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Abstract 

Crystallization experiments using a synthetic igneous analog have shown that 

grain boundary migration can take place in melt-present environments (Means and 

Park, 1994).  In order to evaluate the importance of metamorphic processes during the 

textural evolution of a crystal mush, microstructural evidence is needed to link them 

with final igneous textures.  In natural magmatic systems, plagioclase may provide a 

microstructural link; plagioclase solid solution enables the process of chemical zoning 

and preserves a record of crystal morphology (and chemistry) during growth.  If 

metamorphic processes are common, they should affect the zoning patterns of 

plagioclase crystals.  

A petrographic stage heater apparatus was designed and built for the purpose of 

observing crystallization processes with a new plagioclase analog.  The analog 

utilized synthetic compounds within the (K, NH4)SCN system and was crystallized at 

low temperatures (< 172 °C) for observation in situ with an optical microscope.  The 

melting points of compounds containing XK = (0, 0.25, 0.50, 0.75, 1) were measured 

in both thin section and in sealed capillary tubes in order to construct a phase 

diagram.  Compounds of intermediate composition XK = (0.25, 0.50, 0.75) created a 

continuous solid solution with initial and final melting points between 82 °C and 171 

– 175 °C in thin section, and between 108 °C and 144 °C (± 1) in sealed capillary 

tubes.  The differences between the two data sets are probably due to the absorption 

of atmospheric water and differing abilities of the two systems to contain the water.    

Textural studies of quenched compounds with composition XK = 0.8 and XK = 

0.75 resulted in the formation of crystals with concentric extinction patterns (under 
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cross polarized light) that resemble patterns produced by chemical zoning in 

plagioclase.  Grain boundary migration was also observed between chemically 

homogenous grains within the solid solution.  However, relatively slow rates of 

cooling were required to produce grain boundary migration.  While grain boundary 

migration was only observed in unzoned solid solution crystals, further crystallization 

experiments utilizing faster rates of cooling may produce grain boundary migration in 

chemically zoned crystals.    
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Chapter 1 
 

Introduction 
 

     The textural relationships of minerals in plutonic rocks are commonly thought to 

give a great deal of information about magmatic processes.  They are used to interpret 

crystallization sequences (e.g. Wager and Brown, 1960; Jackson, 1961; Hunter, 1987) 

and to track the evolution of porosity and permeability within a crystal mush, (e.g. 

Hunter, 1996).  Interpretations of igneous textures also influence our understanding of 

many important factors including:  mass and energy transfer within a melt, melt 

extraction (Hunter, 1996), and processes affecting the distribution of trace elements (e.g. 

Mittlefehldt and Miller, 1983).   

Igneous petrographers commonly use crystal habit and impingement relationships to 

determine the crystallization paths of plutonic rocks.  Most textural interpretations, such 

as order of crystallization, are obtained by applying logical principles to grain boundary 

relationships observed in thin-section.  For example, when a grain boundary is shared by 

two crystals that significantly differ in crystal face development, (i.e. a euhedral crystal 

and an anhedral crystal) the euhedral crystal is commonly interpreted as having formed 

first.   

Figure 1 illustrates an ideal situation in which two crystals share a grain boundary.  

Crystal A is euhedral and appears to have grown unhindered.  The boundary of crystal B 

is interrupted by crystal A, making it appear as if crystal A interfered with its growth.  If 

this process interpretation is correct, then crystal A was present in the crystal mush before 

crystal B. 
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Figure 1.  In a plutonic rock, the grain boundary between crystals A and B would suggest 
that crystal A formed first and crystal B formed second.  (Note; in a metamorphic rock, 
crystal B might be interpreted as having formed first, and crystal A second.)  
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Many large mafic intrusions contain rocks with poikilitic texture (similar to the 

cartoon texture shown in Figure 1) in which euhedral crystals are contained within larger 

anhedral host crystals.  Figure 2 includes photomicrographs of plagioclase crystals from 

the Stillwater Complex of Montana.  Figure 2(A) was taken in plane polarized light, and 

Figure 2(B) was taken in cross polarized light. Both photomicrographs show that 

plagioclase crystals have developed 120° dihedral angles that may have been achieved 

through grain boundary migration.  Figure 2(B), taken under cross polarized light, reveals 

that the largest crystal in the field of view (centrally located) is also concentrically zoned.  

Without the ability to observe paths of crystallization, however, unassailable conclusions 

cannot be drawn about the textural evolution of crystal mushes.  

Microstructural interpretation forms the basis of modern cumulus theory and has been 

used to interpret Skaergaard, Stillwater, and Bushveld magmatic evolution (Barnes and 

Maier, 2002; Hunter, 1987; Jackson, 1954; Jackson, 1961; McBirney, 1995; Tacinelli and 

Naslund, 1990; Thayer and Jackson, 1972; Wager and Brown, 1960).  Textural 

interpretations, however, are based upon the appearance of grain boundary geometries 

within plutonic rocks.  These boundaries may or may not resemble the grain boundary 

relationships present during crystallization.  Without the ability to observe crystallization 

processes in situ, interpretations based upon final textures cannot be fully proven.    

While the high temperatures and pressures of large intrusions prohibit the direct 

observation of natural, silicate crystallization processes, work by Means and Park (1994) 

demonstrated that low-temperature synthetic crystallization experiments provide a 

“window” to the types of processes that may be taking place during plutonic textural 

evolution.  The synthetic igneous analogue developed by Means and Park (1994) is a  
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(A) 

 
(B) 

Figure 2.  Photomicrographs of plagioclase crystals from the Stillwater Complex of 
Montana.  Photomicrograph (A) was taken in plane polarized light and photomicrograph 
(B) was taken of the same crystals in cross polarized light.  Both photomicrographs show 
grain boundaries with 120° dihedral angles, indicating some degree of grain boundary 
adjustment.  Cross polarized light in photomicrograph B also reveals that the largest 
plagioclase crystal (in the middle of the field of view) is concentrically zoned.       
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three-component, eutectic system in which crystallization occurs below 100 °C and is 

observable in situ with a microscope.  Means and Park (1994) observed grain and phase 

boundary migration in the presence of synthetic melt, and if these processes are common 

in igneous systems, then interpretations of magmatic evolution based upon textural 

relationships may need revision.   

 

1.1  Purpose 

In order to evaluate the importance of grain boundary migration during the textural 

evolution of a crystal mush, a microstructural link is needed between the process of grain 

boundary migration and final igneous textures.  In natural magmatic systems, plagioclase 

may provide a microstructural link; plagioclase solid solution enables the process of 

chemical zoning and preserves a record of crystal morphology (and chemistry) during 

growth.  If the occurrence of grain boundary migration is common, its “signature” should 

be reflected in the zoning patterns of plagioclase crystals.  

Grain boundary migration induced during the growth of synthetic, chemically zoned 

crystals might produce a grain boundary migration “signature” that could then be 

compared to plagioclase zoning patterns in igneous rocks.  Thus, information about 

whether or not the process is significant during magmatic textural evolution might be 

revealed.   

While the ultimate goal of this research is to evaluate the significance of grain 

boundary migration using new experimental techniques, this thesis addresses important 

intermediary steps towards this goal.   For the purpose of this thesis:  (1) the ability of a 

synthetic binary solid solution to model igneous textural evolution was evaluated, and (2) 
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experiments were designed in which the crystallization of a synthetic binary solid 

solution would record the process of grain boundary migration.  

      

1.2  Background:  (1) High temperature laboratory crystallization of feldspars  

Many crystallization experiments have been conducted for the purpose of 

investigating magmatic phase relations (e.g. Bowen, 1913), but the works of Lofgren 

(1974), Kirkpatrick, et al. (1979), and Muncill and Lasaga (1988) stand out in the use of 

high temperature experiments to investigate the development of plutonic igneous textures 

involving feldspars.   

Lofgren (1974) used an internally heated pressure vessel to investigate the 

development of plagioclase crystal morphology under isothermal conditions.  

Experiments were conducted at 5 kb water pressure and at temperatures between 500 and 

1200 °C; plagioclase compositions between 0 and 25% anorthite were tested.  In the 

experiments, samples were rapidly cooled to a predetermined temperature below the 

liquidus.  Crystallization was allowed to proceed for 1 to 3 days; samples were then 

quenched to 100 °C within 7 minutes.  Undercoolings of 100 to 150 °C produced a 

variety of crystal morphologies from equant (least amount of undercooling) to acicular, 

skeletal, dendritic, and spherulitic (greatest amount of undercooling).  The transition from 

one type of morphology to another was gradual, and sequential crystal forms often 

occurred together.  Lofgren explained his results in terms of the ratio between the 

diffusion coefficient of components rejected during growth (D), and growth rate (G).  

When D/G approached or exceeded 1, for example, plagioclase crystals appeared tabular.  
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When D/G became much less than 1, plagioclase crystal morphology approached the 

spherulitic form. 

In 1979, Kirkpatrick et al. introduced the technique of plagioclase crystal growth 

using a microscope heating stage.  Crystals with compositions of An75Ab25 and An50Ab50 

were observed and photographed during growth (with a motion picture camera) at 

temperatures near the liquidus in an argon atmosphere.  Crystal morphology, growth rate, 

and attachment kinetics were studied during the experiments.  Undercoolings of less than 

40 °C in crystals of An75 composition produced faceted, euhedral crystals; undercoolings 

of 40 and 50 °C produced crystals with skeletal morphology; undercoolings of 50 to 100 

°C produced dendritic, spherulitic or fibrillar (needle-like crystals radiating from the 

surface of the sample) crystals.  The crystal morphologies observed with the microscope 

heating stage were similar those created by Lofgren in 1974.  In general, growth rates 

were observed to increase with increasing undercoolings below the liquidus until a 

maximum was reached; growth rates would then decrease with increasing undercoolings.  

The development of impingement relationships were observed but not studied; they were 

considered an impediment to the measurement of true growth rates.  

In 1983, Tsukamoto and Sunagawa observed the crystallization of anorthite and 

diopside using a high temperature (up to 1527 °C) growth cell.  Crystal growth 

mechanisms were examined; both layer growth and surface roughening were observed to 

take place during the growth of a single crystal. 

Using an internally heated pressure vessel, Muncill and Lasaga (1988) explored the 

kinetics of crystal growth within the plagioclase binary solid solution.  Plagioclase 

crystals (An30 and An10) were grown at 2 and 5 kbar at temperatures between 550° and 
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1100 °C.  Experiments were conducted with the purpose of examining the mechanisms of 

crystal growth, and determining rate-controlling factors.  They formed the following 

conclusions about plagioclase growth rates:  (1) at small degrees of undercooling, crystal-

melt interface reactions were the primary rate controlling processes, and (2) at high 

degrees of undercooling, the kinetics of advective and diffusive mass transfer were the 

primary processes controlling growth rate. 

Experiments using pressure vessels can be conducted within large temperature and 

pressure ranges similar to those within a magma chamber, but they do not allow the 

observation of paths of crystallization.  Processes like grain and phase boundary 

migration may take place but cannot be studied.  While experiments conducted by 

Kirkpatrick et al. (1979) used a microscope heating stage, and Tsukamoto and Sunagawa 

(1983) used a high temperature growth cell to observe crystallization, textures 

characteristic of large igneous plutons were not targeted products.  

 

 

1.3  Background:  (2) synthetic crystallization experiments 

Crystallization experiments using synthetic materials with low melting points can 

circumvent the “black box” problem of high-temperature vessel experiments and allow in 

situ observation of crystallization processes.  In addition, the textural evolution of a low-

temperature synthetic system can be studied using a petrographic microscope (e.g. 

Tsukamoto, 1983; Means and Park, 1994).  Experiments using synthetic organic 

materials will differ from those using silicates, however, and caution must be exercised 

when drawing conclusions about natural systems from the synthetic system data.   
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Means and Park (1994) used the synthetic compounds ammonium thiocyanate, 

ammonium chloride, and diammonia tetrathiocyanatocobaltate to create a three-

component, eutectic system in which the solid phases crystallized below 100 °C.  Solid 

phases were crystallized from an aqueous solution and resulted in textures similar to 

plutonic cumulates, and paths of crystallization were observed in situ with a petrographic 

microscope.  Using this new synthetic system, grain boundary migration was observed 

between two crystals of NH4SCN.  An example of textures produced by Means and Park 

(1994) is shown in Figure 3. 
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Figure 3.  Three-component system created by Means and Park (1994).  The system 
includes a white (W) phase (NH4SCN); cube (C) phase (NH4Cl); and blue (B) phase 
(NH4)2[Co(SCN)4] · nH20. 

W

B 

C 
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Chapter 2 

Mineralogy and Crystal Chemistry 

Plagioclase Solid Solution  

Potassium – Ammonium Thiocyanate Solid Solution 

 

Morphology, crystallography, crystal chemistry, optics, and phase relations are 

attributes that may affect grain-to-grain interactions, or the manner in which final textures 

are observed.  In order to facilitate a direct comparison between plagioclase and (K, 

NH4)SCN, characteristics common to plutonic plagioclase are first discussed, and then 

those of the (K, NH4)SCN solid solution.  There are many striking similarities between 

plagioclase and the thiocyanates — particularly in morphology and twinning.  

Thiocyanate compounds are not silicates, however, and the implications of this difference 

are discussed at the end of the chapter. 

 

2.1  Plagioclase:  Albite (NaAlSi3O8) – Anorthite (CaAl2Si2O8) 
 
2.1a  Morphology 

The development of plutonic textures near equilibrium may be largely controlled by 

surface energy minimization (Hunter, 1987).  For this reason, similarities in crystal 

morphology between plagioclase and a synthetic analogue may be important in 

determining the efficacy of the analogue.   

When isolated plagioclase crystals grow unrestricted within a melt near equilibrium, 

they form crystalline laths elongated in the c direction (Figure 4 A; Lofgren, 1974).  This 

type of crystal morphology is characteristic of development within large igneous plutons.  
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Differences in cooling rate and nucleation characteristics, however, can produce 

plagioclase crystals with a wide range of morphologies.  Laboratory experiments have 

produced skeletal, fibrilar, spherulitic, and dendritic plagioclase crystals by crystallizing 

silicate material at temperatures 40 to 200 οC below the solidus (Lofgren, 1974; 

Kirkpatrick, et al., 1979; Muncill and Lasaga, 1988).  

Igneous plagioclase crystals are commonly twinned (Figure 4 B, C).  Pericline and 

Carlsbad twins are specifically found in intermediate and calcic compositions of 

plagioclase while albite twins are common in all compositions (Nesse, 1991).  

 
2.1b  Plagioclase crystallography  

 
Table I:  Plagioclase symmetry elements1, and unit cell parameters2.  

Crystal system Triclinic   

Crystal class 1   

Albite space group C1   

Anorthite space group P1   

     

Unit cell parameters  a (Å) b (Å) c (Å)    β  

Albite 18.14 12.8 7.16 116.4 

Anorthite 8.18 12.87 7.08 115.8 
1Ribbe, 1983  
2Kroll, 1983  

 
During the cooling of plagioclase feldspars, exsolution and ordering processes create 

finely inter-grown atomic microstructures that effectively prevent good resolution of the 

plagioclase unit cell by x-ray diffraction (Kroll, 1983).  While anorthite has a unit cell in 

which c ~14 Å and albite has a unit cell in which c ~ 7 Å (Figure 5), the similar dhkl – 

spacings of anorthite and albite render it impossible to resolve the Al and Si distributions 
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Figure 4.  Albite morphology and twinning.  (A) Albite crystallographic axes (a, b, c), 
optic axes (X, Y, Z), and crystal forms (after Nesse, 1991).  (B) Photomicrograph of 
plagioclase with polysynthetic albite twins; cross polarized light (From Nesse, 1991).  (C) 
Illustration of the albite twin law (After Blackburn and Dennen, 1994). 
 
 
 
 
 
 
 
 
    

 

Fig. 5.  Principal feldspar lattice structures.  The open circles represent lattice points and 
the filled circles represent pseudo-lattice points.  The unit cells vary from c = 7 Å to c = 
14 Å, (From Ribbe, 1983). 
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 in calcic plagioclase with a c ~ 14 Å cell and P1 space group; (Ribbe, 1983).  However, 

bulk crystals can be analyzed in such a way that structural and compositional variations 

are taken into account for the determination of an average unit cell in which c = 7 Å, 

(Kroll, 1983).  Parameters describing the average structures of albite and anorthite are 

presented in Table 1.    

 
2.1c  Crystal chemistry   

The feldspar crystallographic structure is characterized by a “crank-shaft” formation 

(Figure 6) in which corner-sharing AlO4 and SiO4 tetrahedra are infinitely linked (Ribbe, 

1983).  AT4O8 generally describes the feldspar chemical formula; “A” represents 

monovalent or divalent cations with radii greater than 1 Å, and “T” represents Al or Si.  

The A cations occupy large spaces within the tetrahedral framework and include:  Ca, Ba 

(alkaline-earth feldspars); Na, K (alkali feldspars); K, Ba (hyalophanes); Na, Ca 

(plagioclase feldspar series).  The A polyhedral sites can also contain trace amounts of 

Sr2+, Rb+, Cs+, Pb2+, Fe2+, and even NH4
+ (Ribbe, 1983).     

The feldspar crystal structure is noticeably affected by the size of the cation 

occupying the A site.  Celsian (BaAl2Si2O8), for example, incorporates a large Ba cation 

with a radius of 1.4 Å and a unit cell defined by c ~ 14 Å with a high degree of 

symmetry.  In contrast, anorthite incorporates the smaller Ca cation into its framework.  

Although it has a unit cell also defined by c ~ 14 Å, the smaller ionic size results in a 

partially collapsed framework (Figure 7) and a loss of symmetry (Ribbe, 1983).   

Feldspars with an Al:Si ratio of 1:1 (i.e. anorthite) have a general formula of 

A2+Al2Si2O8.  In order to maintain a neutral charge balance, Al and Si distribute within  



 15 

 

 
 

Figure 6.  In all feldspars, four-membered tetrahedral rings are arranged in a double-
crankshaft structure that runs parallel to a.  (A)  Four silicon-oxygen tetrahedra arranged 
in a ring; (B) Stylized version of the four-membered ring in which “U” indicates an 
upward-pointing tetrahedron, and “D” indicates a downward-pointing tetrahedron,.  (C)  
The four-membered tetrahedral rings are arranged in a double-crankshaft chain that is 
characteristic of all feldspars (After Ribbe, 1983).     
 
 
 
 

 
 
Figure 7.  The Al-Si ordering pattern is the same in both celsian and anorthite, but the 
small size of the Ca cation in anorthite (compared to Ba in celsian) causes it to have a 
partially collapsed framework.  Open circles represent Al and dots represent Si.  (A)  
Celsian crystal structure.  (B)  Primitive anorthite crystal structure.     
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the framework according to the aluminum avoidance principle (Loewenstein, 1954).  Due 

to the apparent instability of Al-O-Al linkages, Al and Si tetrahedra remain isolated; Al 

tetrahedra are surrounded by Si tetrahedra, and vice versa, (Ribbe 1983).  As a result, Al 

and Si do not diffuse easily within the plagioclase crystal structure — a fact that helps 

explain the abundance of metastable plagioclase structures such as peristerite 

intergrowths (Kroll, 1983).     

 

2.1d  Optics   

In plane polarized light, plagioclase crystals appear colorless and have low (positive 

or negative) relief relative to quartz (or thin-section epoxy).  Plagioclase refractive index 

systematically increases with increasing anorthite content and can be used to determine 

composition (within 2%), (Chayes, 1952).  In cross polarized light, maximum 

interference colors of crystals 30 µ m thick appear first order gray to white (most 

compositions) or first order yellow for extremely calcic plagioclase.  Birefringence (albite 

~ 0.007; anorthite ~ 0.013) and 2V vary systematically with anorthite content, but do not 

provide the resolution needed for accurate compositional determination (Nesse, 1991).  

Elongate plagioclase crystals exhibit oblique extinction, and extinction angle is 

commonly used to determine composition (although results are less accurate than those 

from refractive index techniques), (Noble, 1965).  Two of the most common methods for 

determining composition from extinction angles include the Michel-Levy method and the 

Carlsbad-albite method.  In the Michel-Levy method, polysynthetically twinned 

plagioclase crystals are oriented so that the (010) composition plane is vertical.  In this 

orientation, both composition and indicatrix position can control the observed extinction 
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angle; thus, several grains are measured and the maximum angle obtained is compared to 

a chart correlating extinction angle with composition.   

The Carlsbad-albite method is similar to the Michel-Levy method; albite extinction 

angles are measured in both Carlsbad twins and then compared to a chart that correlates 

composition with extinction angle.  Using this method, only one grain with the proper 

orientation is needed to determine anorthite composition (Nesse, 1991).  

 

2.1e  Chemical zoning 

Zoning patterns in plagioclase crystals are optically visible, and a large variety of 

patterns have been observed.    Plagioclase crystals with the following zoning patterns 

have been described in rocks of plutonic and/or volcanic origin:  (1) normal or reverse 

(normal refers to crystals with an An-rich core and Ab-rich rim, while reverse refers to 

the opposite compositional trend); (2) continuous or discontinuous (continuously zoned 

plagioclase crystals exhibit a smooth transition in composition from core to rim, while 

discontinuously zoned crystals contain abrupt changes in composition); (3) sector (hour-

glass zoning pattern) (4) oscillatory zoning (discontinuous, repeated changes in 

composition), and (5) convolute zoning (erratic patterns with non-uniform thickness), 

(MacKenzie et al., 1991).  Some crystals can also be described as concentrically zoned; 

layers of compositional uniformity give the appearance of euhedral, concentric growth 

and provide a textural history of crystal growth (Pearce and Kolisnik, 1989).  In Figure 8, 

an anhedral crystal of plagioclase is concentrically zoned indicating a euhedral growth 

history (Hibbard, 1995). 
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Fig. 8.  Concentric zoning of an anhedral crystal indicates prior euhedral growth (from 
Hibbard, 1995).    
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2.1f  Liquidus phase relations   

Plagioclase forms a binary solid solution between NaAlSi3O8 (albite) and CaAl2Si2O8 

(anorthite) in which Na+ and Ca2+ can substitute within the plagioclase crystal structure.  

NaAlSi3O8, and CaAl2Si2O8 melt at 1,100 and 1,550 °C respectively (Bowen, 1913), and 

plagioclase crystals of intermediate composition melt over a range of temperatures 

between these two values.  Figure 9 illustrates a phase diagram constructed for the albite-

anorthite (plagioclase) system.   

Large, igneous plutons take millions of years to crystallize—a fact that often makes 

the assumption of equilibrium conditions practical (e.g. Smith, 1983; Hunter, 1987) in the 

investigation of plagioclase phase relations.  Equilibrium, defined by ΔG = 0, is a 

thermodynamic condition in which the free energy change of a system is equal to zero.  

Temperature and pressure are constant at equilibrium, causing a crystal mush to 

crystallize and melt binary solid solution components at the same time.  Net changes in 

crystal/melt volume do not take place, only crystals stable at a given temperature and 

pressure are present.  The phase diagram presented in Figure 9 includes equilibrium 

phase relations for the system NaAlSi3O8 (Albite) – CaAl2Si2O8 (Anorthite).   

In order to explain chemical zoning patterns characteristic of plutonic plagioclase, a 

revised model of equilibrium — or “local equilibrium” — is applied to the binary solid 

solution model (Thompson, 1959).  This model of plutonic development recognizes that, 

while a large ΔT is required to crystallize a pluton over millions of years, the effective ΔT 

at any single point in time (even days or years) is effectively zero.  Each molecular 

addition to a plagioclase crystal is effectively in equilibrium with the available melt, and 

its chemical composition is determined by the temperature, pressure, and chemical  
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Figure 9.  Equilibrium phase diagram for the system NaAlSi3O8 (Albite) – CaAl2Si2O8 
(Anorthite) at constant pressure.  The dashed lines represent metastable phase boundaries, 
(from Smith, 1983). 
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composition of the melt at that time.  However, when the temperature of a pluton drops, 

molecular layers may become chemically isolated and unable to react with melt, causing 

a change in the chemical composition of the melt.  The next plagioclase layers to form 

will be in equilibrium with the new melt composition, and are chemically distinct from 

the previous molecular layers. 

Crystals produced by the complete crystallization of a pluton containing plagioclase 

binary solid solution components will not be uniform in composition.  Instead, they will 

change composition from core to the rim and form normally zoned plagioclase crystals.  

These crystals characteristically decrease in calcium content from core to the rim, and 

increase in sodium content from core to rim.  The net result is a reflection of 

crystallization under disequilibrium conditions.   

   

2.1g  Sub-solidus phase relations 

Thermal history is a determining factor in the formation of zoned crystals (as 

described above), as well as crystal structure.  The phase diagram presented in Figure 9 

illustrates a model in which the stable assemblage of low albite and P-anorthite is the 

final assemblage of all plagioclase feldspars under equilibrium conditions (Smith, 1983).  

All other plagioclase structures are relicts of high temperature conditions, preserved by 

kinetic barriers, (Smith, 1983).  Structural changes in the plagioclase feldspar system can 

take place by diffusive polymorphic transitions (e.g. from monalbite to high albite) or by 

displacive polymorphic transitions (e.g. from body-centered (I) anorthite to primitive (P) 

anorthite). The re-ordering of Al and Si within the feldspar crystallographic framework 
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results in the formation of a glide plane and can take place because of anorthite 

pseudosymmetry (Ribbe, 1983) 

 

 

2.2  (K, NH4)SCN Solid Solution 
 

2.2a  Morphology 

Synthetic crystals produced by the (K, NH4)SCN solid solution form crystalline laths 

elongated in the c direction. Aspect ratios vary with composition and range from 1:2 

(NH4SCN) to > 1:10 (KSCN).  Ammonium thiocyanate (Figure 10) can undergo 

transformation twinning (Means, 1992), and crystals containing K within the (K, 

NH4)SCN solid solution have also been observed (in this study) to polysynthetically twin. 

 
2.2b  Crystallography 

 
Table II:  (K, NH4)SCN symmetry elements  and unit cell parameters   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Smirnov et al., 1994 
2Klug, 1933; Yamada and Watanabé, 1963 
3Klement and Pistorius, 1976  
* Akers et al., 1967  
** Bats and Coppens, 1977  

 System Space group   

KSCN 
(room temp.) 

Orthorhombic1 

 
Pbcm*   

NH4SCN 
(room temp.) 

Monoclinic1 P21 /c**   

     
Unit cell a(Å) b(Å) c(Å) β  
2KSCN 
(room temp.) 

6.7 6.6 7.6 - 

3NH4SCN 
(22  ˚C) 

4 7 13 97.8˚ 



 23 

 
 

 

 

 

 

 

 

 

 

Figure 10.  Microphotograph of NH4SCN and melt in plane polarized light (Courtesy of 
Dr. W. Means).  
 

 
 
 
 
 
 

 

 

 

 

NH4SCN 
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The unit cell parameters of the pure end-members KSCN and NH4SCN differ slightly 

at room temperature.  At 17 °C, KSCN is orthorhombic while NH4SCN is monoclinic 

with a beta angle of ~78°.  As temperature increases, the unit cell volumes of compounds 

within the (K, NH4)SCN solid solution also increase (Smirnov, 1994).  Data on the 

variation of cell parameters and volumes with temperature and composition, acquired in a 

neutron diffraction study by Smirnov et al. (1994), are presented in Figure 11.  

 

2.2c  Crystal chemistry 

The SCN ֿanion is essentially linear with S and C linked by a single bond, and C and 

N linked by a triple bond (Akers et al., 1967).  K+ and NH4
+ have similar Pauling radii —

1.48 Å and 1.33 Å respectively, and the contribution of charge by the NH4
+ cation to the 

SCN ֿ anion is 0.5 to 0.6 e (a value of 1.0 represents a pure ionic model, Akers et al., 

1967). The charge contribution of the K+ cation, however, is not known.  KSCN and 

NH4SCN have similar crystal structures (Klement, 1976) and Figure 12 includes a 

stereoscopic view of the NH4SCN crystal structure. 

 

2.2d  Optics 
 
 In thin-section, ammonium and potassium thiocyanate crystals are colorless in 

plane polarized light and interference colors range from extreme white (NH4SCN) to 

third-order (KSCN) in samples created for use in synthetic experiments.  The large range 

in retardation is due to variations in thickness and birefringence.   
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Figure 11.  (A)  Plot demonstrates the effect of temperature on unit cell volume for 
several compositions within the (K, NH4)SCN solid solution.  (B) Illustrates the 
differences in unit cell parameters a, b, c, and β for various compositions within the (K, 
NH4)SCN solid solution, (Smirnov et al., 1994).  
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Fig. 12.  Representation of the NH4SCN crystal structure (two orientations) in which blue 
spheres represent N, gray spheres represent C, yellow spheres represent S, and white 
spheres represent H. (Courtesy of Ian Scott; based upon data from Bats and Coppens, 
1976).  
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The optical relief of ammonium and potassium thiocyanate is high, but changes 

considerably under plane polarized light depending upon orientation.  Figure 13 (A, B, 

and C) includes three photographs:  (A) crystals of pure KSCN with third order 

interference colors in an aqueous solution (black), (B) crystals of pure NH4SCN with 

extreme white interference colors, and (C) crystals with third order interference colors 

formed by the (K, NH4)SCN solid solution. 

 

2.2e  Phase relations 

Mixtures of KSCN and NH4SCN form a binary solid solution; pure KSCN and 

NH4SCN melt at 172.3 and 149.6 °C respectively (Alfa Aesar) and crystals of 

intermediate composition hypothetically melt over a range of temperatures between these 

two values (Figure 14).   The (K, NH4)SCN solid solution is continuous for all 

compositions between pure KSCN and pure NH4SCN at temperatures above –193 °C 

(Smirnov  et al., 1994).  (K, NH4)SCN solid solutions undergo solid-solid phase 

transitions from tetragonal (just below the liquidus) to orthorhombic with decreasing 

temperature.  Ammonium-rich compounds make a second transition from orthorhombic 

to monoclinic at ~ 85 °C.  Below –193 °C, a solvus exists; crystals of mixed composition 

between KSCN and NH4SCN can occur in monoclinic and orthorhombic phases.   

The phase diagram of (K, NH4)SCN phase relations (Figure 14) is constructed from 

melting points provided by Alfa Aesar, and phase transition data from Smirnov et al. 

(1994).  If a sample within the (K, NH4)SCN solid solution has a molar composition of 

(XK) = 0.75, and is held at a temperature of 0 °C, (represented on the diagram by an “a”) 

it will theoretically occur in orthorhombic crystalline form.  If this sample is  
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Figure 13A.  Microphotograph of crystals of KSCN under cross polarized light.  Black 
areas include melt and extinct crystals.

Figure 13B.  Microphotograph of crystals of NH4SCN showing extreme white 
interference colors.    

 

 

1mm 

1mm 
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Figure 13C.  Photomicrograph of crystals of (K, NH4)SCN solid solution, with 
composition XK = 0.80, under cross polarized light.       

1mm 
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Figure 14.  Phase diagram constructed from melting point data (Alfa Aesar) and phase 
transition data (Smirnov et al., 1994). 
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heated until it reaches position “b”, then it will undergo a solid-solid phase transition 

from orthorhombic (II) to tetragonal (I).  The composition of the crystals will remain the 

same and reflect the starting composition.  With continued heating to position “c”, the 

crystals will begin to melt.  At this point, the first melt to form will have a composition 

more ammonium-rich than the original solid (represented by marker “1”), and the 

remaining crystals will be more potassium-rich (represented by marker “2”).    As heat to 

the system is added, the melt composition will move up the liquidus, and the composition 

of the crystals will move up the solidus until the melt composition reaches the same 

composition as the original crystalline starting material (position “d”). 

Solid-phase transitions of compounds within the (K, NH4)SCN solid solution result in 

the ordering of ions with decreasing temperature.  The transition from tetragonal to 

orthorhombic KSCN, for example, is due to the ordering of SCN ions.  An analogous 

transition in NH4SCN is due to the ordering of SCN and two NH4 ions; another two NH4 

ions are ordered during the transition from orthorhombic to monoclinic, (Smirnov et al., 

1994).  Figure 15 illustrates the ordering of SCN ions in KSCN. 

 

2.3  Comparison between plagioclase and its (K, NH4)SCN analogue 
 
The plagioclase binary solid solution produces crystalline laths elongated in the c 

direction (Lofgren, 1974) with aspect ratios of ~ 1:1.6.  Maximum interference colors 

range from first order gray to first order yellow for crystals 30 µm thick (Nesse, 1991), 

and extinction angle varies systematically with composition (Noble, 1965).  Plagioclase 

polymerizes during crystallization and incorporates corner-sharing AlO4 and SiO4 

tetrahedra into a characteristic “crank shaft” crystal structure (Ribbe, 1983).  Ionic bonds  
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Figure 15.   SCN ordering (in KSCN) is temperature dependent and causes volume 
changes near the phase transition temperature:  (A) Thiocyanate ions (S, C, N) in a room 
temperature arrangement; (B) Thiocyanate ions (S, C, N) in a high temperature (160 °C) 
arrangement (From Yasusada and Watanabe, 1963).    
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between the Al - Si tetrahedra and Ca2+ or Na+ cations make coupled substitution and 

chemical zoning possible. 

The (K, NH4)SCN solid solution produces crystalline laths elongated in the c 

direction with aspect ratios of ~ 1:2.  Maximum interference colors range from extreme 

white (greater than fifth order) to third order, with a large range in retardation due to 

variations in thickness and birefringence.  Ionic bonding between monovalent cations (K+ 

and NH4
+) and the SCN- anion make substitution and chemical zoning possible.    The (K, 

NH4)SCN solid solution does not require coupled substitution to maintain a neutral 

charge balance. 

In order for a plagioclase analogue to provide useful information about plutonic 

textural evolution, similarities in morphology, chemical bonding, substitution, and 

chemical zoning are necessary.  Crystals produced by the (K, NH4)SCN solid solution 

generally satisfy these requirements:  the synthetic crystals are similar in morphology to 

those of plagioclase and have similar aspect ratios; ionic bonding enables the process of 

substitution and the formation of a solid solution. 

One significant difference between plagioclase and (K, NH4)SCN melts is the ability 

of the silicate melt to polymerize and form Si – O – Si bonds.  Polymerization is a 

controlling factor in the rates of nucleation; less polymerized material nucleates more 

quickly than more polymerized material (Kirkpatrick, 1983).  As such, the (K, NH4)SCN 

synthetic system is not a good system with which to study nucleation rates in silicate 

melts.  However, the lack of polymerization within crystals or melt generated by the (K, 

NH4)SCN solid solution should not affect the ability of the analogue to texturally evolve 

in a manner similar to plagioclase. 
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Chapter 3 

Experimental Design 
 
 

3.1  Apparatus 
 
A stage heater apparatus was designed and developed for the purpose of conducting 

low temperature crystallization experiments.  The apparatus was constructed to heat and 

cool synthetic compounds (within a range of 25 to 200 °C) so that crystallization 

processes could be optically analyzed and digitally photographed in situ.  The stage 

heater apparatus contains:  (1) a Eurotherm 847 temperature controller, (2) a chromel-

alumel thermocouple, (3) an Omega circular heater, (4) a custom-built, gold-plated, brass 

stage heater, (5) a Leitz Wetzlar polarizing microscope, (6) a Nikon Coolpix 995 digital 

camera, (7) a Dell PC, and (8) Photo PC software.  A diagram of the primary constituents 

is illustrated in Figure 16.  The Nikon camera was specifically chosen because of an exact 

fit between the screw mounting of the camera lens and that of the microscope eyepiece. 

The Eurotherm 847 was used to control the temperature of the stage heater.  The user 

interface allowed a temperature to be selected as a target temperature, while displaying 

the current temperature of the stage heater.  The tip of the chromel/alumel thermocouple 

was placed on top of a sample slide, and the temperature information it generated was 

used by the Eurotherm to adjust the temperature by supplying power to the Omega 

heater.  The Omega heater surrounded a round stage heater (Figure 17); the round shape 

of the stage heater was used to produce uniform temperatures.  The stage heater was 

machined from brass and plated with gold (to reduce reactivity with sample material and  
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Figure 16.  Diagram of the stage heater apparatus including:  temperature controller, 
digital camera, polarizing microscope, stage heater assembly, and computer. 

 

 

 

 

Figure 17.  The stage heater assembly, including:  thermocouple, thermocouple retaining 
screw, heater, brass cylinder, threaded inner column, cover slips, retaining rings, and 
sample. 



 36 

small inside lip.  The upper and lower portions of the inner hollow area were threaded so 

that small rings could be threaded inside in order to support plain glass cover slips to 

reduce temperature gradients and allow the optical observation of samples.   

 The heating apparatus was placed on the stage of a Leitz Wetzlar polarizing 

microscope, and the optical lens of the camera was positioned over the eyepiece and 

snugly screwed in place.  The camera was linked to a Dell Dimension 8200 PC.  In turn, 

a batch file was created using the Nikon CoolPix source code, enabling the camera to be 

completely controlled by the PC (and the user).  Using this system, experiments were run 

in which crystallization processes took place in thin section and were digitally 

photographed at predetermined intervals using the PC’s task manager to run the camera-

controlling batch file.  The result was a partially automated system for running synthetic 

crystallization experiments in which the paths of crystallization were photographed at 

regular intervals.   

  

3.2  Designing a synthetic igneous analog capable of solid solution  

Ammonium thiocyanate (introduced as an igneous analogue by Means and Park, 

1994) was chosen as a potential solid solution end-member for the following reasons:  (1) 

the ionic nature of ammonium-thiocyanate bonds meant that another ion might substitute 

for the ammonium cation and form a solid solution, (2) ammonium thiocyanate has a 

relatively low melting point of 149.6 °C, a temperature that would not damage 

petrographic equipment, (3) crystals of ammonium thiocyanate and plagioclase have 

similar morphology. 
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In order for another ion to substitute for NH4
+ within the thiocyanate crystal structure, 

two necessary conditions needed to be met.  First, the ionic radius of a substitute needed 

to differ from the original by less than fifteen percent.  Second, the two ions needed to 

have the same charge in order to maintain electrical neutrality (Faure, 1998).  

Ammonium has a Pauling radius of 1.48 Å and a charge of +1; therefore ions capable of 

substituting for NH4
+ needed to have a Pauling radius between 1.26 Å to 1.70 Å, and a +1 

charge.  Additionally, the pure end-member containing the new ion needed to have a 

melting point that was obtainable with the stage heater apparatus — ideally less than 200 

°C.  In general, group I ions closely resemble NH4
+ in chemical behavior (Cotton and 

Wilkinson, 1980), and potential candidates for substitution with the NH4
+ ion included 

Li+, Na+, K+, Rb+ and Cs+.  Ag+ also has a similar Pauling radius and was considered.   

After a thorough investigation, K+ was chosen as an experimental candidate primarily 

by the process of elimination. The Li+ and Na+ ions (Pauling radii, 0.6 Å and 0.95 Å 

respectively) were too small; the Rb+ and Cs+ ions (Pauling radii of 1.48 Å and 1.69 Å 

respectively) might have been possible, but were not used for pecuniary reasons; Ag+ had 

a Pauling radius of 1.26 Å, but silver thiocyanate decomposes when heated minimally 

above room temperature (Alfa Aesar).  K+, however, had a feasible Pauling radius of 1.33 

Å (within the required 1.26 Å to 1.7 Å range), and was available commercially in the 

form of KSCN.  Additionally, potassium thiocyanate had a melting point of 173 °C —

higher than ammonium thiocyanate (149 °C) but within the range of the stage heater.  

The 173 °C melting point meant that the (K, NH4)SCN solid solution should form 

intermediate composition crystals with good separation between initial and final melting 

points.  This last characteristic was considered advantageous, as it would allow for a wide 
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temperature range in which the textural evolution of crystals could be studied in a melt-

present environment, without having to add additional compounds to the system.   

The (K, NH4)SCN solid solution was the only system tested.  Solid solution 

compositions between KSCN and NH4SCN are defined in terms of KSCN mole fraction 

(XK) where;  

 

 

 

 

 

3.3  Crystallization Experiments 

Crystallization experiments were designed and executed in order to achieve two 

primary goals:  (1) determine the melting point intervals characteristic of the synthetic 

system KSCN – NH4SCN for the construction of a T - X phase diagram, and (2) 

investigate the textural characteristics of crystals formed.  These experiments were used 

to form a synthetic system in which textural and chemical features, as well as phase 

relations, could be predictably reproduced. 

Crystallization experiments were designed to overcome two primary obstacles in the 

system KSCN - NH4SCN.  First, crystals of all compositions within the (K, NH4)SCN 

solid solution are hygroscopic (especially crystals with high XK), and the incorporation of 

water into the crystal matrix significantly lowers melting points.  Second, crystals 

containing ammonium thiocyanate can sublime when heated according to the equilibrium 

relation,  
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NH4SCN (s) ↔ NH3 (g) + HSCN (g), 

causing samples of (K, NH4)SCN to become enriched in XK.   

Phase relations for the KSCN – NH4SCN system were obtained both in thin section 

and in sealed capillary tubes.  In thin section, phase relations and the textural evolution of 

solid solution crystals were easy to observe with a polarizing microscope.  However, 

during experimentation in thin section, the deposition of solid material on external 

surfaces, and visible mass-loss from the samples indicated that the epoxy did not form an 

impermeable seal at elevated temperatures.   

In order to study (K, NH4)SCN phase relations in a completely sealed system, a 

separate set of melting point experiments were conducted using sealed capillary tubes.  

Sealed capillary tubes prevented the escape of volatile components produced by heating 

of the solid solution, and provided more reliable phase relation data.  However, sealed 

capillary tubes proved unsuitable for the study of textural relations.  The data obtained 

from both types of experiments are therefore presented and discussed in the following 

chapter. 

 

3.3a  Thin section preparation of a two-component system:  KSCN – NH4SCN 

Samples of pure ammonium thiocyanate (purity, 97.5% minimum) and pure 

potassium thiocyanate (purity, 99.0% minimum) supplied by Alpha Aesar were mixed 

together in varying molar proportions (ex:  3:1, 1:1, 1:3, etc.), and then ground into 

powders.  Small amounts of powder were placed on round microprobe slides, which in 

turn were placed on a ceramic hotplate.  The samples were heated until completely 

melted (~180 °C), at which point the slides were tapped several times in order to decrease 
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air content and unify the sample melt.  At the same time, round cover slips were heated 

directly on the hotplate; when the sample melted, a cover slip was immediately placed 

over the sample and pressed into place.  Despite the heating of the cover slips, they were 

usually cooler than the sample and caused the samples to quench — forming an 

irregularly shaped crystal mush.  These samples were then allowed to re-melt (~180 °C), 

and the cover slips were further pressed with a metal rod.  Once the samples were thinned 

and had a reasonably regular consistency, they were removed from the hotplate.  Upon 

cooling, the boundary between the top cover slip and the microprobe slide was sealed 

with thin section epoxy (Figure 18) and then reheated to approximately 80 °C for 20 

hours to set the epoxy. 

Thin section samples were placed in the stage heater apparatus and heated until both 

initial and final melting points were observed.  The rates of heating varied with each 

sample; the temperature of the system was increased in small increments of 2 °C to 8 °C, 

after which thermal equilibration was allowed to take place before the temperature was 

again increased.  The distance of the system from thermal equilibrium was determined by 

net changes in melt fraction; when melt fraction remained constant, the system was 

considered at thermal equilibrium.   

 
3.3b  Thin section preparation of a four component system:  KSCN – NH4SCN – 
NH4Cl – (NH4)2[Co(SCN)4] ּ  nH20 

 
The system was prepared by dissolving 1 g NH4SCN, 1 g KSCN, and 0.2 g CoCl in 

deionized water.  The resulting solution was heated on a hotplate (approximately 85 °C) 

until a small amount of solid precipitated and a saturated solution was obtained.  At the 

same time, a glass microprobe slide and round cover slip were also heated on the  
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Figure 18:  Components of thin sections used for determining (K, NH4)SCN phase 
relations. 

 

 

 
Top view 
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hotplate.  Three drops of the saturated solution were placed on the slide and allowed to 

lose more water by evaporation.  When the sample appeared to be composed of  

approximately 50% solid and 50% liquid, the hot cover slip was placed on top and 

pressed into place with a metal rod.  The sample was then slowly removed and allowed to 

cool; after which the sample was sealed with a gel of cyanoacrylates.   

The mixing of KSCN (s), NH4SCN (s), and CoCl2 (s) in deionized water produces a 

solution from which three solid phases can be precipitated.  The solid phases include (1) 

an isotropic phase containing (K, NH4)Cl, (2) elongate crystals of [(K, NH4)2(CoSCN)4] · 

nH2O, and (3) blocky crystals of (K, NH4)SCN. 

 
 

3.3c  Sample Preparation:  Sealed Capillary Tube Experiments 

Solid solution crystals of composition XK = (0.75, 0.5, 0.25, 0) were prepared by the 

following procedure:  (1) four capillary tubes (2 mm in diameter) were cut to 1 inch in 

length, and one end of each was fused with a torch; (2) ammonium thiocyanate and 

potassium thiocyanate were dissolved in deionized water in the aforementioned molar 

ratios; (3) the resulting solutions were placed on a hotplate and heated to approximately 

90 °C in order to evaporate the water and create crystalline material of the desired molar 

ratios; (4) solid solution crystals were ground into powders and placed within the 

capillary tubes; (5) the fused ends of the capillary tubes were placed in ice baths for a 

period of approximately fifteen minutes in order to chill the crystals and prevent 

volatilization (during the fusing of the other end of the capillary tubes); (6) upon removal 

from the ice bath, the sealed ends of the capillary tubes were wrapped in wet tissue (also 
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to prevent volatilization), and the open end of the capillary tubes were exposed to a torch 

for approximately four or five seconds in order to fuse the ends.    

Compounds prepared by the capillary-tube procedure (Figure 19) were placed within 

the stage heater apparatus, and heated at an average rate of 0.5 °C per minute.  A sample 

of composition XK = 1 was also prepared using this procedure, but the sample required 

more than 50 hours on a hotplate (at 90 °C) to dry.  The sample was therefore too 

hygroscopic to render a meaningful result.  

Additional capillary tube samples of XK = 1 and XK = 0 were prepared in a similar 

manner to the procedure described above, but without steps 2 and 3.  This produced “dry” 

samples that were only exposed to air for a brief period (during the grinding of the 

compounds and the sealing of the capillary tubes).  Additionally, they were not dissolved 

in deionized water to create crystals of intermediate composition.  In reducing the 

exposure of the compounds to water, they did not have the opportunity to absorb large 

quantities of water.  The melting point difference between “dry” XK = 0 and “wet” XK = 

0, was used to evaluate the effect of the sample preparation procedure (especially steps 2 

and 3) in the determination of (K, NH4)SCN phase relations.   

 

3.4  Error 

During the preparation of both thin section samples, as well as capillary samples, the 

loss of NH3 (g) and HSCN (g) is a concern.  In samples initially containing NH4SCN and 

KSCN, the loss of NH3 could concentrate K within the remaining solid—a factor that 

would explain final melting points that appear high for the starting composition.   
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Figure 19.  Diagram of a capillary tube sample, including:  capillary tube, thermocouple 
tip, and powdered crystals. 
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However, both NH4SCN and KSCN are hygroscopic, and will absorb water directly 

from the atmosphere.  In turn, the addition of water to the system will lower the observed 

melting points.  It is also possible that (in both thin section and capillary samples) 

temperature gradients within a sample may have affected observed melting points.   

The optical determination of a melting point can be difficult; solid-solid phase 

transitions can appear optically similar to the initiation of melting.  Both types of phase 

transition begin with small changes in interference colors due to volume changes in 

solids, and the changes occur on a (small) scale that prevents identification until the 

change has affected at least 3% of the field of view.  In each experiment, initial melting 

points were considered to be the temperature at which visual changes began, and included 

criteria such as changes in interference colors (due to the thinning of crystals), as well as 

small changes in grain boundaries.  In addition, the temperature of initial melting was 

confirmed by the observation of flow processes or notable increases in volume of extinct 

areas (under cross polarized light).  These two values for melting points form the error 

bar limits depicted on both the thin section and capillary tube phase diagrams. 

Final melting points were relatively easy to determine, as the microscope field of 

view was black under cross polarized light.  Final melting points were confirmed by 

dropping the temperature of the sample 1 °C just before melting was complete (~ 98% 

melt).  The initiation of crystallization by the 1 °C drop in temperature was used as 

evidence that the apparatus was in thermal equilibrium with the sample.      

The stage heater apparatus was designed to minimize temperature gradients within 

samples; thin sections, however, varied in temperature ± 2 °C from the center of the 

sample to the outer edge, with the coolest area in the center.  This was determined by 
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placing the thermocouple tip on the surface of the thin section, and then moving the tip 

from the center to the outer sample boundary.  Capillary tubes contained potentially 

larger temperature gradients (they could not be positioned precisely horizontal within the 

apparatus), and the gradient could not be measured due to the wrapping of the 

thermocouple around the samples.  In order to minimize the potential for error due to 

temperature gradients, all data obtained from capillary tubes pertain to the observation of 

material not more than 1.5 mm from the thermocouple tip.   

During melting point experiments, it was important to heat samples slowly in order to 

allow thermal equilibration between the circular heater, the thermocouple tip, and the 

center of the samples.  If heat was added to the system too quickly, the temperature 

controller would appear to “overshoot”, and the measured temperature would elevate 

much higher than the temperature at which the controller was set.  This condition was 

caused by thermal disequilibrium between the heating element and the thermocouple tip.  

Additionally, it was also possible to heat the apparatus faster than the center of a sample 

could equilibrate; thus melting points would appear higher than their true values.  Both of 

these problems were addressed by (1) adding heat at a rate that allowed the thermocouple 

tip to remain in close thermal equilibrium with the heating element (i.e. 0.5 °C / minute), 

and (2) adding additional heat to the system in controlled steps; the samples must have 

visually appeared to have finished equilibration (with the petrographic microscope) 

before another heating step was initiated. 

During both thin section experiments and capillary tube experiments, it was assumed 

that pressure and volume remained constant for the purpose of constructing X – T phase 

diagrams.  However, due to the equilibrium relationship, 
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NH4SCN (s) ↔ NH3 (g) + HSCN (g) 

at elevated temperatures, the presence of gases within capillary tube samples of constant 

volume probably caused an increase in pressure.  In thin sections, a gas-permeable epoxy 

was used, allowing both pressure and volume to change.  It is not known if changes in 

pressure or volume had a significant effect on the system. 

The stage heater apparatus was calibrated by testing the melting point of a sample of 

pure indium (purity, 99.999%; Alfa Aesar). Indium wire with a diameter of 0.5 mm was 

sealed inside a capillary tube, placed within the stage heater apparatus, and heated until 

melting was observed.  The accepted melting point of indium is 156.17 °C (Alfa Aesar), 

and the experimental melting point obtained with the stage heater apparatus was 157 °C.  

This result varied less than 1°C from the published melting point of indium, and was also 

less than the published accuracy of the chromel / alumel thermocouple (+/-1 °C).  Thus, 

no correction has been applied to experimental melting point values obtained with the 

stage heater apparatus. 
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Chapter 4 

Phase Relation Experiments with the (K, NH4)SCN Solid Solution 

 

4.1  Phase relations produced from thin section experiments 

In order to construct the phase diagram (Figure 20), thin section samples were placed 

within the petrographic stage heater apparatus and heated until both initial and final 

melting points were observed.  Only one solid phase was observed throughout the 

temperature ranges of the experiments, and temperature separation between initial and 

final melting points exists for solid solution crystals with compositions between XK = 

0.75 and XK = 0.25.  A maximum separation of 66 °C between initial and final melting 

points was obtained for crystals with composition XK = 0.25.  These results are consistent 

with a binary solid solution model.   

The melting point of pure KSCN in thin section was close (within 3.2 °C) to that of 

the value for KSCN (172.3 °C) provided by the commercial supplier, Alfa Aesar, but the 

same was not true for pure NH4SCN.  With an observed melting point of 115 °C, the 

result obtained from thin section was more than 34 °C lower than the expected melting 

point of NH4SCN (149.6 °C; Alfa Aesar).  This anomalous result is attributed to the 

hydroscopic nature of NH4SCN; a small amount of water may have been absorbed by the 

sample during preparation.  However, the melting point of NH4SCN is still higher than 

the general trend suggested by the melting points of crystals with intermediate 

composition, which may actually reflect a dehydration of the system during the 

experiment.  Crystals between XK = 0.75 and XK = 0.20 exhibit initial and final melting 

points that decrease sharply with increasing NH4SCN content.  Samples with composition      
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Figure 20:  Equilibrium T-X phase diagram for the pseudo-binary system KSCN - 
NH4SCN obtained from observations in thin section.  Blue diamonds indicate initial 
melting points (or single melting points for solid solution end-members), and pink 
squares represent final melting points.  The error bars are described in the text.  Lines 
represent hypothetical phase boundaries assuming simple binary solid solution.   
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XK = 0.75 to XK = 0.2 had initial melting points that were lower than the melting point of 

pure NH4SCN (149.6 °C), and samples of composition XK = 0.25 and XK = 0.2 also had 

final melting points below 149 °C.  These low melting points are thought to be due to the 

absorption of water by the thiocyanate compounds during sample preparatioin.  Observed 

phase relations, however, are consistent with that of a binary solid solution;  pure end-

members have single melting points, and separation (43 – 66 °C) is obtained between 

initial and final melting points for samples of intermediate composition (XK = 0.75 - XK = 

0.25). 

 

4.2 Phase relations obtained from capillary tube samples 

Sealed capillary tubes provided an environment in which the loss of volatile material 

was limited.  Unlike the thin sections, the capillary tubes were completely sealed 

preventing NH3 (g) and H20 (g) from escaping the system, and the data obtained from 

these experiments is presented in Figure 21.   

Separation between initial and final melting points existed for solid solution crystals 

of intermediate composition between XK = 0.75 and XK = 0.25.  In general, the system 

provided phase relations consistent with a binary solid solution.  The melting point of 

pure KSCN in a capillary tube was close (within 5.2 °C) to that measured in thin section, 

but the melting point of pure NH4SCN was considerably lower than the expected value 

(based upon data supplied by Alfa Aesar).  With an observed melting point of 91 °C, the 

result obtained from a capillary tube sample was more than 58 °C lower than the  
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Figure 21:  T-X phase diagram of the (K, NH4)SCN solid solution constructed from 
capillary tube data.  The blue diamonds represent initial melting points, and the pink 
squares represent final melting points.  The red square represents the melting point of a 
sample with XNH4 = 1, prepared by dissolution in deionized water.   Blue circle represent 
the melting points of compounds with composition, XNH4 = 0 and  XNH4 = 1, that were not 
dissolved in water during preparation.  Yellow bars indicate melting points that were 
observed more than once.  The error bars were determined observationally.   
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expected melting point of NH4SCN.  Again, this anomalous result is attributed to the 

hydroscopic nature of NH4SCN; if NH4SCN incorporated water into its crystal matrix, 

the melting point of the compound would be significantly reduced.  In order to test this 

conclusion, the melting point of an anhydrous sample (not dissolved in deionized water 

during preparation) of NH4SCN was tested; a melting point of 146 °C was obtained.  

Pure, anhydrous KSCN was also tested, and a melting point of 168 °C was obtained.  The 

samples that were not dissolved in deionized water had melting points relatively close to 

their accepted values.  Samples that were prepared by dissolution in deionized water 

(before crystallization), however, gave melting point values that were probably affected 

by the presence of water within the crystal matrix.  Future studies involving the (K, 

NH4)SCN binary solid solution might obtain more predictable melting points if water 

content is strictly controlled.    
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Chapter 5 

Textural Experiments with the (K, NH4)SCN Solid Solution 

 

Textural experiments were conducted in order to investigate:  (1) the conditions 

needed to produce optically visible chemical zoning, and (2) the occurrence of grain 

boundary migration.  All textural experiments were conducted with thin section samples. 

The textural evolution of two systems were studied:  (1) the two component system 

KSCN – NH4SCN; and (2) the four component system including KSCN - NH4SCN – 

NH4Cl – (NH4)2[Co(SCN)4] · nH20 (derived from the system created by Means and Park, 

1994). 

 

5.1  System:  KSCN – NH4SCN  

Chemical zoning can often be identified with a polarizing microscope; when an 

unstrained crystal cannot go completely extinct at any single stage position, chemical 

variations within the crystal structure may be the cause.  Optical effects consistent with 

chemical zoning, including variable intragranular extinction positions, were observed in 

samples of composition XK = 0.75 and XK = 0.8 (Figure 22A and 22B) immediately after 

preparation.  Some of the observed extinction patterns are consistent with zoning (Figure 

13C).    

While the extinction patterns shown in Figure 22A are similar to those produced by 

chemical zoning, it is possible that they were produced by strain during the intergrowth 

of the crystals.  However, no external stresses were applied to the sample during 

preparation.     
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Samples that appeared to contain zoned crystals were not exposed to heat (other than 

that required of the preparation process); samples of (K, NH4)SCN that were heated and 

cooled in the stage heater apparatus did not produce apparent zoning patterns.  The lack 

of zoning patterns in heated crystals of (K, NH4)SCN can be attributed to two possible 

reasons.  First, the escape of NH3 (g) and HSCN (g) at temperatures over 150 °C could 

not be entirely prevented, thus allowing a loss of NH4SCN.  With complete loss of 

NH4SCN, the remaining sample would retain only KSCN, and chemical zoning would 

not be possible.  In an effort to prevent the loss of material, the thin sections were sealed 

with thin section epoxy; other sealants including cyanoacrylates, and silicate cement 

(sodium silicate) were tested as thin section sealants, but thin section epoxy allowed the 

least amount of material to precipitate on external surfaces (during heating).   Second, 

samples may not have been cooled quickly enough to produce chemical zoning; crystals 

that produced patterns resembling chemical zoning were quenched in air.  Samples 

heated to the liquidus within the stage heater apparatus, and then cooled, may have had 

time to chemically equilibrate during cooling, thus preventing chemical zoning.  Future 

textural studies using the (K, NH4)SCN solid solution may require the means to rapidly 

cool the synthetic crystal mush within the stage heater apparatus, as well as prevent the 

loss of NH3 (g) and HSCN (g) at temperatures over 150 °C.   
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Figure 22A.  Photomicrograph of solid solution crystals with composition XK = 0.75 
under cross polarized light.  Apparent zoning patterns are marked with dashed yellow 
lines. 
 
 
 
 

 

Figure 22B:  Photomicrograph of solid solution crystals of composition XK = 0.75 under 
cross polarized light.  Apparent zoning patterns are marked with dashed yellow lines. 
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 5.2 Four component system:  KSCN - NH4SCN – NH4Cl – (NH4)2[Co(SCN)4] · nH20  
      

The addition of cobalt compounds (i.e. CoCl2) and water to the (K, NH4)SCN system 

created an environment in which (K, NH4)SCN solid solution crystals could form within 

a wide temperature range (approximately 30 to 80 °C) and in the presence of a large 

volume of melt.  The temperatures at which crystallization took place were lower than 

those needed for crystals in the (K, NH4)SCN system, thus reducing the loss of NH3 (g) 

and HSCN (g).  The resulting system produced grains similar to the “white phase” 

(NH4SCN), “cube phase” (NH4Cl), and “blue phase” (NH4)2[Co(SCN)4] · nH20 created 

by Means and Park (1994), but the “white phase” in the new system consisted of (K, 

NH4)SCN solid solution crystals instead of NH4SCN. 

 

5.3  Results 

Thin sections created with the four-component system produced solid solution 

crystals and melt that illustrate grain boundary migration.  Figure 23 contains three 

photomicrographs (A, B, C) taken in succession during the cooling of the four-

component system (ΔΤ ~ 50 °C) from a temperature of ~80 °C.  The growth of three 

distinct grains, labeled 1, 2, and 3, are shown.  Grains 1 and 3 are oriented with c-axes 

approximately in the plane of the thin section, and grain 2 appears to be oriented with the 

c-axis at a high angle from the plane of the thin section (grains are elongated along the c 

– axis).  Crystal faces with the highest growth rates are parallel to the c-axis.  Grains 1 

and 2 share a grain boundary (as do grains 2 and 3), but grains 1 and 3 are not in contact.  

In Figure 23B, grains 1, 2, and 3 are clearly becoming intergrown, but the grain 

boundaries still represent the original texture seen in Figure 23A.  In Figure 23C, 
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however, the boundary between grains 1 and 2 has a geometry that has changed 

significantly during cooling (as crystal 2 has grown at the expense of crystal 1).  The 

boundary between crystal 2 and crystal 3 also changes, but less significantly.     

Photomicrographs 23A, 23B, and 23C illustrate the development of “white phase” 

crystal faces, as well as grain boundary migration.  In Figure 23A, crystals 1, 2, and 3 are 

anhedral, while in Figure 23B, crystal 1 begins the development of crystal faces.  In 

Figure 23C, grains 1 and 3 share a single, uninterrupted crystal face.  In addition, the final 

texture produced by the intergrowth of crystals 1, 2, and 3 does not indicate the growth 

process shown by photomicrographs A, B, and C.   

Figure 24 contains another example of the textural evolution of two “white phase” 

crystals from the same sample described above.  Photomicrograph “A” shows two 

elongated grains, marked 1 and 2, which share a small grain boundary (labeled with an 

arrow).  In photomicrograph B, the boundary between grains 1 and 2 has extended 

laterally in a predictable manner, and the beginnings of 120° dihedral angles have 

developed (one of these areas is adjacent to the arrow).  In photomicrograph “C”, the 

only indication that two separate grains existed is a slight difference in interference 

colors.    
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Figure 23.  Photomicrograph contains “white phase” solid solution crystals (marked 1, 2, 
and 3) and “blue phase” crystals.  The black areas contain melt, and possibly extinct 
grains.  Changes that took place between photomicrographs A, B, and C illustrate the 
intergrowth of three crystals and the beginnings of grain boundary migration (marked by 
arrows).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 24:  Photomicrograph contains “white phase” solid solution crystals (labeled 1 and 
2) and “blue phase” crystals (labeled A) under cross polarized light.  The black areas 
contain liquid (and possibly extinct crystals).  Changes that took place between 
photomicrographs A, B, and C illustrate the intergrowth of two “white phase” crystals; 
the grain boundary is marked with an arrow. 
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Conclusion 

 

(1) The petrographic stage heater apparatus was built for the purpose of observing 

crystallization processes in situ, and provided a suitable vessel for experimentation with 

(K, NH4)SCN at temperatures below 200 °C.   

 

(2) The use of thin section samples in the petrographic stage heater apparatus allowed the 

observation of grain boundary development during cooling, including grain boundary 

migration.  Phase relations obtained from samples in thin section, however, appeared to 

be affected by the sublimation of solid material at temperatures above room temperature.  

The loss of material could be prevented in future experiments by designing a new type of 

thin section that does not require epoxy.    

 

(3)  The use of sealed capillary tubes during the acquisition of phase relation data was an 

effective way to prevent the loss of sample material during experimentation with the 

petrographic stage heater apparatus.   

 

(4)  Compounds within the (K, NH4)SCN system formed a binary solid solution with 

phase relations comparable to plagioclase, and crystals with extinction patterns consistent 

with chemical zoning.  However, the synthetic compounds were hygroscopic – a factor 

that affected the phase relations obtained both in thin section and in capillary tubes.  

While the presence of water in the (K, NH4)SCN system did not introduce an 

inappropriate variable for a plagioclase analog (magmatic systems also contain water), 
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less hygroscopic compounds may be useful in future experiments.  While the scope of 

this study was limited to compounds that were commercially available, others such as 

RbSCN could be synthesized and potentially used as solid solution end-members.     

  

 (5)  Thin section samples containing the four component system, KSCN - NH4SCN - 

NH4Cl - (NH4)2[Co(SCN)4] · nH20 were grown at temperatures below 100 °C, and 

provided the best medium for the study of melt-present grain boundary development.  

 

__________________________ 

 

The (K, NH4)SCN binary solid solution is an effective plagioclase analog and is 

capable of producing crystals that may be chemically zoned.  Additionally, crystals 

within the solid solution undergo grain boundary migration.  While grain boundary 

migration has not yet been achieved in zoned crystals, new experiments using different 

thermal histories (including quenching and annealing) may induce grain boundary 

migration in zoned crystals.  If accomplished, the synthetic binary solid solution could 

provide valuable microstructural links between processes affecting the development of 

synthetic textures and the final textures produced during igneous textural evolution.  
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 b
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ra
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 c
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 c
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 c
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 p
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 b
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, m
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 c
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 c
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 d
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 c
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 p
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 b

e 
14

4 
°C

.  
Th

e 
ex

pe
rim

en
t r

eq
ui

re
d 

ap
pr

ox
im

at
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 c
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 p
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 p
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