CONVERGENT AND COLLISIONAL TECTONICS IN PARTS OF OREGON, MAINE, AND THE VERMONT-QUEBEC BORDER

by

Adam Schoonmaker

A Dissertation
Submitted to the University at Albany, State University of New York
in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

College of Arts and Sciences
Department of Earth and Atmospheric Sciences
2005
CONVERGENT AND COLLISIONAL TECTONICS IN PARTS OF OREGON, MAINE, AND THE VERMONT - QUEBEC BORDER

by

Adam Schoonmaker

Abstract of a Dissertation
Submitted to the University at Albany, State University of New York
in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

College of Arts and Sciences
Department of Earth and Atmospheric Sciences
2005
ABSTRACT

Four problems of tectonic significance were addressed. The first is a study of the structural emplacement of the Snowcamp ophiolite over the Rogue-Chetco arc complex during the Nevadan Orogeny in southwestern Oregon. Similarities in age, pressure and temperature conditions during thrusting, metamorphic history, and kinematics indicate that thrusting there was correlative with the nearby Madstone Cabin thrust. This implies that the overlying ophiolitic rocks have undergone a similar history as the Josephine ophiolite and are not exotic to Jurassic North America.

Two projects involve the geochemical and field relationships of rocks in north-central Maine, which are used to constrain the tectonic setting of pre-Taconic and early Acadian magmatic rocks. Early Ordovician basalts and gabbros have MORB characteristics derived from depleted mantle, but intrude mélangé and continental margin rocks. The most likely interpretation is that they intruded an active continental margin as a result of a ridge subduction event. Younger Devonian rocks are enriched with respect to MORB, but are not to the extent of other within-plate, plume-related settings. They are associated with rocks deposited on a continental margin and in the foreland of a lower plate prior to arrival of the Acadian orogen. Geochemical analysis indicates a subduction-modified subcontinental mantle source, and the magmatic rocks are interpreted to have intruded as a result of lower plate lithospheric detachment during the early stages of subduction of the continental margin.

The final project addresses a long-standing conflict in interpretation of the depositional history and structural evolution of the Stanbridge Group in southern Quebec, and the correlative Highgate and Morses Line Formations of northwestern Vermont. Field relationships in Vermont indicate that the Highgate and Morses Line Formations were deposited on the Laurentian shelf and shelf margin, and were later imbricated during the Taconic Orogeny. The correlative Stanbridge Group in Quebec likely followed a similar history and is not allochthonous as previously believed, in the sense that it was not transported from the Laurentian continental rise.
ACKNOWLEDGMENTS

First and foremost I must thank my wife Tamie for providing the means for me to complete this project and always understanding the time and travel away from home it required.

I would especially like to thank Diane Paton, Sally Marsh, and Vince Idone of the University at Albany for numerous occasions when they facilitated the completion of this research in more ways than I can remember.

Chul Lim, Jamie Macdonald, and Stephan Sejourne also accompanied me in the field on many occasions and were sources of excellent conversation. I also had constructive conversations with Marjorie Gale and Jonathon Kim of the Vermont Geological Survey about aspects of Vermont Geology.

Fellow graduate students Barbara Fletcher and Stephanie Danneman were also very helpful in passing the long days in the Earth Sciences building – Good luck!

The department of Earth and Atmospheric Sciences (facilitated by Sally of course!), the National Academy of Science through Sigma Xi, and the Geological Society of America provided monetary assistance for the fieldwork in Oregon, and microprobe and geochemical analyses.

And of course I would especially like to thank Bill Kidd for suggesting that I work on these projects, for pushing me to think BIG, innumerable conversations about rocks, and to look at the rocks from a tectonic perspective, and always being available – thanks Bill!
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>III</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>IV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>VII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>IX</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 1 - TECTONIC EMPLACEMENT OF THE SNOWCAMP REMNANT OF THE COAST RANGE OPHIOLITE NEAR GAME LAKE, SOUTHWESTERN OREGON</td>
<td>4</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>JOSEPHINE OPHIOLITE AND THE MADSTONE CABINTHRUST</td>
<td>8</td>
</tr>
<tr>
<td>Tectonic overview</td>
<td>8</td>
</tr>
<tr>
<td>Madstone Cabin Thrust</td>
<td>10</td>
</tr>
<tr>
<td>COAST RANGE OPHIOLITE, SNOWCAMP TERRANE AND THE GEOLOGY OF THE GAME LAKE AREA</td>
<td>13</td>
</tr>
<tr>
<td>The Snowcamp Terrane and its correlation with the Coast Range Ophiolite</td>
<td>13</td>
</tr>
<tr>
<td>Game Lake Area</td>
<td>14</td>
</tr>
<tr>
<td>Lithic Units</td>
<td>15</td>
</tr>
<tr>
<td>Structural Geology</td>
<td>19</td>
</tr>
<tr>
<td>Geochronology</td>
<td>24</td>
</tr>
<tr>
<td>Pressure and temperature conditions during deformation</td>
<td>25</td>
</tr>
<tr>
<td>Amphibolite facies metamorphic conditions</td>
<td>26</td>
</tr>
<tr>
<td>Retrograde greenschist facies metamorphic Conditions</td>
<td>29</td>
</tr>
<tr>
<td>Tonalite intrusion conditions</td>
<td>31</td>
</tr>
<tr>
<td>SUMMARY AND DISCUSSION</td>
<td>33</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>39</td>
</tr>
<tr>
<td>ANALYTICAL METHODS</td>
<td>40</td>
</tr>
</tbody>
</table>

CHAPTER 2 - EVIDENCE FOR A RIDGE SUBDUCTION EVENT IN THE ORDOVICIAN ROCKS OF NORTH-CENTRAL MAINE | 58 |
ABSTRACT	59
INTRODUCTION	60
REGIONAL CORRELATIONS, PALEOPosition, AND PREVIOUS INTERPRETATIONS OF TECTONIC SETTING	61
Shin Pond-Stacyville area of the Weeksboro-Lunksoos	62

IV
2) The Highgate Formation is a depositionally continuous unit 142
3) The contact between the Highgate limestones and overlying black slates is a minor thrust fault 144
4) Deformation in the Morses Line slates exists in the Highgate Formation 145
5) The black slate (Keith’s [1925] Highgate Slate) is the lowest part of the Morses Line Formation 148
6) The Highgate Falls Thrust repeats the Gorge-Highgate-Morses Line Formations and ascends laterally into progressively higher levels 150
7) The Corliss Member of the Morses Line Formation is present near the International Border 151

SOUTHERN QUEBEC 152
This study 158
1) The conformable relationships in Vermont are likely present in Quebec 161
2) The conformable section makes up most of the Stanbridge Group 162
3) The northern termination of the Gorge and Highgate Formations is an anticlinal hinge, truncated by the Rosenberg Thrust 163

DISCUSSION 164
ACKNOWLEDGMENTS 169

REFERENCES CITED 182

APPENDIX I Structural data from the Game Lake area, Oregon 195
APPENDIX II \(^{40}\text{Ar}/^{39}\text{Ar}\) Spectra Analytical Data, Game Lake Area 202
APPENDIX III Microprobe results, Game Lake Area 204
APPENDIX IV Silicon cations per unit cell phengite, Game Lake Area 208
APPENDIX V Structural data, northwestern Vermont and Quebec 210
APPENDIX VI ICP-MS standard comparison 214
APPENDIX VII XRF standard comparison 217
APPENDIX VIII Geochemical analyses of Devonian basalts 221
LIST OF FIGURES

CHAPTER 1:
- Figure 1. Regional geologic map and schematic cross-sections across the Snowcamp terrane and the Madstone Cabin thrust
 Page 41
- Figure 2. Schematic cross-section of the Madstone Cabin thrust
 Page 42
- Figure 3. Geologic Map of the Game Lake area
 Page 43
- Figure 4. View of the Game Lake thrust
 Page 44
- Figure 5. Plane light photomicrograph of mylonitic texture of mafic phyllonite
 Page 45
- Figure 6. Plane light photomicrograph of amphibolite
 Page 46
- Figure 7. Photomicrograph of metagabbro showing protomylonitic texture
 Page 47
- Figure 8. Crossed-nicols photomicrograph of tonalite
 Page 48
- Figure 9. Field photograph of amphibolite with folded tonalite dikelet that parallels S1 amphibolitic foliation
 Page 49
- Figure 10. Field photograph of open fold in amphibolite
 Page 50
- Figure 11. Structural data from Game Lake and Madstone Cabin thrusts
 Page 51
- Figure 12. Lineation data from Game Lake thrust
 Page 52
- Figure 13. 40Ar/39Ar release spectra
 Page 53
- Figure 14. Results of application of geothermometer A (tremolite richterite) of Holland and Blundy (1994) to coexisting hornblende-plagioclase pairs in amphibolites from Madstone Cabin thrust and Game Lake thrust
 Page 54
- Figure 15. Results of application of phengite geobarometer of Massone and Schreyer (1987) to igneous and metamorphic muscovite in tonalites from Madstone Cabin thrust and Game Lake thrust
 Page 55
- Figure 16. T-t path for Madstone Cabin and Game Lake thrusts
 Page 56

CHAPTER 2:
- Figure 1. Generalized map showing major structures exposing pre-Silurian rocks of north-central Maine
 Page 92
- Figure 2. Correlation chart of Silurian and older rocks of north-Central Maine
 Page 93
- Figure 3. Field relations of Bean Brook Gabbro/dolerite and Cambrian (?) sedimentary rocks
 Page 94
- Figure 4. Geologic map of the part of the Chesuncook Dome and sample locations
 Page 95
- Figure 5. Rock classification diagram of Winchester and Floyd (1977), modified by Pearce (1996)
 Page 96
- Figure 6. Photomicrograph of Dry Way Volcanic igneous textures
 Page 97
- Figure 7. Cl-chondrite and MORB normalized diagrams
 Page 98
- Figure 8. Ti-Zr-Y diagram of Pearce and Cann (1973)
 Page 99
- Figure 9. Ti-V diagram of Shervais (1982)
 Page 100
- Figure 10. Ti-Zr diagram
 Page 101
- Figure 11. Th-Hf-Ta diagram of Wood (1980)
 Page 102
- Figure 12. Th/Yb-Ta/Yb diagram of Pearce (1982)
 Page 103
- Figure 13. Cr-Y diagram of Pearce (1982)
 Page 104
Figure 14. C1-chondite normalized diagrams of basalts from the Chile Ridge–Trench interaction

Figure 15. C1-chondrite normalized diagrams of basalts from the Chile Ridge–Trench interaction

Figure 16. Schematic cartoon illustrating Ordovician ridge subduction beneath Chain Lakes Massif

CHAPTER 3:
Figure 1. Schematic cross-section of Chesuncook Dome/Katahdin area showing relationship of mafic/granitic magmas to upper and lower plates of Acadian orogen

Figure 2. Siluro-Devonian stratigraphic section from the Chesuncook Dome, Ripogenus dam area

Figure 3. MORB normalized spider diagram of West Branch Volcanics

Figure 4. Th/Nb vs. Ce/Nb modified from Saunders and Tarney (1991)

CHAPTER 4:
Figure 1. Regional map showing significant structures and lithologic units in northwestern Vermont and southern Quebec

Figure 2. Lithostratigraphic correlation chart of the Cambrian through Middle Ordovician formations of the Rosenberg slice

Figure 3. Geologic map of the area between Highgate Center and the International Border, northwestern Vermont

Figure 4. Measured lithostratigraphic section of the exposed units on the north shore of the Missisquoi River gorge at Highgate Center

Figure 5. Contact between the Highgate and Gorge Formations in the Missisquoi River gorge at Highgate Center

Figure 6. Minor thrust fault at contact between Highgate and Morses Line Formations

Figure 7. Minor thrust faults and en echelon fractures in Morses Line Formation, Missisquoi River gorge

Figure 8. Folded minor thrust in Morses Line Formation of Missisquoi River gorge

Figure 9. Dismembered dolomitic micrite beds in slates of Morses Line Formation

Figure 10. Highgate Falls thrust exposed in the Missisquoi River Gorge

Figure 11. Geologic map of the area from Le Coin-chez-Desranleau to the International Border, southern Quebec

Figure 12. Stereonet representations of structural data from both Vermont and Quebec field areas
LIST OF TABLES

CHAPTER 1:

Table 1. Characteristics of Game Lake and Madstone Cabin thrusts, Coast Range and Josephine Ophiolites 57

CHAPTER 2:

Table 1. Geochemical data for samples obtained for this study 108

LIST OF PLATES (in back pocket)

Plate 1. Geologic map of the Game Lake area, Southwestern Oregon

Plate 2. Geologic map of the Game Lake area with structural symbols

Plate 3. Geologic map of the Highgate Center area, northwestern Vermont

Plate 4. Geologic map of the St. Armand Station area, southern Quebec

Plate 5. Combined geology of St. Armand Station area (southern Quebec) and Highgate Center area, northwestern Vermont

Plate 6. Outcrop map, Highgate center area, northwestern Vermont

Plate 7. Outcrop map, St. Armand area, southern Quebec