolor(12);
readln(Trend2);
textcolor(14);
if ((Plungel > 90) or (Plungel < 0) or (Plunge2 > 90) or (Plunge2 < 0)
or (Trend1 > 360) or (Trend1 < 0) or (Trend2 > 360) or (Trend2 < 0))
then
begin
writeln;
writeln;
sound(880);
delay(100);
nosound;
textcolor(12);
write('ERROR");
textcolor(14);
writeln(' - An incorrect plunge or trend has been entered!’);
exit;
end;
X1 := (cos(DegtoRad(Plungel)) * cos(DegtoRad(Trendl)));
Y1 := (sin(DegtoRad(Plungel)));
Z1 := (cos(DegtoRad(Plungel)) * sin(DegtoRad(Trend1l)));
X2 := (cos(DegtoRad(Plunge2)) * cos(DegtoRad(Trend2)));
Y2 := (sin(DegtoRad(Plunge2)));
Z2 := (cos(DegtoRad(Plunge2)) * sin(DegtoRad(Trend2)));
DotProduct := (X1 * X2) + (Y1 * Y2) + (Z1 * Z2));
Angle := (RadtoDeg(ArcCos(DotProduct)));
if (Angle > 90.0)
then Angle := 180.0 - Angle;
writeln;
writeln;
write('"The angle between vectors');
textcolor(12);
write(' 1');
textcolor(14);
write(' and');
textcolor(12);
write(' 2');
textcolor(14);
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write(' is");
textcolor(12);
write(Angle:6:1);
textcolor(14);
writeln(' degrees.');
writeln;
writeln;
write('Do another calculation (');
textcolor(12);
write('Y");
textcolor(14);
write(' or');
textcolor(12);
write(" N');
textcolor(14);
write(') ?");
read(kbd,Key);
if (Key in ['y",'Y'])
then Loop := true
else Loop := false;
end;
clrser;
end.
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