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Abstract

Crystallization experiments using a synthetic igneous analog have shown that
grain boundary migration can take place in melt-present environments (Means and
Park, 1994). In order to evaluate the importance of metamorphic processes during the
textural evolution of a crystal mush, microstructural evidence is needed to link them
with final igneous textures. In natural magmatic systems, plagioclase may provide a
microstructural link; plagioclase solid solution enables the process of chemical zoning
and preserves a record of crystal morphology (and chemistry) during growth. If
metamorphic processes are common, they should affect the zoning patterns of
plagioclase crystals.

A petrographic stage heater apparatus was designed and built for the purpose of
observing crystallization processes with a new plagioclase analog. The analog
utilized synthetic compounds within the (K, NH4)SCN system and was crystallized at
low temperatures (< 172 °C) for observation in situ with an optical microscope. The
melting points of compounds containing Xk = (0, 0.25, 0.50, 0.75, 1) were measured
in both thin section and in sealed capillary tubes in order to construct a phase
diagram. Compounds of intermediate composition Xx = (0.25, 0.50, 0.75) created a
continuous solid solution with initial and final melting points between 82 °C and 171
— 175 °C in thin section, and between 108 °C and 144 °C (£ 1) in sealed capillary
tubes. The differences between the two data sets are probably due to the absorption
of atmospheric water and differing abilities of the two systems to contain the water.

Textural studies of quenched compounds with composition Xx = 0.8 and Xk =

0.75 resulted in the formation of crystals with concentric extinction patterns (under
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cross polarized light) that resemble patterns produced by chemical zoning in
plagioclase. Grain boundary migration was also observed between chemically
homogenous grains within the solid solution. However, relatively slow rates of
cooling were required to produce grain boundary migration. While grain boundary
migration was only observed in unzoned solid solution crystals, further crystallization
experiments utilizing faster rates of cooling may produce grain boundary migration in

chemically zoned crystals.
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Chapter 1

Introduction

The textural relationships of minerals in plutonic rocks are commonly thought to
give a great deal of information about magmatic processes. They are used to interpret
crystallization sequences (e.g. Wager and Brown, 1960; Jackson, 1961; Hunter, 1987)
and to track the evolution of porosity and permeability within a crystal mush, (e.g.
Hunter, 1996). Interpretations of igneous textures also influence our understanding of
many important factors including: mass and energy transfer within a melt, melt
extraction (Hunter, 1996), and processes affecting the distribution of trace elements (e.g.
Mittlefehldt and Miller, 1983).

Igneous petrographers commonly use crystal habit and impingement relationships to
determine the crystallization paths of plutonic rocks. Most textural interpretations, such
as order of crystallization, are obtained by applying logical principles to grain boundary
relationships observed in thin-section. For example, when a grain boundary is shared by
two crystals that significantly differ in crystal face development, (i.e. a euhedral crystal
and an anhedral crystal) the euhedral crystal is commonly interpreted as having formed
first.

Figure 1 illustrates an ideal situation in which two crystals share a grain boundary.
Crystal A is euhedral and appears to have grown unhindered. The boundary of crystal B
is interrupted by crystal A, making it appear as if crystal A interfered with its growth. If
this process interpretation is correct, then crystal A was present in the crystal mush before

crystal B.



Figure 1. In a plutonic rock, the grain boundary between crystals A and B would suggest
that crystal A formed first and crystal B formed second. (Note; in a metamorphic rock,
crystal B might be interpreted as having formed first, and crystal A second.)



Many large mafic intrusions contain rocks with poikilitic texture (similar to the
cartoon texture shown in Figure 1) in which euhedral crystals are contained within larger
anhedral host crystals. Figure 2 includes photomicrographs of plagioclase crystals from
the Stillwater Complex of Montana. Figure 2(A) was taken in plane polarized light, and
Figure 2(B) was taken in cross polarized light. Both photomicrographs show that
plagioclase crystals have developed 120° dihedral angles that may have been achieved
through grain boundary migration. Figure 2(B), taken under cross polarized light, reveals
that the largest crystal in the field of view (centrally located) is also concentrically zoned.
Without the ability to observe paths of crystallization, however, unassailable conclusions
cannot be drawn about the textural evolution of crystal mushes.

Microstructural interpretation forms the basis of modern cumulus theory and has been
used to interpret Skaergaard, Stillwater, and Bushveld magmatic evolution (Barnes and
Maier, 2002; Hunter, 1987; Jackson, 1954; Jackson, 1961; McBirney, 1995; Tacinelli and
Naslund, 1990; Thayer and Jackson, 1972; Wager and Brown, 1960). Textural
interpretations, however, are based upon the appearance of grain boundary geometries
within plutonic rocks. These boundaries may or may not resemble the grain boundary
relationships present during crystallization. Without the ability to observe crystallization
processes in situ, interpretations based upon final textures cannot be fully proven.

While the high temperatures and pressures of large intrusions prohibit the direct
observation of natural, silicate crystallization processes, work by Means and Park (1994)
demonstrated that low-temperature synthetic crystallization experiments provide a
“window” to the types of processes that may be taking place during plutonic textural

evolution. The synthetic igneous analogue developed by Means and Park (1994) is a



Figure 2. Photomicrographs of plagioclase crystals from the Stillwater Complex of
Montana. Photomicrograph (A) was taken in plane polarized light and photomicrograph
(B) was taken of the same crystals in cross polarized light. Both photomicrographs show
grain boundaries with 120° dihedral angles, indicating some degree of grain boundary
adjustment. Cross polarized light in photomicrograph B also reveals that the largest
plagioclase crystal (in the middle of the field of view) is concentrically zoned.



three-component, eutectic system in which crystallization occurs below 100 °C and is
observable in situ with a microscope. Means and Park (1994) observed grain and phase
boundary migration in the presence of synthetic melt, and if these processes are common
in igneous systems, then interpretations of magmatic evolution based upon textural

relationships may need revision.

1.1 Purpose

In order to evaluate the importance of grain boundary migration during the textural
evolution of a crystal mush, a microstructural link is needed between the process of grain
boundary migration and final igneous textures. In natural magmatic systems, plagioclase
may provide a microstructural link; plagioclase solid solution enables the process of
chemical zoning and preserves a record of crystal morphology (and chemistry) during
growth. If the occurrence of grain boundary migration is common, its “signature” should
be reflected in the zoning patterns of plagioclase crystals.

Grain boundary migration induced during the growth of synthetic, chemically zoned
crystals might produce a grain boundary migration ‘“signature” that could then be
compared to plagioclase zoning patterns in igneous rocks. Thus, information about
whether or not the process is significant during magmatic textural evolution might be
revealed.

While the ultimate goal of this research is to evaluate the significance of grain
boundary migration using new experimental techniques, this thesis addresses important
intermediary steps towards this goal. For the purpose of this thesis: (1) the ability of a

synthetic binary solid solution to model igneous textural evolution was evaluated, and (2)



experiments were designed in which the crystallization of a synthetic binary solid

solution would record the process of grain boundary migration.

1.2 Background: (1) High temperature laboratory crystallization of feldspars

Many crystallization experiments have been conducted for the purpose of
investigating magmatic phase relations (e.g. Bowen, 1913), but the works of Lofgren
(1974), Kirkpatrick, et al. (1979), and Muncill and Lasaga (1988) stand out in the use of
high temperature experiments to investigate the development of plutonic igneous textures
involving feldspars.

Lofgren (1974) used an internally heated pressure vessel to investigate the
development of plagioclase crystal morphology under isothermal conditions.
Experiments were conducted at 5 kb water pressure and at temperatures between 500 and
1200 °C; plagioclase compositions between 0 and 25% anorthite were tested. In the
experiments, samples were rapidly cooled to a predetermined temperature below the
liquidus. Crystallization was allowed to proceed for 1 to 3 days; samples were then
quenched to 100 °C within 7 minutes. Undercoolings of 100 to 150 °C produced a
variety of crystal morphologies from equant (least amount of undercooling) to acicular,
skeletal, dendritic, and spherulitic (greatest amount of undercooling). The transition from
one type of morphology to another was gradual, and sequential crystal forms often
occurred together. Lofgren explained his results in terms of the ratio between the
diffusion coefficient of components rejected during growth (D), and growth rate (G).

When D/G approached or exceeded 1, for example, plagioclase crystals appeared tabular.



When D/G became much less than 1, plagioclase crystal morphology approached the
spherulitic form.

In 1979, Kirkpatrick et al. introduced the technique of plagioclase crystal growth
using a microscope heating stage. Crystals with compositions of An;sAb,s and AnspAbso
were observed and photographed during growth (with a motion picture camera) at
temperatures near the liquidus in an argon atmosphere. Crystal morphology, growth rate,
and attachment kinetics were studied during the experiments. Undercoolings of less than
40 °C in crystals of Anss composition produced faceted, euhedral crystals; undercoolings
of 40 and 50 °C produced crystals with skeletal morphology; undercoolings of 50 to 100
°C produced dendritic, spherulitic or fibrillar (needle-like crystals radiating from the
surface of the sample) crystals. The crystal morphologies observed with the microscope
heating stage were similar those created by Lofgren in 1974. In general, growth rates
were observed to increase with increasing undercoolings below the liquidus until a
maximum was reached; growth rates would then decrease with increasing undercoolings.
The development of impingement relationships were observed but not studied; they were
considered an impediment to the measurement of true growth rates.

In 1983, Tsukamoto and Sunagawa observed the crystallization of anorthite and
diopside using a high temperature (up to 1527 °C) growth cell. Crystal growth
mechanisms were examined; both layer growth and surface roughening were observed to
take place during the growth of a single crystal.

Using an internally heated pressure vessel, Muncill and Lasaga (1988) explored the
kinetics of crystal growth within the plagioclase binary solid solution. Plagioclase

crystals (Ansp and An;o) were grown at 2 and 5 kbar at temperatures between 550° and



1100 °C. Experiments were conducted with the purpose of examining the mechanisms of
crystal growth, and determining rate-controlling factors. They formed the following
conclusions about plagioclase growth rates: (1) at small degrees of undercooling, crystal-
melt interface reactions were the primary rate controlling processes, and (2) at high
degrees of undercooling, the kinetics of advective and diffusive mass transfer were the
primary processes controlling growth rate.

Experiments using pressure vessels can be conducted within large temperature and
pressure ranges similar to those within a magma chamber, but they do not allow the
observation of paths of crystallization. Processes like grain and phase boundary
migration may take place but cannot be studied. While experiments conducted by
Kirkpatrick et al. (1979) used a microscope heating stage, and Tsukamoto and Sunagawa
(1983) used a high temperature growth cell to observe crystallization, textures

characteristic of large igneous plutons were not targeted products.

1.3 Background: (2) synthetic crystallization experiments

Crystallization experiments using synthetic materials with low melting points can
circumvent the “black box” problem of high-temperature vessel experiments and allow in
situ observation of crystallization processes. In addition, the textural evolution of a low-
temperature synthetic system can be studied using a petrographic microscope (e.g.
Tsukamoto, 1983; Means and Park, 1994). Experiments using synthetic organic
materials will differ from those using silicates, however, and caution must be exercised

when drawing conclusions about natural systems from the synthetic system data.



Means and Park (1994) used the synthetic compounds ammonium thiocyanate,
ammonium chloride, and diammonia tetrathiocyanatocobaltate to create a three-
component, eutectic system in which the solid phases crystallized below 100 °C. Solid
phases were crystallized from an aqueous solution and resulted in textures similar to
plutonic cumulates, and paths of crystallization were observed in situ with a petrographic
microscope. Using this new synthetic system, grain boundary migration was observed
between two crystals of NH4SCN. An example of textures produced by Means and Park

(1994) is shown in Figure 3.



Figure 3. Three-component system created by Means and Park (1994). The system
includes a white (W) phase (NH4SCN); cube (C) phase (NH4Cl); and blue (B) phase
(NH4)2[Co(SCN)4] - nH,0.
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Chapter 2

Mineralogy and Crystal Chemistry

Plagioclase Solid Solution

Potassium — Ammonium Thiocyanate Solid Solution

Morphology, crystallography, crystal chemistry, optics, and phase relations are
attributes that may affect grain-to-grain interactions, or the manner in which final textures
are observed. In order to facilitate a direct comparison between plagioclase and (K,
NH4)SCN, characteristics common to plutonic plagioclase are first discussed, and then
those of the (K, NH4)SCN solid solution. There are many striking similarities between
plagioclase and the thiocyanates — particularly in morphology and twinning.
Thiocyanate compounds are not silicates, however, and the implications of this difference

are discussed at the end of the chapter.

2.1 Plagioclase: Albite (NaAlSi;Os) — Anorthite (CaAlSi,Os)

2.1a Morphology

The development of plutonic textures near equilibrium may be largely controlled by
surface energy minimization (Hunter, 1987). For this reason, similarities in crystal
morphology between plagioclase and a synthetic analogue may be important in
determining the efficacy of the analogue.

When isolated plagioclase crystals grow unrestricted within a melt near equilibrium,
they form crystalline laths elongated in the ¢ direction (Figure 4 A; Lofgren, 1974). This

type of crystal morphology is characteristic of development within large igneous plutons.

11



Differences in cooling rate and nucleation characteristics, however, can produce
plagioclase crystals with a wide range of morphologies. Laboratory experiments have
produced skeletal, fibrilar, spherulitic, and dendritic plagioclase crystals by crystallizing
silicate material at temperatures 40 to 200 ‘C below the solidus (Lofgren, 1974;
Kirkpatrick, et al., 1979; Muncill and Lasaga, 1988).

Igneous plagioclase crystals are commonly twinned (Figure 4 B, C). Pericline and
Carlsbad twins are specifically found in intermediate and calcic compositions of

plagioclase while albite twins are common in all compositions (Nesse, 1991).

2.1b Plagioclase crystallography

Table I: Plagioclase symmetry elements', and unit cell parametersz.

Crystal system Triclinic
Crystal class 1
Albite space group C1
Anorthite space group P1
Unit cell parameters a(A) b (A) c(A) B
Albite 18.14 12.8 7.16 116.4
Anorthite 8.18 12.87 7.08 115.8
'Ribbe, 1983
*Kroll, 1983

During the cooling of plagioclase feldspars, exsolution and ordering processes create
finely inter-grown atomic microstructures that effectively prevent good resolution of the
plagioclase unit cell by x-ray diffraction (Kroll, 1983). While anorthite has a unit cell in
which ¢ ~14 A and albite has a unit cell in which ¢ ~7 A (Figure 5), the similar dy —

spacings of anorthite and albite render it impossible to resolve the Al and Si distributions
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Twin plane
(©)

(4)

Figure 4. Albite morphology and twinning. (A) Albite crystallographic axes (a, b, c),
optic axes (X, Y, Z), and crystal forms (after Nesse, 1991). (B) Photomicrograph of
plagioclase with polysynthetic albite twins; cross polarized light (From Nesse, 1991). (C)
Ilustration of the albite twin law (After Blackburn and Dennen, 1994).

Fig. 5. Principal feldspar lattice structures. The open circles represent lattice points and
the filled circles represent pseudo-lattice points. The unit cells vary from ¢ =7 A to ¢ =
14 A, (From Ribbe, 1983).

13



in calcic plagioclase with a ¢ ~ 14 A cell and P T space group; (Ribbe, 1983). However,
bulk crystals can be analyzed in such a way that structural and compositional variations
are taken into account for the determination of an average unit cell in which ¢ = 7 A,
(Kroll, 1983). Parameters describing the average structures of albite and anorthite are

presented in Table 1.

2.1¢ Crystal chemistry

The feldspar crystallographic structure is characterized by a “crank-shaft” formation
(Figure 6) in which corner-sharing AlO4 and SiOy tetrahedra are infinitely linked (Ribbe,
1983). AT4Og generally describes the feldspar chemical formula; “A” represents
monovalent or divalent cations with radii greater than 1 A, and “T” represents Al or Si.
The A cations occupy large spaces within the tetrahedral framework and include: Ca, Ba
(alkaline-earth feldspars); Na, K (alkali feldspars); K, Ba (hyalophanes); Na, Ca
(plagioclase feldspar series). The A polyhedral sites can also contain trace amounts of
Sr**, Rb", Cs*, Pb*", Fe**, and even NH,4" (Ribbe, 1983).

The feldspar crystal structure is noticeably affected by the size of the cation
occupying the A site. Celsian (BaAl,Si,03), for example, incorporates a large Ba cation
with a radius of 1.4 A and a unit cell defined by ¢ ~ 14 A with a high degree of
symmetry. In contrast, anorthite incorporates the smaller Ca cation into its framework.
Although it has a unit cell also defined by ¢ ~ 14 A, the smaller ionic size results in a
partially collapsed framework (Figure 7) and a loss of symmetry (Ribbe, 1983).

Feldspars with an Al:Si ratio of 1:1 (i.e. anorthite) have a general formula of

A**A1,S1,05. In order to maintain a neutral charge balance, Al and Si distribute within

14



Figure 6. In all feldspars, four-membered tetrahedral rings are arranged in a double-
crankshaft structure that runs parallel to a. (A) Four silicon-oxygen tetrahedra arranged
in a ring; (B) Stylized version of the four-membered ring in which “U” indicates an
upward-pointing tetrahedron, and “D” indicates a downward-pointing tetrahedron,. (C)
The four-membered tetrahedral rings are arranged in a double-crankshaft chain that is
characteristic of all feldspars (After Ribbe, 1983).

Figure 7. The Al-Si ordering pattern is the same in both celsian and anorthite, but the
small size of the Ca cation in anorthite (compared to Ba in celsian) causes it to have a
partially collapsed framework. Open circles represent Al and dots represent Si. (A)
Celsian crystal structure. (B) Primitive anorthite crystal structure.

15



the framework according to the aluminum avoidance principle (Loewenstein, 1954). Due
to the apparent instability of Al-O-Al linkages, Al and Si tetrahedra remain isolated; Al
tetrahedra are surrounded by Si tetrahedra, and vice versa, (Ribbe 1983). As a result, Al
and Si do not diffuse easily within the plagioclase crystal structure — a fact that helps
explain the abundance of metastable plagioclase structures such as peristerite

intergrowths (Kroll, 1983).

2.1d Optics

In plane polarized light, plagioclase crystals appear colorless and have low (positive
or negative) relief relative to quartz (or thin-section epoxy). Plagioclase refractive index
systematically increases with increasing anorthite content and can be used to determine
composition (within 2%), (Chayes, 1952). In cross polarized light, maximum
interference colors of crystals 30 p m thick appear first order gray to white (most
compositions) or first order yellow for extremely calcic plagioclase. Birefringence (albite
~ 0.007; anorthite ~ 0.013) and 2V vary systematically with anorthite content, but do not
provide the resolution needed for accurate compositional determination (Nesse, 1991).

Elongate plagioclase crystals exhibit oblique extinction, and extinction angle is
commonly used to determine composition (although results are less accurate than those
from refractive index techniques), (Noble, 1965). Two of the most common methods for
determining composition from extinction angles include the Michel-Levy method and the
Carlsbad-albite method. In the Michel-Levy method, polysynthetically twinned
plagioclase crystals are oriented so that the (010) composition plane is vertical. In this

orientation, both composition and indicatrix position can control the observed extinction
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angle; thus, several grains are measured and the maximum angle obtained is compared to
a chart correlating extinction angle with composition.

The Carlsbad-albite method is similar to the Michel-Levy method; albite extinction
angles are measured in both Carlsbad twins and then compared to a chart that correlates
composition with extinction angle. Using this method, only one grain with the proper

orientation is needed to determine anorthite composition (Nesse, 1991).

2.1e Chemical zoning

Zoning patterns in plagioclase crystals are optically visible, and a large variety of
patterns have been observed.  Plagioclase crystals with the following zoning patterns
have been described in rocks of plutonic and/or volcanic origin: (1) normal or reverse
(normal refers to crystals with an An-rich core and Ab-rich rim, while reverse refers to
the opposite compositional trend); (2) continuous or discontinuous (continuously zoned
plagioclase crystals exhibit a smooth transition in composition from core to rim, while
discontinuously zoned crystals contain abrupt changes in composition); (3) sector (hour-
glass zoning pattern) (4) oscillatory zoning (discontinuous, repeated changes in
composition), and (5) convolute zoning (erratic patterns with non-uniform thickness),
(MacKenzie et al., 1991). Some crystals can also be described as concentrically zoned;
layers of compositional uniformity give the appearance of euhedral, concentric growth
and provide a textural history of crystal growth (Pearce and Kolisnik, 1989). In Figure 8§,
an anhedral crystal of plagioclase is concentrically zoned indicating a euhedral growth

history (Hibbard, 1995).
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Fig. 8. Concentric zoning of an anhedral crystal indicates prior euhedral growth (from
Hibbard, 1995).
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2.1f Liquidus phase relations

Plagioclase forms a binary solid solution between NaAlSizOg (albite) and CaAl;Si,0g
(anorthite) in which Na™ and Ca®" can substitute within the plagioclase crystal structure.
NaAlSi;0Os, and CaAl,Si;Og melt at 1,100 and 1,550 °C respectively (Bowen, 1913), and
plagioclase crystals of intermediate composition melt over a range of temperatures
between these two values. Figure 9 illustrates a phase diagram constructed for the albite-
anorthite (plagioclase) system.

Large, igneous plutons take millions of years to crystallize—a fact that often makes
the assumption of equilibrium conditions practical (e.g. Smith, 1983; Hunter, 1987) in the
investigation of plagioclase phase relations. Equilibrium, defined by AG = 0, is a
thermodynamic condition in which the free energy change of a system is equal to zero.
Temperature and pressure are constant at equilibrium, causing a crystal mush to
crystallize and melt binary solid solution components at the same time. Net changes in
crystal/melt volume do not take place, only crystals stable at a given temperature and
pressure are present. The phase diagram presented in Figure 9 includes equilibrium
phase relations for the system NaAlSi;Og (Albite) — CaAl,Si,Os (Anorthite).

In order to explain chemical zoning patterns characteristic of plutonic plagioclase, a
revised model of equilibrium — or “local equilibrium” — is applied to the binary solid
solution model (Thompson, 1959). This model of plutonic development recognizes that,
while a large AT is required to crystallize a pluton over millions of years, the effective AT
at any single point in time (even days or years) is effectively zero. Each molecular
addition to a plagioclase crystal is effectively in equilibrium with the available melt, and

its chemical composition is determined by the temperature, pressure, and chemical
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Figure 9. Equilibrium phase diagram for the system NaAlSi;Os (Albite) — CaAl,Si,03
(Anorthite) at constant pressure. The dashed lines represent metastable phase boundaries,
(from Smith, 1983).
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composition of the melt at that time. However, when the temperature of a pluton drops,
molecular layers may become chemically isolated and unable to react with melt, causing
a change in the chemical composition of the melt. The next plagioclase layers to form
will be in equilibrium with the new melt composition, and are chemically distinct from
the previous molecular layers.

Crystals produced by the complete crystallization of a pluton containing plagioclase
binary solid solution components will not be uniform in composition. Instead, they will
change composition from core to the rim and form normally zoned plagioclase crystals.
These crystals characteristically decrease in calcium content from core to the rim, and
increase in sodium content from core to rim. The net result is a reflection of

crystallization under disequilibrium conditions.

2.1g Sub-solidus phase relations

Thermal history is a determining factor in the formation of zoned crystals (as
described above), as well as crystal structure. The phase diagram presented in Figure 9
illustrates a model in which the stable assemblage of low albite and P-anorthite is the
final assemblage of all plagioclase feldspars under equilibrium conditions (Smith, 1983).
All other plagioclase structures are relicts of high temperature conditions, preserved by
kinetic barriers, (Smith, 1983). Structural changes in the plagioclase feldspar system can
take place by diffusive polymorphic transitions (e.g. from monalbite to high albite) or by
displacive polymorphic transitions (e.g. from body-centered (I) anorthite to primitive (P)

anorthite). The re-ordering of Al and Si within the feldspar crystallographic framework
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results in the formation of a glide plane and can take place because of anorthite

pseudosymmetry (Ribbe, 1983)

2.2 (K, NH4)SCN Solid Solution
2.2a Morphology

Synthetic crystals produced by the (K, NH4)SCN solid solution form crystalline laths
elongated in the c direction. Aspect ratios vary with composition and range from 1:2
(NH4SCN) to > 1:10 (KSCN). Ammonium thiocyanate (Figure 10) can undergo
transformation twinning (Means, 1992), and crystals containing K within the (K,

NH4)SCN solid solution have also been observed (in this study) to polysynthetically twin.

2.2b Crystallography

Table II: (K, NH4s)SCN symmetry elements and unit cell parameters

System Space group
KSCN Orthorhombic' | Pbcm*
(room temp.)
NH;SCN Monoclinic' P2, /c*
(room temp.)
Unit cell a(A) b(A) c(A) B
*KSCN 6.7 6.6 7.6 -
(room temp.)
*NH,SCN 4 7 13 97.8°
22 °O)

'Smirnov et al., 1994

2Klug, 1933; Yamada and Watanabé, 1963
’Klement and Pistorius, 1976

* Akers et al., 1967

** Bats and Coppens, 1977
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Figure 10. Microphotograph of NH4SCN and melt in plane polarized light (Courtesy of
Dr. W. Means).
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The unit cell parameters of the pure end-members KSCN and NH4SCN differ slightly
at room temperature. At 17 °C, KSCN is orthorhombic while NH4SCN is monoclinic
with a beta angle of ~78°. As temperature increases, the unit cell volumes of compounds
within the (K, NH4)SCN solid solution also increase (Smirnov, 1994). Data on the
variation of cell parameters and volumes with temperature and composition, acquired in a

neutron diffraction study by Smirnov et al. (1994), are presented in Figure 11.

2.2¢ Crystal chemistry

The SCN anion is essentially linear with S and C linked by a single bond, and C and
N linked by a triple bond (Akers et al., 1967). K~ and NH," have similar Pauling radii —
1.48 A and 1.33 A respectively, and the contribution of charge by the NH," cation to the
SCN anion is 0.5 to 0.6 e (a value of 1.0 represents a pure ionic model, Akers et al.,
1967). The charge contribution of the K" cation, however, is not known. KSCN and
NH4SCN have similar crystal structures (Klement, 1976) and Figure 12 includes a

stereoscopic view of the NH4SCN crystal structure.

2.2d Optics

In thin-section, ammonium and potassium thiocyanate crystals are colorless in
plane polarized light and interference colors range from extreme white (NH4SCN) to
third-order (KSCN) in samples created for use in synthetic experiments. The large range

in retardation is due to variations in thickness and birefringence.
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Figure 11. (A) Plot demonstrates the effect of temperature on unit cell volume for
several compositions within the (K, NH4)SCN solid solution. (B) Illustrates the
differences in unit cell parameters a, b, c, and p for various compositions within the (K,
NH4)SCN solid solution, (Smirnov ef al., 1994).
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Fig. 12. Representation of the NH4SCN crystal structure (two orientations) in which blue
spheres represent N, gray spheres represent C, yellow spheres represent S, and white

spheres represent H. (Courtesy of Ian Scott; based upon data from Bats and Coppens,
1976).
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The optical relief of ammonium and potassium thiocyanate is high, but changes
considerably under plane polarized light depending upon orientation. Figure 13 (A, B,
and C) includes three photographs: (A) crystals of pure KSCN with third order
interference colors in an aqueous solution (black), (B) crystals of pure NH4SCN with
extreme white interference colors, and (C) crystals with third order interference colors

formed by the (K, NH4)SCN solid solution.

2.2e Phase relations

Mixtures of KSCN and NH4SCN form a binary solid solution; pure KSCN and
NH4SCN melt at 172.3 and 149.6 °C respectively (Alfa Aesar) and crystals of
intermediate composition hypothetically melt over a range of temperatures between these
two values (Figure 14). The (K, NH4)SCN solid solution is continuous for all
compositions between pure KSCN and pure NH4SCN at temperatures above —193 °C
(Smirnov et al., 1994). (K, NH4)SCN solid solutions undergo solid-solid phase
transitions from tetragonal (just below the liquidus) to orthorhombic with decreasing
temperature. Ammonium-rich compounds make a second transition from orthorhombic
to monoclinic at ~ 85 °C. Below —193 °C, a solvus exists; crystals of mixed composition
between KSCN and NH4SCN can occur in monoclinic and orthorhombic phases.

The phase diagram of (K, NH4)SCN phase relations (Figure 14) is constructed from
melting points provided by Alfa Aesar, and phase transition data from Smirnov et al.
(1994). If a sample within the (K, NH4)SCN solid solution has a molar composition of
(Xk) = 0.75, and is held at a temperature of 0 °C, (represented on the diagram by an “a”)

it will theoretically occur in orthorhombic crystalline form. If this sample is
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Figure 13A. Microphotograph of crystals of KSCN under cross polarized light. Black
areas include melt and extinct crystals.

Figure 13B.  Microphotograph of crystals of NH4SCN showing extreme white
interference colors.
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Figure 13C. Photomicrograph of crystals of (K, NH4)SCN solid solution, with
composition Xk = 0.80, under cross polarized light.
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Figure 14. Phase diagram constructed from melting point data (Alfa Aesar) and phase
transition data (Smirnov et al., 1994).
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heated until it reaches position “b”, then it will undergo a solid-solid phase transition
from orthorhombic (II) to tetragonal (I). The composition of the crystals will remain the
same and reflect the starting composition. With continued heating to position “c”, the
crystals will begin to melt. At this point, the first melt to form will have a composition
more ammonium-rich than the original solid (represented by marker “1”), and the
remaining crystals will be more potassium-rich (represented by marker “2”).  As heat to
the system is added, the melt composition will move up the liquidus, and the composition
of the crystals will move up the solidus until the melt composition reaches the same
composition as the original crystalline starting material (position “d”).

Solid-phase transitions of compounds within the (K, NH4)SCN solid solution result in
the ordering of ions with decreasing temperature. The transition from tetragonal to
orthorhombic KSCN, for example, is due to the ordering of SCN ions. An analogous
transition in NH4SCN is due to the ordering of SCN and two NH, ions; another two NHy4
ions are ordered during the transition from orthorhombic to monoclinic, (Smirnov et al.,

1994). Figure 15 illustrates the ordering of SCN ions in KSCN.

2.3 Comparison between plagioclase and its (K, NH4)SCN analogue

The plagioclase binary solid solution produces crystalline laths elongated in the ¢
direction (Lofgren, 1974) with aspect ratios of ~ 1:1.6. Maximum interference colors
range from first order gray to first order yellow for crystals 30 um thick (Nesse, 1991),
and extinction angle varies systematically with composition (Noble, 1965). Plagioclase
polymerizes during crystallization and incorporates corner-sharing AlO4 and SiOy4

tetrahedra into a characteristic “crank shaft” crystal structure (Ribbe, 1983). Ionic bonds
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Figure 15. SCN ordering (in KSCN) is temperature dependent and causes volume
changes near the phase transition temperature: (A) Thiocyanate ions (S, C, N) in a room
temperature arrangement; (B) Thiocyanate ions (S, C, N) in a high temperature (160 °C)
arrangement (From Yasusada and Watanabe, 1963).

32



between the Al - Si tetrahedra and Ca*" or Na" cations make coupled substitution and
chemical zoning possible.

The (K, NH4)SCN solid solution produces crystalline laths elongated in the c
direction with aspect ratios of ~ 1:2. Maximum interference colors range from extreme
white (greater than fifth order) to third order, with a large range in retardation due to
variations in thickness and birefringence. Ionic bonding between monovalent cations (K"
and NH;") and the SCN™ anion make substitution and chemical zoning possible. The (K,
NH4)SCN solid solution does not require coupled substitution to maintain a neutral
charge balance.

In order for a plagioclase analogue to provide useful information about plutonic
textural evolution, similarities in morphology, chemical bonding, substitution, and
chemical zoning are necessary. Crystals produced by the (K, NH4)SCN solid solution
generally satisfy these requirements: the synthetic crystals are similar in morphology to
those of plagioclase and have similar aspect ratios; ionic bonding enables the process of
substitution and the formation of a solid solution.

One significant difference between plagioclase and (K, NH4)SCN melts is the ability
of the silicate melt to polymerize and form Si — O — Si bonds. Polymerization is a
controlling factor in the rates of nucleation; less polymerized material nucleates more
quickly than more polymerized material (Kirkpatrick, 1983). As such, the (K, NH4)SCN
synthetic system is not a good system with which to study nucleation rates in silicate
melts. However, the lack of polymerization within crystals or melt generated by the (K,
NH4)SCN solid solution should not affect the ability of the analogue to texturally evolve

in a manner similar to plagioclase.
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Chapter 3

Experimental Design

3.1 Apparatus

A stage heater apparatus was designed and developed for the purpose of conducting
low temperature crystallization experiments. The apparatus was constructed to heat and
cool synthetic compounds (within a range of 25 to 200 °C) so that crystallization
processes could be optically analyzed and digitally photographed in situ. The stage
heater apparatus contains: (1) a Eurotherm 847 temperature controller, (2) a chromel-
alumel thermocouple, (3) an Omega circular heater, (4) a custom-built, gold-plated, brass
stage heater, (5) a Leitz Wetzlar polarizing microscope, (6) a Nikon Coolpix 995 digital
camera, (7) a Dell PC, and (8) Photo PC software. A diagram of the primary constituents
is illustrated in Figure 16. The Nikon camera was specifically chosen because of an exact
fit between the screw mounting of the camera lens and that of the microscope eyepiece.

The Eurotherm 847 was used to control the temperature of the stage heater. The user
interface allowed a temperature to be selected as a target temperature, while displaying
the current temperature of the stage heater. The tip of the chromel/alumel thermocouple
was placed on top of a sample slide, and the temperature information it generated was
used by the Eurotherm to adjust the temperature by supplying power to the Omega
heater. The Omega heater surrounded a round stage heater (Figure 17); the round shape
of the stage heater was used to produce uniform temperatures. The stage heater was

machined from brass and plated with gold (to reduce reactivity with sample material and
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Leiiz Weizlar Dell conputer with
Nikon CoolPix 995 petrographic PhotoP C software

digital camera d microscope \l,

stage heater assembly

tenperature controller

Figure 16. Diagram of the stage heater apparatus including: temperature controller,
digital camera, polarizing microscope, stage heater assembly, and computer.

Cut-Away View of the Stage Heater

Expanded view
Thermocouple retaining Omega heater Brass cylinder _——— .
screw <~ ~ ~-—» Coverslip
e reniningring
e I === Sample
Thermocouple
&———= Retaining ring
m Cover s]jp
Threaded inner column €& —=> Retaining ring

Figure 17. The stage heater assembly, including: thermocouple, thermocouple retaining

screw, heater, brass cylinder, threaded inner column, cover slips, retaining rings, and
sample.
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small inside lip. The upper and lower portions of the inner hollow area were threaded so
that small rings could be threaded inside in order to support plain glass cover slips to
reduce temperature gradients and allow the optical observation of samples.

The heating apparatus was placed on the stage of a Leitz Wetzlar polarizing
microscope, and the optical lens of the camera was positioned over the eyepiece and
snugly screwed in place. The camera was linked to a Dell Dimension 8200 PC. In turn,
a batch file was created using the Nikon CoolPix source code, enabling the camera to be
completely controlled by the PC (and the user). Using this system, experiments were run
in which crystallization processes took place in thin section and were digitally
photographed at predetermined intervals using the PC’s task manager to run the camera-
controlling batch file. The result was a partially automated system for running synthetic
crystallization experiments in which the paths of crystallization were photographed at

regular intervals.

3.2 Designing a synthetic igneous analog capable of solid solution

Ammonium thiocyanate (introduced as an igneous analogue by Means and Park,
1994) was chosen as a potential solid solution end-member for the following reasons: (1)
the ionic nature of ammonium-thiocyanate bonds meant that another ion might substitute
for the ammonium cation and form a solid solution, (2) ammonium thiocyanate has a
relatively low melting point of 149.6 °C, a temperature that would not damage
petrographic equipment, (3) crystals of ammonium thiocyanate and plagioclase have

similar morphology.
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In order for another ion to substitute for NH," within the thiocyanate crystal structure,
two necessary conditions needed to be met. First, the ionic radius of a substitute needed
to differ from the original by less than fifteen percent. Second, the two ions needed to
have the same charge in order to maintain electrical neutrality (Faure, 1998).
Ammonium has a Pauling radius of 1.48 A and a charge of +1; therefore ions capable of
substituting for NH," needed to have a Pauling radius between 1.26 A to 1.70 A, and a +1
charge. Additionally, the pure end-member containing the new ion needed to have a
melting point that was obtainable with the stage heater apparatus — ideally less than 200
°C. In general, group I ions closely resemble NH," in chemical behavior (Cotton and
Wilkinson, 1980), and potential candidates for substitution with the NH," ion included
Li", Na", K", Rb and Cs". Ag" also has a similar Pauling radius and was considered.

After a thorough investigation, K" was chosen as an experimental candidate primarily
by the process of elimination. The Li" and Na" ions (Pauling radii, 0.6 A and 0.95 A
respectively) were too small; the Rb" and Cs' ions (Pauling radii of 1.48 A and 1.69 A
respectively) might have been possible, but were not used for pecuniary reasons; Ag' had
a Pauling radius of 1.26 A, but silver thiocyanate decomposes when heated minimally
above room temperature (Alfa Aesar). K', however, had a feasible Pauling radius of 1.33
A (within the required 1.26 A to 1.7 A range), and was available commercially in the
form of KSCN. Additionally, potassium thiocyanate had a melting point of 173 °C —
higher than ammonium thiocyanate (149 °C) but within the range of the stage heater.
The 173 °C melting point meant that the (K, NH4)SCN solid solution should form
intermediate composition crystals with good separation between initial and final melting

points. This last characteristic was considered advantageous, as it would allow for a wide
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temperature range in which the textural evolution of crystals could be studied in a melt-
present environment, without having to add additional compounds to the system.
The (K, NH4)SCN solid solution was the only system tested. Solid solution

compositions between KSCN and NH4SCN are defined in terms of KSCN mole fraction

(Xx) where; N n
X _ NH4SCN and X _ KSCN
K n +n NHy +n
NH4SCN KSCN NH4SCN KSCN
n = number of moles of NH SCN
NH4SCN 4
n = number of moles of KSCN
KSCN

3.3 Crystallization Experiments

Crystallization experiments were designed and executed in order to achieve two
primary goals: (1) determine the melting point intervals characteristic of the synthetic
system KSCN — NH4SCN for the construction of a T - X phase diagram, and (2)
investigate the textural characteristics of crystals formed. These experiments were used
to form a synthetic system in which textural and chemical features, as well as phase
relations, could be predictably reproduced.

Crystallization experiments were designed to overcome two primary obstacles in the
system KSCN - NH4SCN. First, crystals of all compositions within the (K, NH4)SCN
solid solution are hygroscopic (especially crystals with high Xx), and the incorporation of
water into the crystal matrix significantly lowers melting points. Second, crystals
containing ammonium thiocyanate can sublime when heated according to the equilibrium

relation,
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NH4SCN (s) <> NH;3 (g) + HSCN (g),
causing samples of (K, NH4)SCN to become enriched in Xk.

Phase relations for the KSCN — NH4SCN system were obtained both in thin section
and in sealed capillary tubes. In thin section, phase relations and the textural evolution of
solid solution crystals were easy to observe with a polarizing microscope. However,
during experimentation in thin section, the deposition of solid material on external
surfaces, and visible mass-loss from the samples indicated that the epoxy did not form an
impermeable seal at elevated temperatures.

In order to study (K, NH4)SCN phase relations in a completely sealed system, a
separate set of melting point experiments were conducted using sealed capillary tubes.
Sealed capillary tubes prevented the escape of volatile components produced by heating
of the solid solution, and provided more reliable phase relation data. However, sealed
capillary tubes proved unsuitable for the study of textural relations. The data obtained
from both types of experiments are therefore presented and discussed in the following

chapter.

3.3a Thin section preparation of a two-component system: KSCN — NH4SCN
Samples of pure ammonium thiocyanate (purity, 97.5% minimum) and pure
potassium thiocyanate (purity, 99.0% minimum) supplied by Alpha Aesar were mixed
together in varying molar proportions (ex: 3:1, 1:1, 1:3, etc.), and then ground into
powders. Small amounts of powder were placed on round microprobe slides, which in
turn were placed on a ceramic hotplate. The samples were heated until completely

melted (~180 °C), at which point the slides were tapped several times in order to decrease
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air content and unify the sample melt. At the same time, round cover slips were heated
directly on the hotplate; when the sample melted, a cover slip was immediately placed
over the sample and pressed into place. Despite the heating of the cover slips, they were
usually cooler than the sample and caused the samples to quench — forming an
irregularly shaped crystal mush. These samples were then allowed to re-melt (~180 °C),
and the cover slips were further pressed with a metal rod. Once the samples were thinned
and had a reasonably regular consistency, they were removed from the hotplate. Upon
cooling, the boundary between the top cover slip and the microprobe slide was sealed
with thin section epoxy (Figure 18) and then reheated to approximately 80 °C for 20
hours to set the epoxy.

Thin section samples were placed in the stage heater apparatus and heated until both
initial and final melting points were observed. The rates of heating varied with each
sample; the temperature of the system was increased in small increments of 2 °C to 8 °C,
after which thermal equilibration was allowed to take place before the temperature was
again increased. The distance of the system from thermal equilibrium was determined by
net changes in melt fraction; when melt fraction remained constant, the system was
considered at thermal equilibrium.
3.3b Thin section preparation of a four component system: KSCN — NH4SCN -
NH4CI — (NHy)2[Co(SCN)4] - nH»0

The system was prepared by dissolving 1 g NH4SCN, 1 g KSCN, and 0.2 g CoCl in
deionized water. The resulting solution was heated on a hotplate (approximately 85 °C)
until a small amount of solid precipitated and a saturated solution was obtained. At the

same time, a glass microprobe slide and round cover slip were also heated on the
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Sample Components

Top view

microprobe slide

epoxy

cover slip

crystalline compound

Cross-section cover slip

[ ] ¢poxy

microprobe slide

crystalline compound

Figure 18: Components of thin sections used for determining (K, NH4)SCN phase
relations.
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hotplate. Three drops of the saturated solution were placed on the slide and allowed to
lose more water by evaporation. When the sample appeared to be composed of
approximately 50% solid and 50% liquid, the hot cover slip was placed on top and
pressed into place with a metal rod. The sample was then slowly removed and allowed to
cool; after which the sample was sealed with a gel of cyanoacrylates.

The mixing of KSCN (s), NH4SCN (s), and CoCl, (s) in deionized water produces a
solution from which three solid phases can be precipitated. The solid phases include (1)
an isotropic phase containing (K, NH4)Cl, (2) elongate crystals of [(K, NH4)(CoSCN)4]

nH,0, and (3) blocky crystals of (K, NH4)SCN.

3.3¢ Sample Preparation: Sealed Capillary Tube Experiments

Solid solution crystals of composition Xk = (0.75, 0.5, 0.25, 0) were prepared by the
following procedure: (1) four capillary tubes (2 mm in diameter) were cut to 1 inch in
length, and one end of each was fused with a torch; (2) ammonium thiocyanate and
potassium thiocyanate were dissolved in deionized water in the aforementioned molar
ratios; (3) the resulting solutions were placed on a hotplate and heated to approximately
90 °C in order to evaporate the water and create crystalline material of the desired molar
ratios; (4) solid solution crystals were ground into powders and placed within the
capillary tubes; (5) the fused ends of the capillary tubes were placed in ice baths for a
period of approximately fifteen minutes in order to chill the crystals and prevent
volatilization (during the fusing of the other end of the capillary tubes); (6) upon removal

from the ice bath, the sealed ends of the capillary tubes were wrapped in wet tissue (also
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to prevent volatilization), and the open end of the capillary tubes were exposed to a torch
for approximately four or five seconds in order to fuse the ends.

Compounds prepared by the capillary-tube procedure (Figure 19) were placed within
the stage heater apparatus, and heated at an average rate of 0.5 °C per minute. A sample
of composition Xg = 1 was also prepared using this procedure, but the sample required
more than 50 hours on a hotplate (at 90 °C) to dry. The sample was therefore too
hygroscopic to render a meaningful result.

Additional capillary tube samples of Xx = 1 and Xk = 0 were prepared in a similar
manner to the procedure described above, but without steps 2 and 3. This produced “dry”
samples that were only exposed to air for a brief period (during the grinding of the
compounds and the sealing of the capillary tubes). Additionally, they were not dissolved
in deionized water to create crystals of intermediate composition. In reducing the
exposure of the compounds to water, they did not have the opportunity to absorb large
quantities of water. The melting point difference between “dry” Xx = 0 and “wet” Xg =
0, was used to evaluate the effect of the sample preparation procedure (especially steps 2

and 3) in the determination of (K, NH4)SCN phase relations.

3.4 Error

During the preparation of both thin section samples, as well as capillary samples, the
loss of NH3 (g) and HSCN (g) is a concern. In samples initially containing NH4SCN and
KSCN, the loss of NH3 could concentrate K within the remaining solid—a factor that

would explain final melting points that appear high for the starting composition.
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Capillary Tube Samples

/ thermocouple tip

13 mm

Figure 19. Diagram of a capillary tube sample, including: capillary tube, thermocouple
tip, and powdered crystals.
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However, both NH4SCN and KSCN are hygroscopic, and will absorb water directly
from the atmosphere. In turn, the addition of water to the system will lower the observed
melting points. It is also possible that (in both thin section and capillary samples)
temperature gradients within a sample may have affected observed melting points.

The optical determination of a melting point can be difficult; solid-solid phase
transitions can appear optically similar to the initiation of melting. Both types of phase
transition begin with small changes in interference colors due to volume changes in
solids, and the changes occur on a (small) scale that prevents identification until the
change has affected at least 3% of the field of view. In each experiment, initial melting
points were considered to be the temperature at which visual changes began, and included
criteria such as changes in interference colors (due to the thinning of crystals), as well as
small changes in grain boundaries. In addition, the temperature of initial melting was
confirmed by the observation of flow processes or notable increases in volume of extinct
areas (under cross polarized light). These two values for melting points form the error
bar limits depicted on both the thin section and capillary tube phase diagrams.

Final melting points were relatively easy to determine, as the microscope field of
view was black under cross polarized light. Final melting points were confirmed by
dropping the temperature of the sample 1 °C just before melting was complete (~ 98%
melt). The initiation of crystallization by the 1 °C drop in temperature was used as
evidence that the apparatus was in thermal equilibrium with the sample.

The stage heater apparatus was designed to minimize temperature gradients within
samples; thin sections, however, varied in temperature = 2 °C from the center of the

sample to the outer edge, with the coolest area in the center. This was determined by
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placing the thermocouple tip on the surface of the thin section, and then moving the tip
from the center to the outer sample boundary. Capillary tubes contained potentially
larger temperature gradients (they could not be positioned precisely horizontal within the
apparatus), and the gradient could not be measured due to the wrapping of the
thermocouple around the samples. In order to minimize the potential for error due to
temperature gradients, all data obtained from capillary tubes pertain to the observation of
material not more than 1.5 mm from the thermocouple tip.

During melting point experiments, it was important to heat samples slowly in order to
allow thermal equilibration between the circular heater, the thermocouple tip, and the
center of the samples. If heat was added to the system too quickly, the temperature
controller would appear to “overshoot”, and the measured temperature would elevate
much higher than the temperature at which the controller was set. This condition was
caused by thermal disequilibrium between the heating element and the thermocouple tip.
Additionally, it was also possible to heat the apparatus faster than the center of a sample
could equilibrate; thus melting points would appear higher than their true values. Both of
these problems were addressed by (1) adding heat at a rate that allowed the thermocouple
tip to remain in close thermal equilibrium with the heating element (i.e. 0.5 °C / minute),
and (2) adding additional heat to the system in controlled steps; the samples must have
visually appeared to have finished equilibration (with the petrographic microscope)
before another heating step was initiated.

During both thin section experiments and capillary tube experiments, it was assumed
that pressure and volume remained constant for the purpose of constructing X — T phase

diagrams. However, due to the equilibrium relationship,
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NH4SCN (s) <> NH; (g) + HSCN (g)
at elevated temperatures, the presence of gases within capillary tube samples of constant
volume probably caused an increase in pressure. In thin sections, a gas-permeable epoxy
was used, allowing both pressure and volume to change. It is not known if changes in
pressure or volume had a significant effect on the system.

The stage heater apparatus was calibrated by testing the melting point of a sample of
pure indium (purity, 99.999%; Alfa Aesar). Indium wire with a diameter of 0.5 mm was
sealed inside a capillary tube, placed within the stage heater apparatus, and heated until
melting was observed. The accepted melting point of indium is 156.17 °C (Alfa Aesar),
and the experimental melting point obtained with the stage heater apparatus was 157 °C.
This result varied less than 1°C from the published melting point of indium, and was also
less than the published accuracy of the chromel / alumel thermocouple (/-1 °C). Thus,
no correction has been applied to experimental melting point values obtained with the

stage heater apparatus.
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Chapter 4

Phase Relation Experiments with the (K, NH,)SCN Solid Solution

4.1 Phase relations produced from thin section experiments

In order to construct the phase diagram (Figure 20), thin section samples were placed
within the petrographic stage heater apparatus and heated until both initial and final
melting points were observed. Only one solid phase was observed throughout the
temperature ranges of the experiments, and temperature separation between initial and
final melting points exists for solid solution crystals with compositions between Xx =
0.75 and Xk = 0.25. A maximum separation of 66 °C between initial and final melting
points was obtained for crystals with composition Xg = 0.25. These results are consistent
with a binary solid solution model.

The melting point of pure KSCN in thin section was close (within 3.2 °C) to that of
the value for KSCN (172.3 °C) provided by the commercial supplier, Alfa Aesar, but the
same was not true for pure NH4sSCN. With an observed melting point of 115 °C, the
result obtained from thin section was more than 34 °C lower than the expected melting
point of NH4SCN (149.6 °C; Alfa Aesar). This anomalous result is attributed to the
hydroscopic nature of NH4SCN; a small amount of water may have been absorbed by the
sample during preparation. However, the melting point of NH4SCN is still higher than
the general trend suggested by the melting points of crystals with intermediate
composition, which may actually reflect a dehydration of the system during the
experiment. Crystals between Xx = 0.75 and Xk = 0.20 exhibit initial and final melting

points that decrease sharply with increasing NH4SCN content. Samples with composition
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(K, NH 4)SCN Phase Diagram
Thin-section Data
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Figure 20: Equilibrium T-X phase diagram for the pseudo-binary system KSCN -
NH4SCN obtained from observations in thin section. Blue diamonds indicate initial
melting points (or single melting points for solid solution end-members), and pink
squares represent final melting points. The error bars are described in the text. Lines
represent hypothetical phase boundaries assuming simple binary solid solution.
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Xk = 0.75 to Xk = 0.2 had initial melting points that were lower than the melting point of
pure NH4SCN (149.6 °C), and samples of composition Xx = 0.25 and Xx = 0.2 also had
final melting points below 149 °C. These low melting points are thought to be due to the
absorption of water by the thiocyanate compounds during sample preparatioin. Observed
phase relations, however, are consistent with that of a binary solid solution; pure end-
members have single melting points, and separation (43 — 66 °C) is obtained between
initial and final melting points for samples of intermediate composition (Xg = 0.75 - Xk =

0.25).

4.2 Phase relations obtained from capillary tube samples

Sealed capillary tubes provided an environment in which the loss of volatile material
was limited. Unlike the thin sections, the capillary tubes were completely sealed
preventing NH; (g) and H,0 (g) from escaping the system, and the data obtained from
these experiments is presented in Figure 21.

Separation between initial and final melting points existed for solid solution crystals
of intermediate composition between Xx = 0.75 and Xx = 0.25. In general, the system
provided phase relations consistent with a binary solid solution. The melting point of
pure KSCN in a capillary tube was close (within 5.2 °C) to that measured in thin section,
but the melting point of pure NH4sSCN was considerably lower than the expected value
(based upon data supplied by Alfa Aesar). With an observed melting point of 91 °C, the

result obtained from a capillary tube sample was more than 58 °C lower than the
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Phase Diagram: Capillary Tube Data
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Figure 21: T-X phase diagram of the (K, NH4)SCN solid solution constructed from
capillary tube data. The blue diamonds represent initial melting points, and the pink
squares represent final melting points. The red square represents the melting point of a
sample with Xxu. = 1, prepared by dissolution in deionized water. Blue circle represent
the melting points of compounds with composition, Xxm, = 0 and Xyp, = 1, that were not
dissolved in water during preparation. Yellow bars indicate melting points that were
observed more than once. The error bars were determined observationally.
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expected melting point of NH4SCN. Again, this anomalous result is attributed to the
hydroscopic nature of NH4SCN; if NH4SCN incorporated water into its crystal matrix,
the melting point of the compound would be significantly reduced. In order to test this
conclusion, the melting point of an anhydrous sample (not dissolved in deionized water
during preparation) of NH4SCN was tested; a melting point of 146 °C was obtained.
Pure, anhydrous KSCN was also tested, and a melting point of 168 °C was obtained. The
samples that were not dissolved in deionized water had melting points relatively close to
their accepted values. Samples that were prepared by dissolution in deionized water
(before crystallization), however, gave melting point values that were probably affected
by the presence of water within the crystal matrix. Future studies involving the (K,
NH4)SCN binary solid solution might obtain more predictable melting points if water

content is strictly controlled.
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Chapter 5

Textural Experiments with the (K, NH4)SCN Solid Solution

Textural experiments were conducted in order to investigate: (1) the conditions
needed to produce optically visible chemical zoning, and (2) the occurrence of grain
boundary migration. All textural experiments were conducted with thin section samples.
The textural evolution of two systems were studied: (1) the two component system
KSCN — NH4SCN; and (2) the four component system including KSCN - NH4SCN —
NH4Cl1 — (NHy)2[Co(SCN)4] - nH,0 (derived from the system created by Means and Park,

1994).

5.1 System: KSCN — NH,SCN

Chemical zoning can often be identified with a polarizing microscope; when an
unstrained crystal cannot go completely extinct at any single stage position, chemical
variations within the crystal structure may be the cause. Optical effects consistent with
chemical zoning, including variable intragranular extinction positions, were observed in
samples of composition Xx = 0.75 and Xk = 0.8 (Figure 22A and 22B) immediately after
preparation. Some of the observed extinction patterns are consistent with zoning (Figure
13C).

While the extinction patterns shown in Figure 22A are similar to those produced by
chemical zoning, it is possible that they were produced by strain during the intergrowth
of the crystals. However, no external stresses were applied to the sample during

preparation.
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Samples that appeared to contain zoned crystals were not exposed to heat (other than
that required of the preparation process); samples of (K, NH4)SCN that were heated and
cooled in the stage heater apparatus did not produce apparent zoning patterns. The lack
of zoning patterns in heated crystals of (K, NH4)SCN can be attributed to two possible
reasons. First, the escape of NHj (g) and HSCN (g) at temperatures over 150 °C could
not be entirely prevented, thus allowing a loss of NH4SCN. With complete loss of
NH4SCN, the remaining sample would retain only KSCN, and chemical zoning would
not be possible. In an effort to prevent the loss of material, the thin sections were sealed
with thin section epoxy; other sealants including cyanoacrylates, and silicate cement
(sodium silicate) were tested as thin section sealants, but thin section epoxy allowed the
least amount of material to precipitate on external surfaces (during heating). Second,
samples may not have been cooled quickly enough to produce chemical zoning; crystals
that produced patterns resembling chemical zoning were quenched in air. Samples
heated to the liquidus within the stage heater apparatus, and then cooled, may have had
time to chemically equilibrate during cooling, thus preventing chemical zoning. Future
textural studies using the (K, NH4)SCN solid solution may require the means to rapidly
cool the synthetic crystal mush within the stage heater apparatus, as well as prevent the

loss of NH; (g) and HSCN (g) at temperatures over 150 °C.
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1 mm

Figure 22A. Photomicrograph of solid solution crystals with composition Xx = 0.75
under cross polarized light. Apparent zoning patterns are marked with dashed yellow
lines.

1 —
1 mm '

Figure 22B: Photomicrograph of solid solution crystals of composition Xg = 0.75 under
cross polarized light. Apparent zoning patterns are marked with dashed yellow lines.
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5.2 Four component system: KSCN - NH;SCN — NH4Cl — (NHy4)2[Co(SCN),4] - nH,0

The addition of cobalt compounds (i.e. CoCl,) and water to the (K, NH4)SCN system
created an environment in which (K, NH4)SCN solid solution crystals could form within
a wide temperature range (approximately 30 to 80 °C) and in the presence of a large
volume of melt. The temperatures at which crystallization took place were lower than
those needed for crystals in the (K, NH4)SCN system, thus reducing the loss of NH; (g)

13

and HSCN (g). The resulting system produced grains similar to the “white phase”
(NH4SCN), “cube phase” (NH4Cl), and “blue phase” (NH4)2[Co(SCN)4] - nH,0 created
by Means and Park (1994), but the “white phase” in the new system consisted of (K,

NH4)SCN solid solution crystals instead of NH4SCN.

5.3 Results

Thin sections created with the four-component system produced solid solution
crystals and melt that illustrate grain boundary migration. Figure 23 contains three
photomicrographs (A, B, C) taken in succession during the cooling of the four-
component system (AT ~ 50 °C) from a temperature of ~80 °C. The growth of three
distinct grains, labeled 1, 2, and 3, are shown. Grains 1 and 3 are oriented with c-axes
approximately in the plane of the thin section, and grain 2 appears to be oriented with the
c-axis at a high angle from the plane of the thin section (grains are elongated along the c
— axis). Crystal faces with the highest growth rates are parallel to the c-axis. Grains 1
and 2 share a grain boundary (as do grains 2 and 3), but grains 1 and 3 are not in contact.
In Figure 23B, grains 1, 2, and 3 are clearly becoming intergrown, but the grain

boundaries still represent the original texture seen in Figure 23A. In Figure 23C,

56



however, the boundary between grains 1 and 2 has a geometry that has changed
significantly during cooling (as crystal 2 has grown at the expense of crystal 1). The
boundary between crystal 2 and crystal 3 also changes, but less significantly.

Photomicrographs 23A, 23B, and 23C illustrate the development of “white phase”
crystal faces, as well as grain boundary migration. In Figure 23A, crystals 1, 2, and 3 are
anhedral, while in Figure 23B, crystal 1 begins the development of crystal faces. In
Figure 23C, grains 1 and 3 share a single, uninterrupted crystal face. In addition, the final
texture produced by the intergrowth of crystals 1, 2, and 3 does not indicate the growth
process shown by photomicrographs A, B, and C.

Figure 24 contains another example of the textural evolution of two “white phase”
crystals from the same sample described above. Photomicrograph “A” shows two
elongated grains, marked 1 and 2, which share a small grain boundary (labeled with an
arrow). In photomicrograph B, the boundary between grains 1 and 2 has extended
laterally in a predictable manner, and the beginnings of 120° dihedral angles have
developed (one of these areas is adjacent to the arrow). In photomicrograph “C”, the
only indication that two separate grains existed is a slight difference in interference

colors.
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Figure 23. Photomicrograph contains “white phase” solid solution crystals (marked 1, 2,
and 3) and “blue phase” crystals. The black areas contain melt, and possibly extinct
grains. Changes that took place between photomicrographs A, B, and C illustrate the
intergrowth of three crystals and the beginnings of grain boundary migration (marked by
arrows).

Figure 24: Photomicrograph contains “white phase” solid solution crystals (labeled 1 and
2) and “blue phase” crystals (labeled A) under cross polarized light. The black areas
contain liquid (and possibly extinct crystals). Changes that took place between
photomicrographs A, B, and C illustrate the intergrowth of two “white phase” crystals;
the grain boundary is marked with an arrow.
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Conclusion

(1) The petrographic stage heater apparatus was built for the purpose of observing
crystallization processes in situ, and provided a suitable vessel for experimentation with

(K, NH4)SCN at temperatures below 200 °C.

(2) The use of thin section samples in the petrographic stage heater apparatus allowed the
observation of grain boundary development during cooling, including grain boundary
migration. Phase relations obtained from samples in thin section, however, appeared to
be affected by the sublimation of solid material at temperatures above room temperature.
The loss of material could be prevented in future experiments by designing a new type of

thin section that does not require epoxy.

(3) The use of sealed capillary tubes during the acquisition of phase relation data was an
effective way to prevent the loss of sample material during experimentation with the

petrographic stage heater apparatus.

(4) Compounds within the (K, NH4)SCN system formed a binary solid solution with
phase relations comparable to plagioclase, and crystals with extinction patterns consistent
with chemical zoning. However, the synthetic compounds were hygroscopic — a factor
that affected the phase relations obtained both in thin section and in capillary tubes.
While the presence of water in the (K, NH4)SCN system did not introduce an

inappropriate variable for a plagioclase analog (magmatic systems also contain water),
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less hygroscopic compounds may be useful in future experiments. While the scope of
this study was limited to compounds that were commercially available, others such as

RbSCN could be synthesized and potentially used as solid solution end-members.

(5) Thin section samples containing the four component system, KSCN - NH4SCN -
NH4Cl - (NHy4)2[Co(SCN)4] - nH,0 were grown at temperatures below 100 °C, and

provided the best medium for the study of melt-present grain boundary development.

The (K, NH4)SCN binary solid solution is an effective plagioclase analog and is
capable of producing crystals that may be chemically zoned. Additionally, crystals
within the solid solution undergo grain boundary migration. While grain boundary
migration has not yet been achieved in zoned crystals, new experiments using different
thermal histories (including quenching and annealing) may induce grain boundary
migration in zoned crystals. If accomplished, the synthetic binary solid solution could
provide valuable microstructural links between processes affecting the development of

synthetic textures and the final textures produced during igneous textural evolution.
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Photomicrograph Series III: Experiment 18
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(A.4) Stage Heater Assembly
Courtesy of John Arnason

threaded hole intersecting
groovefor small brass screw

65 mm
- >
25 mm ;
8 mm N ™ !
v v i I ~— threaded center hole
\B7Z77 3 Top Plate
4 2mm '
" | holes for brass pins
ermocouple
groove
2mm
I —o— Underside of
Top Plate
holes for brass pins
Retaining rings (6)
threaded on outside edge to fit AI_I materials b_rass
center hole with gold coating

make as thin as practical (1 to
1.5 mm thickness preferred)

Topside of
11015 Bottom Plate
———mm Y
* 25 mm " protruding brass pins for

alignment of top & bottom
plates (solder pin in hole
27 mm (unthreaded hole)  through bottom plate?)

v !—] v 3mm
R 7/////;' L @//% A Bottom Plate
25 mm

threaded center hole
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