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     ABSTRACT 

 

 The Liberty-Orrington fault separates two tectonic terranes of widely different 

lithologies and metamorphic grades within the Coastal Lithotectonic Belt of Maine. 

While the juxtaposition of the sillimanite-bearing Passagassawakeag gneiss and the 

chlorite grade Bucksport Formation (turbidites) requires a fault between them, field 

evidence for, and an understanding of, the nature of the fault has hitherto been lacking. 

Although the Liberty-Orrington fault has previously been interpreted as a thrust, strike-

slip, and/or normal fault, the most recent debate has been centered around two models of 

Acadian amalgamation involving thrusting of the Passagassawakeag terrane from the 

southeast vs. thrusting from beneath central Maine (from the northwest) (Osberg et al., 

1998; Stewart et al., 1995). 

 My detailed mapping shows the existence of a 250-500m wide mylonitic shear 

zone separating the gneiss and the turbidites in the southern portion of the study area. 

Foliation within the shear zone is predominantly near-vertical, with near-horizontal 

stretching lineations and pervasive (present orientation) sense-of-shear inidactors. The 

mylonites are deformed by open Acadian folds on both map and outcrop scales, and are 

cut by Devonian (371±2 Ma) granite. Followed eastward, this northeast-striking 

Passagassawakeag-Bucksport terrane boundary turns north, as do highly-strained rocks 

and local foliation. A thin unit of alternating layers of quartz and 

garnet+biotite+magnetite, previously interpreted as a stratigraphic unit showing possible 

orginal bedding (Rider Bluff unit), lies along the north-south striking part of the 
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Passagassawakeag-Bucksport boundary. Thin sections demonstrate that the layering in 

this unit is a tectonic fabric. 

 The field data suggest that the Liberty-Orrington fault is a major dextral strike-

slip shear zone, with the eastern boundary as a transpressional thrust; If this is the case, 

the Liberty-Orrington shear zone may represent a continuum of orogen-scale dextral 

shear (with the Penobscot Bay and Norumbega fault zones) through the Acadian. This 

tectonic model is more likely than that of a folded shear zone generated by a thrust, as the 

sense-of-shear in the unfolded mylonites would require large-scale thrusting parallel to 

the orogen. This study necessitates a re-evalution of the role of transpression in the 

exhumation of high-grade rocks in coastal Maine during the Acadian orogeny. 
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CHAPTER 1 

INTRODUCTION 

 

Purpose of the study 

 

 The geology of the present-day eastern margin of North America has been shaped 

by multiple continental and island arc collisions throughout the Paleozoic, the effects of 

which are preserved in the metamorphic terranes, intervening trough sediments, and 

extensive plutons of Maine (Figure 1). It has generally been thought that the composite 

terranes of eastern Maine were brought to their present configuration via perpendicular-

to-orogen thrust faulting during the Devonian Acadian orogeny, and were subsequently 

dissected by felsic and mafic magmatism and regional strike-slip faulting along the 

Norumbega Fault Zone (Osberg et al., 1985). At the northern end of Penobscot Bay, mid-

coastal Maine, the Liberty-Orrington Fault separates the sillimanite-grade 

Passagassawakeag terrane from the Fredericton Trough terrane, which consists of 

chlorite-grade turbidites that border the Passagassawakeag to the northwest, northeast-

east, and south. This is the only location in Maine where the truncation of a major high-

grade metamorphic terrane is exposed (Figure 1.1), yet the nature of the boundary fault 

and emplacement of the Passagassawakeag terrane is poorly understood. Previous studies 

failed to find any field evidence for the existence of the Liberty-Orrington Fault, and 

some suggested that it was even an unconformity (McSwiggen, 1978; Kaszuba and 

Simpson, 1989). In recent years, two models for the juxtaposition of the 

Passagassawakeag and Fredericton Trough terranes in the study area have been suggested 
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(Figure 1.2). One proposed by Stewart et al. (1995) advocates the inclusion of the 

Passagassawakeag terrane in the Salinic orogenic belt, now exposed from western Europe 

to southern New England. Late Ordovician to Early Silurian Salinic tectonic activity 

involved extensive thrust faulting and metamorphism, large strike-slip faults, and 

plutonism, all of which are represented in coastal Maine (Stewart et al., 1995). In this 

context, the Passagassawakeag terrane in the study area could represent a slice of the 

basement to this Salinic orogenic belt with the Bucksport Formation of the Fredericton 

Trough terrane representing turbidite sedimentation on the oceanic crust between the 

Salinic orogenic belt and the Avalon terrane to the east (Figure 1.2b). A contrasting 

tectonic model proposed for the study area does not directly contradict the existence of a 

Salinic orogenic belt in Maine, but contends that the Passagassawakeag rocks are a klippe 

of Avalonian origin (Osberg et al., 1995; 1998) (Figure 1.2a). This model is primarily 

based on first-order observations of coastal Maine geology, specifically that the 

Passagassawakeag contains Silurian age metamorphism and plutons, and the only other 

place in Maine that rocks with these characteristics crop out is the Avalonian rocks to the 

east (Berry, pers. com., 1998). Alternatively, this terrane may be entirely derived from 

Acadian metasediments and may not represent a basement terrane to anything.  

  Thus, the initial goals of this study were, firstly, to find and document field 

evidence for the existence of the Liberty-Orrington Fault and, secondly, to try to 

determine the nature of the fault and the emplacement (and possible affinity) of the 

Passagassawakeag terrane. Through detailed geologic mapping and petrographic analysis 

of a small but precisely chosen field area, I hope to contribute to the current 
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understanding of terrane amalgamation in coastal Maine and the tectonic style of the 

Acadian orogeny. 

 The project goals were reassessed as field work progressed, as I discovered the 

existence of a 250-500m wide belt of mylonitic rocks along the southern trace of the 

proposed Liberty-Orrington Fault, to the north of Penobscot Bay (Figure 1.3). I then 

focused on carefully mapping the two main types of mylonites within the shear zone, 

recording the orientations of foliation and lineations (Table A-3; Figure B-3), and looking 

for cross-cutting metamorphic and structural relationships to determine the age of 

mylonite formation. The vast majority of the field data from this southern extent of the 

terrane boundary strongly suggests that the shear zone was formed under ductile 

conditions during dextral strike-slip motion (Figure B-3). This interpretation is quite 

different from those previously suggested for the Liberty-Orrington Fault, as the most 

recent debate has centered on the direction from which the Passagassawakeag terrane was 

thrusted (northwest vs. southeast) (Figure 1.2). This thesis presents field and petrographic 

evidence for the dextral strike-slip nature of the Liberty-Orrington Fault along its 

southern extent in the field area, and attempts to explain the truncation of the 

Passagassawakeag terrane along its north-south striking eastern boundary with the 

Fredericton Trough turbidites as an overturned transpressional thrust, due to prolonged 

dextral strike-slip motion in the early Devonian, coupled with late Devonian to 

Carboniferous movement along the Norumbega Fault Zone (Ludman, 1986; West and 

Lux, 1993; West and Hubbard, 1997). Ultimately, this study should compel a 

reevaluation of the role of transpression in the amalgamation of the composite terranes of 

coastal Maine during the Acadian orogeny. 
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Location of study area 

 The study area lies within the Coastal Lithotectonic Belt (CLTB) of east-central 

Maine, a significant but poorly understood component of the Northern Appalachian 

Orogenic Belt (Figure 1.1). The rocks of the Maine coastal region are characterized as a 

group of lithotectonic terranes that underwent what was generally believed to be several 

episodes of mid to late Devonian regional metamorphism and deformation associated 

with the Acadian orogeny, although recent workers have documented Silurian 

metamorphism in western Penobscot Bay (West et al., 1995). This study is concerned 

with the Precambrian- Ordovician Passagassawakeag terrane and the Ordovician-Early 

Silurian Fredericton Trough terrane, in the region stretching from the middle of Silver 

Lake, approximately 2 km north of Penobscot Bay, northward to the Norumbega Fault 

Zone, bordered on the west by the Penobscot River, and the east by the Lucerne Pluton 

(Figure 1.3). This particular field area was chosen because it is for the most part free of 

significant contact metamorphism, and because previous attempts by other workers at 

determining the nature of this terrane boundary to the east were inconclusive. Essentially, 

the southern boundary between the Passagassawakeag and Fredericton Trough terranes 

within the study area had not been examined in 20 years, and never in detail. 
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Regional geology 

 The western boundary of the Coastal Lithotectonic Belt of  eastern Maine is 

approximated by the right-lateral Norumbega Fault zone. To the west of it is the 

Kearsarge- Central Maine ‘Synclinorium’(Central Maine Sequence) of the Medial New 

England terrane rocks that have been affected only by mid to late Paleozoic orogenic 

activity (Rankin, 1994). Along strike to the south of the CLTB, the Late Precambrian 

Avalonian terrane of southern New England is typified by late Paleozoic metamorphism 

and deformation of the overprinting Alleghanian orogenic event (Wintsch et al., 1992). 

Northeast of the Maine CLTB in the Atlantic Provinces of Canada, as well as in western 

Penobscot Bay, new research has shown Silurian tectonism and metamorphism to be an 

integral part of the accretionary history of those areas (Van Staal, 1994; West et al., 1995; 

Stewart et al., 1995). 

 According to early work by Stewart and Wones (1974) the CLTB is a composite 

of several geologically distinct terranes each with different stratigraphy, metamorphic 

grades, and tectonic history. The Penobscot Bay area contains five of these terranes, from 

southeast to northwest: the Cambrian-Early Ordovician Ellsworth terrane, the 

Precambrian-Ordovician Penobscot terrane, the Cambrian St. Croix terrane, the 

Devonian-Early Silurian Fredericton Trough terrane, the Precambrian-Ordovician 

Passagassawakeag terrane, and the Devonian-Ordovician Vassalboro terrane (Kaszuba 

and Simpson, 1989; Osberg et al., 1985). The boundaries between each of these terranes 

have all been referred to in the past as both unconformities and faults (Stewart and 

Wones, 1974; Stewart et al., 1995; Osberg et al., 1985; 1998). Three major faults in the 
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area are now thought to be the boundaries between four of the above mentioned terranes: 

the Senebec Pond Fault between the St. Croix and Fredericton terranes, the Liberty-

Orrington Fault between the Fredericton Trough and Passagassawakeag terranes, and the 

Hackmatack Fault between the Passagassawakeag rocks and those of Medial New 

England (Osberg et al., 1985; 1998; Pankiwskyj, 1996). Felsic and mafic Devonian 

plutons cut the Paleozoic sequences and some faults within the CLTB, and some were 

later deformed locally by late Paleozoic fault reactivation (Kaszuba and Simpson, 1989; 

Ludman, 1986). 

 The application of terrane analysis and the concept of accretionary tectonics is not 

new to Maine geology. Perhaps the earliest attempt to separate terranes foreign to North 

America in coastal Maine was by Zen (1983), who included the Passagassawakeag gneiss 

as a candidate for an ‘exotic terrane’ and correlated it with the Nashoba gneiss complex 

of eastern Massachusetts. Subsequent workers have produced numerous models for the 

timing of accretion of various terranes within Maine and adjacent areas affected by Early 

Paleozoic orogenies (Keppie, 1989; Ludman, 1986; Ludman et al., 1993; Rast and 

Skehan, 1993; Boone and Boudette, 1989; Rankin, 1994; Osberg et al., 1995; Stewart et 

al., 1995; Mac Niocaill et al., 1997; Bradley et al., 1998; and many others). Most models 

generally involve the slow closing of a large ocean between Laurentia and Gondwana, 

with intervening island arcs, microcontinents, and back arc basins, and with collisions 

between these various tectonic objects sometimes occurring in mid-ocean, then accreting 

to Laurentia or Gondwana as composite terranes. In Maine, the tectonic objects involved 

have long been limited to Laurentia versus the Avalonian arc and/or composite terrane 

brought together during the Acadian orogeny, with the possible exception of the Chain 
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Lakes Massif in northwestern Maine. It has in recent years become accepted that the 

geology of Maine is indeed the product of the amalgamation of various terranes to North 

America beginning with the Taconic orogeny and continuing through the Acadian and 

Alleghanian orogens, with the Penobscottian and Salinic as ‘internal’ (between the 

Taconic and Acadian) orogenies. 

  

Previous work 

 The first detailed geologic map of the Penobscot Bay region relevant to the study 

area was published in 1950 by J. M. Trefethen, a former Maine State Geologist. He was 

the first to suggest that the Bucksport Formation is distinct from the Vassalboro 

Formation of the Medial New England terrane (see definition below) to the west. He was 

also the first to map some of the calc-silicate layers in the Passagassawakeag gneiss and 

to distinguish the Liberty-Orrington Antiform. However, he did not delineate the nature 

of the boundary between the Bucksport and Passagassawakeag formations within the 

study area. 

 An unpublished MS thesis by McSwiggen (1978), from the University of Maine 

at Orono entitled “Stratigraphy, Structural Geology, and Metamorphism of the Northeast 

extension of the Liberty-Orrington Antiform, south-central Maine,” produced a 1”=1/2 

mile scale structural map showing four calc-silicate layers within the Passagassawakeag 

Formation multiply folded into a general shape suggesting the nose of an antiform. On 

his accompanying geologic map, McSwiggen shows the Copeland and Rider Bluff as 

separate formations within the antiform, with the Copeland Formation extending along 

the southeast margin of the Passagassawakeag terrane and cropping out along the east 
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side of the Penobscot River.  A regional amphibolite isograd in the Vassalboro (now 

Bucksport) Formation ends at the contact with the Passagassawakeag rocks. That contact 

was interpreted as a stratigraphic unconformity. He also portrayed the Norumbega Fault 

Zone as a couple of discontinuous faults with only vertical displacement. 

 A 1:62,500 scale general geologic map of the Bucksport Quadrangle, Maine, was 

published in 1991 by D. R. Wones. The map shows the Bucksport and Vassalboro 

Formations as separate units, and portrays the boundary between the Passagassawakeag 

terrane and the Bucksport Formation as a northwest dipping thrust fault. The 

Passagassawakeag, Copeland, and Stricklen Ridge formations lack internal lithologic 

detail on this map, and no structural cross sections accompany the map. Work on the map 

was done by Wones prior to 1984, and was later compiled by Kaszuba, Stewart, and 

Bateman without any additional field work or checking, thus it lacks metamorphic 

isograds, detailed petrologic interpretations, and structure cross-sections. 

 Kaszuba and Simpson (1989), conducted a detailed petrologic and structural 

investigation (but with little emphasis on lithostratigraphy) of the Passagassawakeag and 

Bucksport terranes just northeast of the present study area (Figure 1.5) entitled 

“Polyphase deformation in the Penobscot Bay area, coastal Maine.” They recognized that 

the two terranes shared four phases of ductile deformation and therefore must have been 

joined early in the tectonic history of the area. However, they were not able to establish 

the nature of the boundary between the two terranes, noting that they could find no 

structural or metamorphic gradient which coincided with it, and concluded that their 

study did not prove or disprove the existence of a premetamorphic thrust fault at that 

boundary. The ambiguity of their results is probably due to the local overprint by the 
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contact aureole of the Lucerne pluton, and overprinting deformation associated with the 

Norumbega Fault Zone. 

 The Bedrock Geologic Map of Maine (Osberg et al., 1985) portrays the study area 

at 1:500,000 scale. It shows the boundary between the Passagassawakeag terrane and the 

Fredericton Trough terrane as a northwest-dipping thrust fault, and portrays the 

Passagassawakeag terrane as a klippe in structural cross-section. However, the 

Passagassawakeag rocks are correlated with the metavolcanic rocks of the Casco Bay 

Group and Ellsworth Formation to the east, and it is designated as having Avalonian 

affinity. This latter interpretation is now questioned by Osberg himself (Osberg et al., 

1995; Stewart pers. com., 1998). 

 In the NEIGC 1995 field trip guide book, Stewart et al. (1995) show a simplified 

geologic map of the Penobscot Bay region and structural cross-sections based in part on 

vertical incidence seismic reflection lines. They show the Liberty-Orrington Fault 

dipping northwest at a steep angle (~50°) in cross-section, implying that they interpret the 

Passagassawakeag terrane as not a klippe or even a low-angle thrust sheet, but a tectonic 

‘slice’ from the west (Stewart et al., 1995) (Figure 1.2b). 

 Finally, a paper presented at the 1998 Northeast GSA section meeting by Osberg 

et al. (1998) entitled “Acadian tectonics along coastal Maine and southern New 

Brunswick,” advocated the old idea that the geology of eastern Maine is organized into a 

series of thrust sheets, dismembered by younger faults. They refer to the 

Passagassawakeag terrane as the Liberty-Orrington klippe (Figure 1.2a), and correlate the 

sillimanite-grade rocks of this terrane with those of the chlorite-grade Miramichi 

anticlinorium of northeastern Maine and southern New Brunswick (Figure 1), and 
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therefore they should belong to the Medial New England terrane (Laurentia). Oddly, 

Osberg et al. (1998) maintain that the Passagassawakeag terrane was transported from the 

southeast (present coordinates) within the interval 422-418 Ma, even though its proposed 

source terrane is to the northwest of its present location, across a major tectonic boundary 

(Norumbega Fault Zone). 

 

Format of this study 

 In this thesis, I present evidence for the existence of the Liberty-Orrington Fault 

and the subsequent nature of the Passagassawakeag/Fredericton Trough terrane boundary 

by first describing in Chapter 2 the lithologies present in each terrane, and in Chapter 3, 

the newly identified fine-grained and mica-fish mylonites of what is herein referred to as 

the Liberty-Orrington shear zone. Sense-of-shear indicators within and outside of the 

Liberty-Orrington shear zone are discussed, and cross-cutting relationships between 

structural and metamorphic fabrics are documented for later discussion.  

 Chapter 4 is a discussion of the timing of mylonitization and concomitant 

exhumation of the Passagassawakeag terrane as determined by cross-cutting relationships 

(detailed in Chapters 2 & 3), in conjunction with qualitative P-T and T-t paths derived 

from petrographic analysis. The orientation of the stress field responsible for the creation 

of the macro and microscopic structures found in the field area is also discussed on both 

local and regional scales in an attempt to show that dextral shear was maintained long 

enough during the early Devonian in coastal Maine to create and eventually overturn the 

transpressional thrust that truncates the northeastern end of the Passagassawakeag terrane 

on the eastern side of the field area. Chapter 5 is a discussion and evaluation of the 
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possible tectonic models that could explain the geology and tectonic evolution of the 

Bucksport-Orland and surrounding areas. In accordance with the new field evidence 

presented in this thesis, a model of prolonged dextral shearing in a transpressional orogen 

is suggested to explain the juxtaposition of the Passagassawakeag and Fredericton 

Trough terranes. While the idea of transpressional tectonics and major dextral faulting in 

coastal Maine is not new, this study documents major dextral strike-slip movement 

during the Devonian, so that the Liberty-Orrington shear zone may represent a part of a 

continuum of Acadian transpression from the Silurian to the Carboniferous. 
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CHAPTER 2 

LITHOLOGIES 

 

Passagassawakeag terrane 

 This terrane consists of the sillimanite-bearing Passagassawakeag gneiss, the 

Copeland Formation (schist & quartzite), and the Rider Bluff member of the Copeland 

(formerly an independent unit), all of early Paleozoic age (Figure 2.0). Isotopic ages for 

these units are not recent and have large error margins, but for the most part the terrane is 

considered to be Precambrian to Ordovician in age. This estimate is based on Late 

Silurian (time scale of Harland et al., 1990) or Early Devonian (time scale of Tucker et 

al., 1998) ages for intraformation migmatites (412± 14 Ma, Winterport Granite; 412± 16 

Ma, Stricklen Ridge Granite; Zartman and Gallego, 1979), and the high metamorphic 

grade of the Passagassawakeag Gneiss (Stewart et al., 1995). This study is primarily 

concerned with the Passagassawakeag gneiss and the Rider Bluff, as they are the units in 

contact with the surrounding turbidites of the Bucksport Formation. Discussion of the 

Copeland Formation and the Rider Bluff member is restricted to outcrops in the eastern 

portion of the study area, as this is where type sections of the lithologies occur. Both 

formations are discussed in the context of the Liberty-Orrington shear zone in the section 

of this chapter labeled as such. 
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 Passagassawakeag Formation 

 The Passagassawakeag Formation is a complexly folded quartz-feldspar-biotite-

sillimanite-garnet gneiss with a minor volume of moderately continuous calc-silicate 

layers consisting of diopside-hornblende-plagioclase and pyrophyllite. In the study area, 

it most often crops out as a grey, pelite-rich layered gneiss with intrusions of the 

migmatitic Stricklen Ridge garnet-bearing leucogranite and/or small dikes of the Mt. 

Waldo Pluton (Figure 2.1a). Where the pelitic variety occurs with bands of the calc-

silicate lithology, the formation is distinguished by differential weathering causing the 

calc-silicate layers to form small ridges in outcrop. Grain size varies within and between 

outcrops from very fine in strained calc-silicate layers to 2-7cm diameter plagioclase 

porphyroclasts in what I call the ‘popcorn’ augen gneiss (Figure 2.1b). The abundance of 

the migmatite intrusions increases to the north and east so that the top of Jacob Buck 

Mountain is almost entirely granite. The gneiss and granite are also cut by pegmatite 

dikes, and in some places by small, tourmaline-bearing aplite dikes. It is important to 

note that the gneiss is characterized by at least two distinct lithologies: a medium to 

coarse-grained pelitic unit with gneissic layering generally defined by alternating 

plagioclase + quartz and biotite + hornblende layers, and a fine-grained calc-silicate unit 

of plagioclase + quartz + hornblende + biotite. 

 The Passagassawakeag has been correlated on the basis of metamorphic grade or 

approximate age with several different units of southeastern Maine, and its correlation is 

still under dispute. Hussey (1988) correlates it and the Copeland Formation (Hogback 

Schist of older literature) with the Cape Elizabeth Formation of the Casco Bay area near 

Portland, which consists of a thin to medium layered quartz-plagioclase-biotite-muscovite 
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 schist or phyllite with some local sillimanite, staurolite, garnet, and andalusite, and 

discontinuous layers of chloritized amphibolite. In the same paper, it is also suggested 

that the rocks of the Passagassawakeag terrane could be correlated with the Cushing 

Formation which consists of high metamorphic grade metavolcanic and volcanic 

sedimentary rocks that underlie the Cape Elizabeth Formation in the Casco Bay area. 

Obviously, the relationship between the Cushing and Cape Elizabeth formations is 

unclear, and Rb-Sr metamorphic cooling ages for the two formations (494± 25 Ma & 

481± 40 Ma for the Cushing, 485± 30 Ma for the Cape Elizabeth; Hussey, 1988) do not 

offer much help. Regardless, these rocks are thought to be of Avalonian affinity, and both 

correlations support the status quo hypothesis that the Passagassawakeag rocks are a 

klippe from the east. 

 Other workers correlate the Passagassawakeag Formation with slightly younger, 

Cambrian metasediments of the Miramichi anticlinorium (Figure 1) of northeastern 

Maine and southwestern New Brunswick on the basis of lithologic similarities, placing it 

in the Medial New England terrane, which is suggested to represent a terrane at the 

eastern edge of North America in Silurian-Lower Devonian time, separated from 

Avalonia by a shrinking ocean (Osberg et al., 1998; Osberg et al, 1995). This correlation 

is placed in a context of the klippe-from-the-east hypothesis, although it is puzzling how 

rocks of older age and higher metamorphic grade than the ones they are correlated with 

(Miramichi) could be emplaced along a shallow-dipping thrust with no trace of the 

younger rocks that should have been on top. Alternatively, if one considers this 

correlation in the context of the Late Ordovician-Early Silurian Salinic orogen, it could 

be said that the Passagassawakeag rocks are the basement to the Miramichi rocks and that 
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the Passagassawakeag terrane was emplaced along a steeply-dipping thrust fault from 

underneath the Medial New England rocks to the west (Stewart et al., 1995, Stewart, 

pers. com., 1998). 

 On an orogen-scale, the Passagassawakeag terrane (Casco Bay Belt of Hussey, 

1988; and Robinson et al., 1998), has been correlated with high-grade gneisses of 

southern New England such as the Massabesic gneiss of southeastern New Hampshire 

and the Putnam-Nashoba terrane of eastern Massachusetts and Connecticut (Figure 1) 

(Zen, 1983; Keppie, 1989; Rankin, 1994). The Passagassawakeag terrane has also been 

correlated on the basis of similar age and lithology with gneisses of the Gander zone 

(terrane) of Newfoundland along strike to the northeast (Rankin, 1994). 

  Structures  

 Quartz ribbons, isoclinal folds, and sigmoidal feldspar porphyroclasts are 

abundant and a dextral sense of shear is commonly found at the outcrop scale. Foliation is 

most often vertical with a strike of 040 to 070 (Figure B-2; Table A-3), which is 

consistent with the general regional trend. The gneiss lacks well-developed 

microstructures other than gneissic layering, with only weak S-C foliation present in 

rocks near the trace of the Liberty-Orrington fault. Quartz occurs as a matrix mineral and 

in ribbons and veins where it has irregular grain boundaries, displays undulose extinction, 

and is dynamically recrystallized. Some deformation bands were also observed. Samples 

adjacent to the Liberty-Orrington terrane boundary have late fractures through the quartz 

approximately perpendicular to gneissic layering and that offset other phases. Biotite 

often displays markedly different properties in the same sample, with a fine-grained, 

subhedral, brownish-red to pale green pleochroic variety defining foliation and an 
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orangy-red, anhedral biotite phase oriented approximately 30° to the north of the foliation 

defining a probable S-foliation. Hornblende also defines the gneissic layering in the C-

foliation, and inclusions of quartz in slightly larger grains preserve the older S foliation, 

indicating dextral sense of shear.  

  Stretching lineations are difficult to find in outcrop due to the steep dip of 

foliation (in mostly pavement outcrops) and annealed minerals common to this formation 

near the terrane boundary between the Passagassawakeag gneiss and the Bucksport 

turbidites. Lineations here are near-horizontal, and become steeper away from the 

boundary as the dip of the foliation in the gneiss shallows. Near-horizontal attitudes of 

the foliation (gneissic layering) occur even further away from the Liberty-Orrington 

boundary, along Rte. 15 and the Penobscot river to the west. Isoclinal folds of quartz 

layers and ribbons have trends and plunges concordant with the strike and dip of foliation 

in outcrops away from the terrane boundary (Figure B-7; Table A-4), while z-folds are 

present in the gneiss adjacent to the boundary. Unfortunately, many of the good 

pavement exposures of the gneiss occur in areas underneath power lines that are used in 

the summer as commercial blueberry fields, and due to spring burning of the fields, the 

majority of the gneiss exposures were covered with soot, making detailed structural 

analysis impossible. Any map-scale structure within the gneiss defined by the 

orientations of the calc-silicate ‘units’ was not mapped during this project, as attention 

was paid to the nature of the boundary between the Passagassawakeag terrane and the 

Bucksport turbidites (see Previous work, Chapter 1). 
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  Metamorphism 

 The Passagassawakeag Formation within the study area represents the 

northeastern terminus of high-grade metamorphism in New England (Figure 1.2) 

(Guidotti, 1989). It is assigned to the high-rank amphibolite facies on the Maine 

generalized map of regional metamorphic zones (Guidotti, 1985), and the sillimanite-

orthoclase zone by Robinson et al. (1998). The Passagassawakeag is thought to be 

polymetamorphic due to its high grade, the presence of migmatites and multiple 

deformations. While the initial grade of metamorphism is not known, it is estimated to 

have undergone at least two periods of amphibolite facies metamorphism (West et al., 

1995).  

 Although sillimanite was never observed in outcrop in the present study, it is 

present in several thin sections of the pelitic portion of the Passagassawakeag gneiss as 

fibrolitic inclusions in quartz and feldspar (Table A-1). Both pelitic and calc-silicate 

varieties of the gneiss display annealed grain boundaries, suggesting that the minerals 

were recrystallized after formation of the gneissic layering (Figure 2.2). Chlorite is not a 

major phase, and usually occurs in late, cross-cutting extensional fractures, demonstrating 

low-grade alteration. The presence of dark red-brown matrix biotites (defining the S-

direction), and hematite and some allanite as accessory minerals implies a high Fe3+ 

content of the host rock, while the presence of calcic-amphibole (hornblende), sphene, 

and albite to anorthite plagioclase imply a high Ca content and a high degree of 

metamorphism. A later, less-Fe-rich biotite that defines the gneissic layering may 

represent a separate phase of metamorphism coincident with the deformation that 

produced the C-fabric.   



 24 

 

 

 

 



 25 

Copeland Formation 

 Along the eastern margin of the Passagassawakeag gneiss, the Copeland 

Formation crops out in an arcuate map pattern, trending roughly north-south (Figure 2.0). 

It consists of alternating layers of bluish-grey, coarse-grained muscovite schist and clean 

quartzite, with layers ranging from a few centimeters to several meters thick (Kaszuba, 

1986). The schist consists mostly of muscovite, plagioclase, and quartz, with lesser 

amounts of biotite and calcic amphibole, and accessory amounts of garnet, epidote, 

sphene, and tourmaline. The quartzite is almost entirely white quartz, with accessory 

amounts of biotite and opaque minerals. The Copeland has undergone regional 

metamorphism to at least staurolite grade, and andalusite and sillimanite are present near 

intrusions of the Stricklen Ridge granite (Kaszuba, 1986). Local amphibolite lenses are 

probably boudins of a previously continuous metavolcanic unit. Nowhere in the present 

study area or the two previous study areas of McSwiggen (1978) and Kaszuba (1986), is 

the contact between the Copeland and the Passagassawakeag formations exposed, so their 

relationship remains speculative. Despite this, the relative age of the Copeland has been 

estimated to be Cambrian to Ordovician based on its high metamorphic grade, intrusion 

by the Silurian Stricklen Ridge granite, and correlation on the basis of similar lithology to 

early Paleozoic formations along strike to the southwest. 

 On the most recent map of the northern Penobscot Bay area by Wones (1991), the 

Copeland Formation also occurs in fault-bounded slices along the Norumbega Fault 

Zone, to the northwest of the present study area. On the same map, it is interpreted to 

mantle the gneiss along the eastern margin of the Passagassawakeag terrane beginning in 

the north at the Norumbega Fault Zone and continuing south where it pinches-out just 
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southwest of Jacob Buck Pond (Wones, 1991; Kaszuba, 1986). Excluding the Rider Bluff 

member (formerly the Rider Bluff Formation), its map width ranges from 7 km in the 

north to an average of 4km near Long Pond, whereas it is portrayed as a thin smear of at 

most 2 km width along the eastern terminus of the Liberty-Orrington Fault on the 

Bedrock Geologic Map of Maine (Osberg et al., 1985). An unpublished Master’s thesis 

by McSwiggen (1978), in which the Passagassawakeag Formation was mapped in detail 

as the ‘Liberty-Orrington Antiform,’ (Figure 2.0) shows the Copeland wrapping around 

the nose of this antiform, with its southern limb forming the southern boundary with the 

Vassalboro Fm. (now Bucksport), which he interpreted as an unconformity even though 

“locally the formation is finer grained, not layered, and not as schistose, particularly 

along the southern limb of the antiform.” McSwiggen (1978) also distinguished a ‘basal 

member’ of the Copeland Formation which he named the South Orrington Member, 

consisting of a fine-grained quartz-plagioclase-biotite granulite (probably a gneiss) with 

abundant concordant quartz veins and rods, that occurs on the northern ‘limb’ of the 

‘antiform’ and  pinches-out near the nose. However, examples of the same general 

lithology and textural relationships occur near the southern boundary of the 

Passagassawakeag terrane in outcrops of the gneiss, and subsequent workers (Wones, 

1991; Kaszuba, 1986) mapped this lithology as undifferentiated Passagassawakeag 

gneiss. Considering also that McSwiggen’s (1978) type locality of the South Orrington 

member actually occurs very close to a splay of the Norumbega Fault Zone, it is most 

likely that this unit is simply a high-strained, and possibly hornfelsed version of the 

Passagassawakeag gneiss. 
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 The Copeland Formation has been correlated on the basis of similar lithology with 

the Hogback Schist, the Ordovician Appleton Ridge Formation, and the Late 

Precambrian to Ordovician Cape Elizabeth Formation (described above) of the Casco 

Bay area near Portland, Maine. According to the Bedrock Geologic Map of Maine, it 

crops out to a much greater extent along the Norumbega Fault Zone to the southwest and 

is bounded on the east by a thrust fault (Osberg et al., 1985). The contact between the 

Copeland and the Passagassawakeag formations is not exposed in the eastern portion of 

the study area, but it may occur within the mylonites that define the Liberty-Orrington 

shear zone in the southern part of the study area, to the west of Jacob Buck Mountain.  

  Structures 

 Type exposures of the Copeland do not occur within the southern part of the study 

area, but to the east along Rte. 46 it bears a well-developed schistosity that is cut by open 

folds and a discontinuous crenulation cleavage. Compositional layering here consists of 

1cm-20cm thick quartzite layers alternating with 1cm-40cm thick greenish-blue pelitic 

schist. Only very thin quartzite layers are affected by the crenulation, which trends 

generally northwest. Primary schistosity is difficult to measure due to the outcrop-scale 

open folds, but an attitude taken on a quartzite bed in the nose of one fold is 290, 80SW. 

Stretching lineations in quartzite of the same layer trend 320 and plunge 30SE, and are 

probably due to slip between the compositional layers during folding (Table A-3). The 

trends of the major fold axes range from 010 to 335, and plunge very steeply to the north. 

Crenulation appears to have occurred prior to folding, as the trend of the second foliation 

changes along the folds (~348 in nose, 013 to 030 on western limbs, 000 in the far west; a 

cleavage fan). 
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 Further north, crenulation is absent from the Copeland, and the schist and quartz 

veins are  multiply folded with quartz rods and late fractures along the axes of the folds. 

In some outcrops, quartz-filled fractures have been deformed to a sigmoidal shape 

indicating dextral shear, while the axial planes of small tight folds trend 020, and plunge 

60SW (Table A-4). Late brittle fractures trend 033 and cut both foliation and folds, with a 

small dextral displacement (Table A-5). One pavement outcrop along Rte. 46 displays 

ductile folding involving both the quartzite and schist layers with large Z and small S-

folds, large feldspar augen, and a small aplite intrusion, also involved in the folding. 

Sinistral and dextral movement both appear to be involved here, but the relationship 

between the two is not certain. It is germane to note that nowhere along the eastern 

portion of the field area and terrane boundary were quartz ribbons, boudins, or other 

microstructures typical of the high-strain rocks of the southern boundary observed in the 

Copeland unit. 

  Metamorphism 

  The Copeland Formation is of a similar metamorphic grade as the 

Passagassawakeag gneiss, although nowhere does it display gneissic layering, and the 

source of the Stricklen Ridge migmatite is thought to be the Passagassawakeag, even 

though it intrudes the Copeland as well. Outcrops along the eastern terrane boundary are 

usually very fine-grained and green to dark blue-grey in color. No large porphyroblasts 

were observed in the outcrops surveyed during this study, but Kaszuba (1986) reports 

euhedral to subhedral garnet porphyroblasts up to several millimeters in diameter that 

overgrow primary foliation, and sometimes contain an internal foliation subparallel to it. 

This observation is in agreement with the thin section petrography of samples of the 
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Copeland from the eastern terrane boundary of the present study. Elongate garnets in 

pelitic layers are actually composed of a mass of tiny euhedral garnets that have 

coalesced into a linear shape and apparently represent primary textures (Kaszuba, 1986). 

Staurolite ghosts, replaced by sericite and fibrolitic sillimanite, were observed in one thin 

section, and Kaszuba (1986) reported staurolite mantled by optically continuous 

andalusite, with both phases mantled by mats of fibrolitic sillimanite. Sillimanite is more 

common near intrusions of the Stricklen Ridge (Kaszuba, 1986), suggesting that the 

metamorphic event that produced sillimanite grade in the Copeland was related to the 

formation of the migmatite, and perhaps a relatively static event. 

 Rider Bluff 

 The Rider Bluff member of the Copeland Formation was first described as such 

by Stewart and Wones (1974) on the basis of lithologic similarities, and mostly occurs as 

a green, finely-laminated metapelite. It crops out in an arcuate ≤ 2 km wide belt, on the 

eastern side of the Copeland Formation from just south of the Norumbega Fault Zone 

south, to where the Liberty-Orrington shear zone turns sharply to the west (Figure 2.0). It 

is unique in that it, and/or a correlative formation, is not known to occur anywhere else in 

Maine, and its origin is speculative. At its type locality on the top of Rider Bluff, it is 

fine-grained, finely-laminated with consistent 2 mm-wide alternating laminae of quartz + 

plagioclase and biotite + garnet + magnetite, which have previously been interpreted to 

possibly represent bedding (Kaszuba and Simpson, 1989; Stewart, pers. com., 1998) 

(Figure 2.3). Kaszuba and Wones (1985) interpreted the Rider Bluff as ductily deformed 

Copeland Formation, but later concluded that the two units are lithologically distinct even 

though deformed Rider Bluff is almost indistinguishable from deformed Copeland 
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Formation (Kaszuba, 1986). The basis for this distinction is not detailed by Kaszuba 

(1986), or subsequent workers, and nowhere in the study area is the contact between the 

two units exposed. 

  Structures 

 In outcrop, the Rider Bluff always displays the above described very fine 

compositional lamination of light and dark minerals, and is folded in small to moderate 

sized open folds with axes trending fairly consistently 060, plunging ~50E. At the top of 

Rider Bluff, a stretching lineation perpendicular to the strike of foliation (lamination) is 

strong, with quartz rods and late fractures occurring along the axes of folds (Table A-4). 

Dip of foliation is consistently to the east, and strike in less-folded outcrops changes from 

slightly northwest in the north, to approximately due north in the central portion of its 

map pattern (north of Long Lake; Table A-3), to slightly northeast in the south, where it 

grades into the Liberty-Orrington shear zone (Wones, 1991).  

 Thin sections from the type locality at the top of Rider Bluff show that the quartz 

and plagioclase bands are fine to coarse-grained, extensively dynamically recrystallized 

with subgrain development, and display undulatory extinction and deformation bands 

oriented approximately perpendicular to compositional banding (Figure 2.4). 
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Biotites are arranged in two main orientations, one with the C-axis perpendicular to 

lineation so that only basal sections are seen in the thin section, and the other with the C-

axis parallel to lineation. The perpendicular biotites display deep red-brown to orange 

pleochroism, are sometimes twinned, and large, almost poikilitic, with abundant 

inclusions of quartz, zircon, and opaques. The opaque inclusions are grouped such that 

the biotites have an anastomosing striped appearance (~60° to compositional banding) 

and display undulose extinction, suggesting that these biotites grew or recrystallized 

during deformation (Figure 2.4). Biotites with C-axis parallel to foliation/compositional 

layering seem to grow around and fill in space between the orange biotites, are subhedral, 

small, and display very strong pale beige green to dark brown pleochroism (=Mg-rich). 

They also display typical bird’s-eye extinction with high-order interference colors, and 

contain ilmenite inclusions perpendicular to compositional layering regardless of biotite 

orientation. Garnet porphyroclasts are small, fractured dodecahedrons within the biotite 

bands. Magnetite is more abundant in the biotite bands, but is also common to the 

quartz/plagioclase bands. 

 Because of the deformation evident in the biotite grains perpendicular to lineation 

(parallel to foliation) and the recrystallization in the quartz/plagioclase bands, I suggest 

that the compositional lamination characteristic of the Rider Bluff defines a foliation and 

is therefore tectonic in origin. This foliation is cut by chlorite-filled extensional shear 

bands (C’) indicating a thrust sense of shear (in present orientation, Bucksport over 

Passagassawakeag). In some areas, there appears to be an older, gneiss-over-Bucksport 

C’ foliation defined by a sharp alignment of micas and fine-grained quartz. Although 

these two C’ fabrics do not clearly intersect, the former type is dominant and chloritized, 
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and therefore presumed to be younger. Further discussion of the structure and 

significance of this unit is continued in the section on the Liberty-Orrington shear zone 

later in this chapter. 

 

  Metamorphism 

 Garnet porphyroblasts are the highest grade metamorphic mineral observed in the 

Rider Bluff unit, and appear to have regrown after foliation, as some are subhedral but 

have clearly been rotated. Some garnets are moderately replaced by chlorite. Considering 

that the formation this unit is assigned to achieves sillimanite grade very close to outcrops 

of garnet-grade Rider Bluff, it seems unwise to assume that the two lithologies 

experienced the same amount and/or type of deformation and metamorphism. Given the 

petrographic relationships between the phases described above, the most likely sequence 

of events that created the type lithology of the Rider Bluff appear to be: 1) foliation of a 

pelitic parent rock defined by alternating compositional laminations in a 

Passagassawakeag -over-Bucksport sense, probably with biotite grade metamorphism; 2) 

metamorphism to garnet grade producing garnet and biotite porphyroblasts and growth of 

new, Mg-rich biotite (greenish), preserving a fabric defined by inclusions of opaque 

minerals parallel to lineation and perpendicular to foliation; 3) development of 

extensional shear bands in a Bucksport- over-Passagassawakeag sense, coincident (?) 

with a retrograde metamorphism that produced chlorite growth in the C’ direction and 

some replacement of garnet. Timing of these events with respect to the rest of the field 

area is discussed in more detail in Chapter 4. 
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The Fredericton Trough terrane 

 In the present field area, the Fredericton Trough terrane is represented by the 

metaturbidites of the Bucksport Formation (Figure 2.0). These turbidites were deposited 

in a basin between the Taconic modified margin of Laurentia and the composite Avalon 

terrane on what is believed to have been the last remaining oceanic crust in the area after 

the close of the Taconic orogen (Ludman et al., 1993). In northeastern Maine and New 

Brunswick, an estimated 3000m of calcareous quartzofeldspathic wackes and shales of 

the Kingsclear and Flume Ridge formations fill the trough, the former containing 

Wenlock-Ludlow graptolites (Robinson et al., 1998). Other formations within the trough 

are devoid of fossils, including the Bucksport Formation, but are cut by late Silurian and 

Devonian plutons, requiring an age of Silurian or older. The source of sediment in the 

Fredericton Trough in Maine is dominantly from the east, and it spreads westward and 

interfingers with turbidites of the Central Maine basin just south of the Miramichi uplift. 

Both basins have stratigraphies that can be generally characterized by a change from 

local heterogeneous sedimentation (sandstones and coarse conglomerates) to regional 

homogeneous sedimentation (quartzofeldspathic wackes), but defining an internal 

stratigraphy in the Fredericton Trough has proved difficult (Robinson et al., 1998; 

Ludman et al., 1993). The rocks that make up the Fredericton Trough have been 

regionally metamorphosed to greenschist facies within the study area and along strike to 

the northeast. Along strike to the southwest, the Bucksport Formation. and equivalents 

have undergone up to high rank amphibolite facies regional metamorphism, and have 

been contact metamorphosed (Guidotti, 1985). Structures common to this terrane are 
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isoclinal folds with a penetrative axial-plane cleavage (Table A-4), and the turbidites are 

almost everywhere in fault contact with adjacent terranes (Bradley et al., 1998). 

 Bucksport Formation 

 As part of the youngest and least deformed terrane in coastal Maine, the 

Bucksport Formation within the study area consists of calcareous siltstones and pelites 

metamorphosed to greenschist facies, and contact metamorphosed by the intrusion of the 

Devonian Mt. Waldo Pluton. It crops out in the far southern and eastern portions of the 

study area where it is in contact with the Passagassawakeag and the Rider Bluff member 

of the Copeland formations (Figure 2.0). It is typically characterized by greenish-grey 

layers of pelite and siltstone 1-10cm thick containing fine-grained quartz, muscovite, 

biotite, plagioclase, and calcite, with minor amounts of ilmenite, tourmaline, hematite, 

zircon, and apatite dispersed throughout (Table A-1). In the least-deformed, least-

hornfelsed outcrops, the lithology consists of a very fine-grained micaceous matrix with 

larger clasts of quartz, plagioclase, and tourmaline, with calcite as a probable original 

cement (Figure 2.5a). In outcrops within the contact metamorphic aureole of the Mt. 

Waldo pluton, the lithology is characterized by a purple and green compositional layering 

defined by alternating quartz + large biotite and muscovite + hornblende + biotite layers.  

 The Bucksport Formation is lithologically similar to the Vassalboro Fm. of the 

Medial New England terrane and has in the past been correlated with it (McSwiggen, 

1978; Osberg, 1980). It has also been correlated with the Late Silurian-Early Devonian 

Flume Ridge Formation (the youngest of the Fredericton Trough) of northeastern Maine 

on the basis of lithologic similarities (Kaszuba and Simpson, 1989). For reasons I have 
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yet to understand, Hussey (1988) correlates the Bucksport with the Precambrian-

Ordovician (?) Sebascodegan Formation, which is a biotite calc-silicate granofels that is 

stated by Hussey (1988) to conformably underlie the Cape Elizabeth Formation 

(correlated with the Passagassawakeag terrane) in the Casco Bay area. Hussey (1988) 

defends this correlation with the assertion that Bucksport-like rocks in the Boothbay 

Harbor area (midway from Penobscot to Casco Bay) are conformably overlain by the 

Cape Elizabeth Formation as well. Stewart (pers. com., 1988) disagrees with this 

correlation on the basis that differences in layering style between the Sebascodegan and 

the type-locality of the Bucksport are significant. Also problematic is that with this 

correlation, the greenschist-facies Bucksport would have to be older than the sillimanite 

grade Passagassawakeag gneiss in the study area, which calls for truly creative tectonic 

scenarios for coastal Maine.  

  Structures 

 The least deformed Bucksport Formation within the study area occurs on the 

eastern side of Silver Lake, just north of the village of Bucksport. It shows only slight 

foliation defined by small zones of preferentially oriented micas, with some elongate 

muscovite (Figure 2.5a). Northeast-trending, steeply plunging folds are common in 

outcrops at least 0.35 miles from the Liberty-Orrington fault, and an axial plane cleavage 

occurs with them(Table A-4; Figure B-7). Closer to the fault, particularly in the southern 

portion of the study area, the amount of deformation in the Bucksport increases. Foliation 

becomes stronger toward the Liberty-Orrington fault, manifested by compositional 

layering and a weak foliation trending ~25° to the northwest of layering, with some 

hornblende and/or quartz-filled fractures approximately perpendicular to foliation (Figure 
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2.6a). Still closer to the Liberty-Orrington fault, the Bucksport shows S-C’ foliation (C’ is 

poorly developed) defined by micas and quartz (which displays undulose extinction) with 

late quartz or hornblende-filled fractures oriented in the S-direction (45-60° E of 

foliation) (Figure 2.6b). Finally, close to the contact with the Passagassawakeag terrane, 

the Bucksport is still distinguishable as such but is very strained, displaying an S-C’ 

foliation that obliterates the compositional layering, sigmoidal-shaped biotite 

porphyroclasts, and boudined/on-lapped quartz ribbons, all indicating dextral shear. Some 

outcrops in close proximity to the Liberty-Orrington fault exhibit small and moderate-

scale z-folds involving compositional layers, foliation, and hornblende -filled fractures 

(Figure 2.6c). More highly strained Bucksport is considered part of the Liberty-Orrington 

shear zone and is described in the section of this chapter on mylonites. 

  Metamorphism 

 Within the present study area, rocks considered by the author to be of true 

Bucksport lithology are regionally metamorphosed only up to chlorite or biotite grade, 

with much of the chlorite present as a secondary or disequilibrium feature (replacing 

biotite). Previous workers reported traces of garnet present in the Bucksport, although 

this was probably a fine-grained mylonite mistaken as Bucksport (McSwiggen, 1978). 

Along strike to the southwest on the other side of the Mt. Waldo pluton, the Bucksport 

Formation is of a much higher grade and its assignment to this formation is doubted by 

some (Stewart, pers. com., 1997).  Within the contact metamorphic aureole of the Mt. 

Waldo pluton in the study area, the Bucksport Formation may be at epidote-amphibolite 

facies, as hornblende and calcic amphiboles are abundant and chlorite occurs only along 

late fractures and C’ shear bands. Hematite always occurs with chlorite, suggesting a  
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 retrograde replacement of biotite. Calcite is never observed within hornfelsed Bucksport, 

and amphiboles occur both in the matrix and as late radial bunches in qtz veins (Table A-

1). In some samples outside of the hornfelsed area, biotite occurs both as small matrix 

grains and as larger, almost poikilitic basal-section porphyroblasts (?) that overgrow and 

preserve foliation (Figure 2.7). 

 The metamorphic grade of the Bucksport observed in this study does not directly 

conflict with the grade shown on the 1985 Generalized Map of Regional Metamorphic 

Zones (Bedrock Geologic Map of Maine; Osberg et al., 1985), where it is shown at 

greenschist facies. However, the map of ‘Acadian’ metamorphism in Robinson et al. 

(1998) shows the Bucksport Formation in the study area as belonging to the garnet zone; 

it is not clear whether this is attributed to regional or contact metamorphism, but in either 

case, the observed grade of the Bucksport by the present author does not warrant this 

assessment. 
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CHAPTER 3 

THE LIBERTY-ORRINGTON SHEAR ZONE 

 

 Within the southern portion of the study area, the trace of the Liberty-Orrington 

fault, previously thought to be a pre-metamorphic thrust, crops out as a continuous band 

of at least two distinct types of mylonites (mica-fish and fine-grained) between the 

Passagassawakeag terrane to the north and the Bucksport Formation to the south (Figure 

1.4). The band of mylonites varies from 250 to 500m in width, and because of its extent 

and mappable lithologies is referred to in this document as the Liberty-Orrington shear 

zone (Plate 1). Within the study area, the shear zone extends from the east side of the 

Penobscot River near the Mt. Waldo pluton in an east-northeast direction to where the 

terrane boundary turns sharply north, near Bucks Mills (Figure 2.0). In this ‘bend’ area, 

the mylonite lithologies of the southern margin of the shear zone are replaced by 

mylonitized and highly-strained metapelites that exhibit both ductile and some brittle 

deformation. It is important to note that while I have grouped the mylonites of the 

southern boundary into two, generally recognizable map units, mylonites of either type 

do not necessarily have the same protolith, or vice versa. Along the eastern north-south 

trending trace of the Passagassawakeag/Bucksport terrane boundary, high-strain rocks are 

represented by the Rider Bluff unit, which I argue are mylonites that also largely record 

movement along a continuation of the Liberty-Orrington shear zone. Because of the 

lithologic and structural differences between the ‘southern’ and ‘eastern’ traces of the 

Passagassawakeag/ Bucksport terrane boundary, lithologies, structures, and metamorphic 

grade of the boundary rocks are described and discussed separately. 
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 This significant area was last mapped more than twenty years ago, as part of a 

master’s thesis (McSwiggen, 1978) (Figure 2.0), but more attention was paid to the 

structure of the Passagassawakeag gneiss, and the mylonites were not recognized as such 

and were interpreted as a strange part of the Copeland Formation. Since then, the 

presence of a fault separating the two terranes has become accepted, although no further 

field work apart from this study has been done to determine the nature of it. It is not 

known whether correlative mylonites exist on this boundary along strike to the southwest, 

although the late Silurian Lincoln Sill that intrudes the boundary in the vicinity of 

Liberty, Maine is strongly foliated with cracked and broken feldspar phenocrysts 

(Stewart, pers. com., 1999). This implies post-late Silurian shearing along the 

Passagassawakeag/ Bucksport boundary in at least one area outside of the present study 

area. 

 

Mica-fish mylonites- southern boundary 

 A coarse-grained grey, and in places white micaceous mylonite occurs as a 

mappable unit within the Liberty-Orrington shear zone. In the field, it is generally 

characterized by an abundance of mica fish (foliation fish in a largely pelitic rock; hence 

the informal name), quartz ribbons and boudins, and small porphyroclasts of garnet 

and/or tourmaline (Figure 3.0). The mica fish lithology fairly consistently occurs on the 

north side of the shear zone, adjacent to the Passagassawakeag gneiss and Stricklen Ridge 

granite, although nowhere is a clear contact exposed. In the vicinity of Jacob Buck Mtn., 

the mica fish lithology occurs as sigmoidal-shaped lenses intertwined with fine-grained, 

grey mylonite (Figure 3.1).  
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 Grey mica fish mylonites are most common and consist of mostly quartz, 

plagioclase, and muscovite with accessory amounts of  chlorite, garnet, tourmaline, 

hematite, zircon, and opaques, and trace amounts of biotite and sillimanite (Table A-1). 

Quartz and plagioclase occur as very fine-grained, dynamically recrystallized matrix 

grains, boudined ribbons, and cross-cutting late veins. Muscovite is large and forms mica 

fish. Garnet is pale pink and forms small, oblong or broken  porphyroclasts concordant 

with foliation or large subhedral porphyroclasts with abundant fractures, some torn apart. 

White mica fish mylonites have the same mineralogy listed above, but never contain 

biotite and have very few opaques. 

 Structures 

 Mylonitic foliation within the shear zone is consistently near-vertical, and 

stretching lineations are consistently near-horizontal (Figure B-3). Stretching lineations 

are defined by aligned tourmalines, which prove to be porphyroclasts in thin section, so 

the lineation seen in hand-sample is not an intersection or mineral lineation. The strike of 

foliation changes from ~050 in the west to ~070 on the west side of Jacob Buck Mtn., to 

~330 on the east side of Jacob Buck Mtn., to 000-020 along the eastern boundary, 

implying that the map-scale folding occurred after movement along the shear zone had 

ceased (Plate 1). All coarse-grained mylonites have gorgeous muscovite mica fish, all 

showing dextral sense of shear (Figure 3.0). Most samples display a compositional 

segregation into quartzofeldspathic + pelitic domains, but it is not known if this texture 

represents an earlier foliation or not. Some samples also have plagioclase fish 

(mesoscopic and microscopic porphyroclasts), and quartz ribbons folded in z-folds. All 

show a well-developed S-C foliation (Figure 3.2) locally overprinted by a crenulation  



 46 

 



 47 

 

 

 

 

 

 



 48 

foliation, possibly due to local folding. Samples without crenulation present show a weak 

to strongly developed C’ foliation defined by smaller micas (Table A-2). In all samples, 

quartz is dynamically recrystallized (Figure 3.3) with elongate grains oriented ~45° to the 

northeast of the main S-foliation, and rotated garnet porphyroclasts have recrystallized 

mica tails, all indicating dextral shear. One sample within the contact metamorphic 

aureole of the Mt. Waldo pluton (outcrop #55) has abundant euhedral tourmaline 

porphyroclasts (with detrital cores) oriented in two main directions. Crystals oriented 

with the c-axis perpendicular to lineation behaved as rotated porphyroclasts complete 

with mica tails, while crystals oriented with the c-axis parallel to lineation are lath-

shaped, define the S-direction, and are often broken (Figure 3.4).  

 Metamorphism 

 Mylonitic rocks within the shear zone are categorized into two main groups: those 

within the contact metamorphic aureole of the Mt. Waldo pluton and those outside of it. 

Within the contact metamorphic zone, the highest prograde metamorphic mineral found 

is garnet, which occurs as small, elongate and broken clasts and as large, subhedral clasts. 

The elongate garnets are probably the result of tiny coalesced clumps of garnet that were 

later annealed along with the larger clasts during contact metamorphism (Figure 3.5). 

Chlorite appears to be a later, possibly retrograde phase, as it replaces muscovite in areas 

of stronger shear and grows in the shadows of rotated garnets. Cordierite (?) occurs as 

larger, bluish clasts with abundant inclusions and is altered to pinite around grain  
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boundaries. In one sample (outcrop # 61), chlorite forms most of the matrix (probably 

replacing biotite) and is a strange deep yellow color in plain light (Table A-1). In the 

same sample, plagioclase clasts are highly altered to pyrophyllite, and possibly contain 

sphene. 

 The metamorphic mineral assemblage of rocks outside of the Mt. Waldo aureole 

is much the same as those within it with a few exceptions. Fibrolitic sillimanite occurs as 

mats of tiny prisms in the matrix where it is involved in foliation and as inclusions in 

quartz where it appears to overgrow foliation. Garnets are subhedral to anhedral and are 

almost always fractured and torn apart. Chlorite occurs as small blebs in the matrix, as 

fine recrystallized laths in S-oriented shear zones, and around garnets where it clearly 

represents a retrograde phase (Table A-1). 

 Protoliths 

  Based on the mineralogy of the thin sectioned mylonite samples, each has been 

assigned a tentative protolith (pre-mylonitization), although it is understood that in a 

long-lived reactivated shear zone such as this, most protolith signatures may have been 

obliterated. In general, mica fish lithologies that contain very little biotite and opaques, or 

lack them, are considered to be derived from granite that intruded the Passagassawakeag 

or Copeland formations. The grey mica fish mylonites are considered to be derived from 

the Copeland Formation for several reasons. The paucity of biotite, lack of amphibole 

and calcite, and the presence of chlorite as an apparent primary phase rule out a 

Bucksport protolith. In addition to the reasons listed above, the fine-grained matrix nature 

of the plagioclase and quartz casts doubt on the Passagassawakeag gneiss as a protolith. 

The mineralogy of the grey mica fish mylonites is in agreement with the mineralogy of 
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the pelitic portion of the Copeland Formation, and its high mica content provides an 

appropriate zone of relative weakness for a shear zone to develop. A complete list of thin 

sectioned samples and their protoliths is provided in Table A-1, and areas where they 

occur are outlined on Plate 1 and Figure 3.6a. 

 

 Fine-grained mylonites- southern boundary 

 The most abundant type of mylonite in the Liberty-Orrington shear zone is a fine-

grained, grey (to purple where hornfelsed) mylonite/phyllonite, that typically crops out 

along the southern portion of the shear zone, adjacent to the Bucksport Formation. A 

fine-grained mylonite is also present near Jacob Buck Mountain, which may have been 

derived from the fine-grained calc-silicate unit of the Passagassawakeag gneiss (Figure 

3.6b). These mylonites are characterized by an extremely fine-grained, sugary texture 

often with very fine, boudined quartz ribbons (Figure 3.7). Foliation is usually difficult to 

identify, although when present it is crenulated and/or defined by purple and green 

compositional layering. Because of the extreme fine-grained nature of some of these 

mylonites, it is almost impossible to determine the protolith or even the degree of 

deformation in the field, therefore thin sections were made of all fine-grained lithologies 

in doubt. The mineralogy of fine grained mylonites is variable but, all contain quartz, 

plagioclase, biotite, and hematite, and depending on the protolith and/or metamorphic 

grade amphibole, tourmaline, sphene, allanite, calcite, ilmenite, chlorite, muscovite, 

garnet, and sillimanite (Table A-1).  
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 Structures 

 In outcrop, obvious structures such as foliation and lineations are not easily 

identified in this rock type, and are somewhat rare. The majority of fine-grained 

mylonites strike 050 to 060 in the western end of the field area, change to 080 near Jacob 

Buck Mountain, and to 325 east of Jacob Buck Mountain, with near vertical dips and 

near-horizontal stretching lineations (Plate 1). This map pattern is nearly identical to that 

shown by the mica-fish mylonite, and considering that both types of mylonites occur 

along the length of the shear zone and even in the same outcrop, they probably formed at 

the same time, prior to regional folding. In thin section, all fine-grained mylonites exhibit 

a well-developed dextral S-C foliation with the S-direction defined by quartz and/or 

amphiboles, and the C-direction defined by micas except in samples where quartz is the 

main phase (Table A-2). C’ foliation is also developed in more pelitic samples and layers, 

and when present, is usually dominant. In some cases, amphibole and quartz are stretched 

and sigmoidal, indicating dextral shear. Quartz ribbons are folded, boudined, and on-

lapped, and late dynamically recrystallized quartz veins occur in the S-direction. In the 

western portion of the study area, late fractures (locally a crenulation) cut all foliation 

nearly perpendicular to C-foliation (Figure B-6). In samples that contain garnet 

porphyroclasts, foliation bends around them or forms mica tails, and the garnets 

themselves are abraded with numerous inclusions. Some garnets are elongate and appear 

deformed, while others form tectonic fish. Large tourmalines also occur as porphyroclasts 

(Figure 3.8).  
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 Metamorphism 

 The degree of metamorphism of the fine-grained mylonites is generally coincident 

with the metamorphic grade of the protoliths, with the exception of the hornfelsed 

mylonites in the western portion of the study area (Table A-1). Small prismatic 

sillimanite needles are present in the mylonite on the south side of Jacob Buck Mountain 

(Figure 3.9), and garnet is present in a few samples from the western end of the study 

area. Mylonites within the contact metamorphic aureole of the Mt. Waldo pluton are 

hornfelsed, as shown by larger hornblende, biotite, and tourmaline crystals that appear to 

grow in preferred orientations. Chlorite appears to be a late phase in all samples, 

occurring along quartz veins and fractures, and sometimes extensively replacing biotite. 

 Protoliths 

 Fine-grained mylonites were assigned to protoliths based on their mineralogy and 

relative position within the shear zone. The one sample that contains sillimanite is 

probably highly-strained Passagassawakeag gneiss, as the abundance of hornblende rules 

out the Copeland. Samples with garnet are derived from either the Copeland or 

Passagassawakeag formations. Mylonitic Bucksport contains a fair amount of hornblende 

and/or calcic amphiboles and calcite, although in higher-strained varieties calcite is 

absent. It is also characterized by a lack of aluminum-silicate minerals and tourmaline. 

Fine-grain size in mylonites with a Bucksport protolith might perhaps be a function of the 

original fine grain size of the Bucksport Formation, while fine-grained mylonitic 

Copeland or Passagassawakeag probably indicates areas of higher strain. 
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 Low-strain zones 

 A couple of areas within the Liberty-Orrington shear zone consist of relatively 

low-strain, highly chloritized rock in places exhibiting evidence for vertical movement, 

such as small boudins and axes of quartz vein folds parallel to foliation. In one outcrop, 

original Passagassawakeag gneissic layering is preserved apparently in contact with fine-

grained, hornfelsed Bucksport Formation (outcrop # 15) (Plate 1). I refer to these 

lithologies as ‘fault rock’ and believe that they represent low-strain lenses within the 

shear zone. Locations of the low-strain lenses are shown on Plate 1. 

 

Eastern boundary mylonites 

 Perhaps the most significant outcome of this study is the recognition that 

lithologies that occur along the eastern trace of the Liberty-Orrington fault are distinct 

from the mylonites mapped in the shear zone along the southern boundary, and may have 

formed in different manners. Because the host lithology (Passagassawakeag gneiss vs. 

Copeland schist/quartzite, or Bucksport?), style, and present sense-of-shear orientation 

are different along this boundary, and because of a scarcity of outcrops, it is not possible 

to categorize these mylonites like the mylonites along the southern trace of the fault. 

Consequently, eastern-boundary mylonites are described by geographic location rather 

than lithology. Fine-grained mylonites of the southern boundary extend to the east as far 

as Jacob Buck Pond (Plate 1). The inferred trace of the shear zone from this area passes 

to the northeast of Whites Brook at the base of Orcutt Mountain, a till-covered and 

heavily forested area with no outcrop. The next outcrops to the east are near Bucks Mills, 

where several distinct fine-grained mylonites and a low-strain lens occur (outcrops #88, 
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#115, #107). These lithologies are individually described in Table A-1 , and  are derived 

from Copeland, Rider Bluff, or Bucksport formations. From here, the Liberty-Orrington 

fault trace turns sharply northeast and the mylonitic fault rocks are represented by the 

Rider Bluff unit (formerly a member of the Copeland Formation), which may be 

mylonitized Copeland or even Bucksport formation. The strike of foliation also turns 

north, even in relatively undeformed Bucksport outcrops adjacent to the fault trace 

(outcrop #101). Because of poor exposure and the discovery of the mylonites along the 

southern Liberty-Orrington trace, mapping of the eastern trace was not a priority, and 

only those outcrops that are easily accessible were visited. 

 Structures 

 All mylonites in the ‘bend’ area are fine-grained and micaceous with a sugary 

texture and small quartz ribbons. One outcrop has small S-folds, but in most the sense of 

shear is indeterminate at outcrop scale. The general strike of foliation is north-northeast, 

while dip is near-vertical at the bend and is consistently to the east once the boundary 

turns to the north. In thin section, slight pelite + quartzofeldspathic domains are 

developed in most samples, and C’ foliation is clearly defined by matrix micas, quartz 

ribbons, and tectonic fish (Figure 3.10). All quartz is extensively dynamically 

recrystallized with elongate subgrains oriented in the S-direction. Some quartz veins 

exhibit z-folds, and some quartz ribbons are boudined and isoclinally folded. 

Porphyroclasts of plagioclase and garnet are abundant, and while plagioclase grains are 

rounded and deformed, garnet grains are less abundant and extensively fractured and 

displaced, with the fractures filled by chlorite (Figure 3.11a&b).  
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All ductile deformation features indicate a dextral sense of shear (present orientation). In 

quartzo-feldspathic rich parts of the samples, brittle deformation appears to be dominant, 

with broken and displaced garnet and plagioclase porphyroclasts, microlithons, and broad 

as well as brittle folding of the ductile foliation. 

 Macro and micro structures present in the Rider Bluff unit are described in detail 

above with the Passagassawakeag lithologies. The highly-deformed and recrystallized 

quartz and biotite layers characteristic of this unit are a tectonic fabric and do not 

represent original sedimentary bedding. The unit has a very strong stretching lineation 

almost perpendicular to the strike of foliation, with well-developed C’ foliation in a 

Bucksport-over-gneiss thrust sense(Table A-2). It is highly unlikely that original 

sedimentary bedding of such a fine scale (~ 2mm) would survive the strain required to 

create the stretching lineation, as this same kind of strain-induced compositional layering 

is evident in slightly deformed Bucksport Formation within the study area (outcrop # 97).   

 Metamorphism 

 The highest grade index mineral observed in the mylonites of the transition and 

eastern boundary zones (Rider Bluff) is garnet (Figure 2.4). This is consistent with the 

reports of previous workers (McSwiggen, 1978; Kaszuba, 1986). Garnet porphyroclasts 

are subhedral to anhedral and are abraded or fractured with green biotite (Mg-rich) filling 

the fractures (Figure 3.11b). This magnesium-rich biotite occurs as fracture fill in other 

phases, and may be the result of regional retrograde metamorphism, possibly an 

intermediate phase between biotite and chlorite. Considering this, and that chlorite is 

concentrated along the C’ shear bands in the Rider Bluff unit,  a regional retrograde  
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metamorphism may be associated with the brittle deformation observed in the eastern 

boundary rocks. 

 

 Summary of eastern boundary mylonites 

 It is curious that the Rider Bluff unit (and the transition mylonites) are only at 

garnet grade, when the lithology that they are supposedly derived from and/or part of is at 

sillimanite grade (Copeland Formation), and there does not appear to have been a 

retrograde event severe enough to downgrade the rocks from sillimanite to garnet grade. 

Also,  nowhere does the Stricklen Ridge migmatite intrude the Rider Bluff unit, and it has 

not been observed to intrude the ‘bend’ mylonites either. It is odd that a unit whose 

outcrop pattern is very thin and parallels a fault trace, has a unique tectonically-derived 

layering, and is bordered on the west (for ~15 kilometers) by a high-grade migmatitic 

schist but exhibits a significantly lower metamorphic grade, should be considered 

anything except the manifestation of a major fault.  

 It is quite plausible that the Rider Bluff unit is mylonitized Bucksport Formation 

and that the entire unit is a fault zone. The present composition of the Rider Bluff may or 

may not reflect that of the original protolith. It most closely resembles the Bucksport, but 

is not pelitic enough to be considered part of the formation, and may be derived from a 

lithology not exposed at the surface (a highly-ferrugenous argillite?). The abundance of 

magnetite and hematite imply that the protolith was iron-rich (possibly of hydrothermal 

origin), or that the iron was secondarily introduced through solution transfer processes. 

The Rider Bluff is clearly highly-strained, so pelitic material and magnetite could have 

been concentrated in the unit due to circulating fluids during shearing. 
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  It is also relevant to note that the Rider Bluff exhibits late Bucksport-over-gneiss 

shear (C’ foliation) superimposed on early ductile deformation (compositional layering), 

while mylonites of the ‘bend’/transition area have brittle deformation superimposed on 

older, clearly dextral ductile deformation (S-C foliation; present orientation). Both later 

deformations coincide with a retrograde metamorphism. I suggest that the eastern-

boundary mylonites record the same general kind of deformations and metamorphism, 

but with different kinematics, as the ductile dextral shear in the mylonites of the Liberty-

Orrington shear zone, and that they were formed along a thrust continuation of the 

Liberty-Orrington shear zone. 
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CHAPTER 4 

TIMING OF MYLONITIZATION AND EXHUMATION OF THE 

PASSAGASSAWAKEAG TERRANE 

 
 
 As is typical of most polydeformed and polymetamorphosed areas, deformation 

associated with initial movement along the Liberty-Orrington shear zone is probably 

obscured by subsequent tectonic events. However, it is possible to estimate the relative 

time of formation of the earliest preserved fabric by establishing a sequence of tectonic 

events recorded by the rocks through overprinting relationships, from the microscopic to 

regional scale. It is clear from inspection of the samples of mylonites and gneiss taken in 

this study that they show a complex history of ductile dextral shear along the Liberty-

Orrington shear zone sometime between the early (deformed Stricklen Ridge granite) and 

late (cross-cutting Mt. Waldo pluton) Devonian, with metamorphism both accompanying 

and occurring in-between deformations. Therefore, the Passagassawakeag and 

Fredericton Trough terranes in northern the Penobscot Bay area were juxtaposed close to 

the beginning of the Acadian orogeny, and perhaps even earlier. Depending on when 

motion began on the Norumbega Fault Zone, there may have been a hiatus between when 

shearing ceased along the southern boundary of the Liberty-Orrington shear zone (~371 

Ma) and when movement was taken up along the Norumbega to the north. 
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Relationships between metamorphism and deformation 

 Regional scale -Overprinting relationships 

 At the northern end of Penobscot Bay, the Liberty-Orrington shear zone is cross-

cut by the 371±2 Ma Mt. Waldo pluton (Tucker et al., in press). Although the author has 

not directly observed the Mt. Waldo granite intruding the mylonites of the shear zone, 

granite dikes clearly intrude and hornfels the Bucksport Formation within the western 

portion of the study area. Both the fine-grained and mica-fish mylonites near here appear 

to be hornfelsed as well, evidenced by the growth of new metamorphic minerals in these 

rocks within the contact metamorphic aureole of the Mt. Waldo granite as well as the 

growth of  existing minerals over the mylonitic foliation. Specific petrologic evidence for 

the hornfelsed mylonites is discussed in detail below. Further detailed mapping of the Mt. 

Waldo pluton and its relationship to the Liberty-Orrington shear zone, particularly south 

of the present study area, would provide additional support for the sequence of  tectonic 

events seen here. 

 The Stricklen Ridge granite is thought to be anatectic, so its 412± 14 Ma age may 

also be the age of the most recent metamorphic event experienced by the 

Passagassawakeag terrane (Zartman and Gallego, 1979). Because dikes of the Stricklen 

Ridge granite are involved in mylonitization in the Liberty-Orrington shear zone, this 

date also provides a lower limit on the age of  the earliest preserved deformation 

associated with movement within the shear zone. The high metamorphic grade of the 

Passagassawakeag gneiss and adjacent mylonites is most likely the result of multiple 

metamorphisms (McSwiggen, 1978; West et al., 1995). Consequently, it is also likely 
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that the 412± 14 Ma sillimanite-bearing mineral assemblage within the mylonites that 

overprints foliation, may obscure older metamorphic and deformation events. 

 Microscopic scale- petrographic analysis 

 The relationships between metamorphic and tectonic episodes are more clearly 

delineated at the microscopic scale, but only show a relative and qualitative sequence of 

events without microprobe and other detailed chemical analysis. Mineral overgrowths, 

late porphyroblasts, and the present coexistence of chlorite with higher-grade 

metamorphic phases in the mylonites of both the southern and eastern boundary zones 

indicates that the rocks mostly preserve a retrograde metamorphic sequence. The 

metamorphic minerals in both types of mylonites do not appear to be in equilibrium, as 

chlorite replaces biotite and garnet, and plagioclase is altered to sericite. Consequently, a 

detailed account of prograde metamorphic reactions and their relationship to deformation 

is not observed. Although the later sequence of deformation and metamorphism obscures 

the prograde/burial path through P-T (Figure 4.0) and T-t (Figure 4.1) space, it does 

provide a record of Devonian movement along the Liberty-Orrington shear zone and, 

subsequently, the exhumation of the Passagassawakeag terrane. 

  Southern boundary 

 Sillimanite is present in the Passagassawakeag gneiss and portions of the southern 

mylonites, and is both involved in and overgrows mylonitic foliation (Figure 3.9). 

Because the Stricklen Ridge migmatite is derived from and cross cuts the gneiss, it is 

assumed that the sillimanite formed during prograde metamorphism which culminated in 

partial melting, at or near 412±14 mya (Zartman and Gallego, 1979). Although the  
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dextral shear preserved in the southern mylonites deforms the migmatite and is therefore 

younger than it, dikes and sills of the migmatite appear to intrude the non-mylonitic 

gneiss outside the shear zone in a manner concordant with the gneissic layering and also 

showing dextral shear indicators, implying that the strain pattern resembling that of the 

shear zone was in place at 412±14 mya.  

 The dextral shear responsible for the formation of the southern mylonites began  

sometime after peak metamorphism and anatexis of the Passagassawakeag gneiss, hence 

in the early Devonian (Figure 4.1). Strike-slip motion by ductile shear is inferred through 

the early part of the Devonian, as evidenced by the ductile structures in the mylonites 

described in Chapter 3. Quartz and plagioclase porphyroclasts in the fine-grained and 

mica-fish mylonites contain inclusions of  randomly-oriented red biotite and sillimanite 

needles. Because the original plagioclase grain boundaries in the porphyroclasts are still 

evident, the plagioclase and inclusions are probably all originally matrix minerals, with 

the biotite and sillimanite being incorporated into the plagioclase during a metamorphic 

event. One explanation for the random orientation of the inclusions is that they record 

local cataclasis within the shear zone, which destroyed the previous ductile mylonitic 

foliation. Shortly after this, the rock was metamorphosed, causing matrix quartz and 

plagioclase to overgrow and preserve the randomly oriented sillimanite and biotite. 

Dextral movement then resumed, transforming the porphyroblasts into clasts and 

restoring mylonitic foliation (Figure 4.2). Another explanation for the inclusions is that 

the porphyroclast is simply a lithic fragment from the Passagassawakeag gneiss, with the 

biotite and sillimanite incorporated during a static metamorphic event. While this is  
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certainly possible, it seems unlikely that the matrix minerals in a strongly deformed 

gneiss would be randomly oriented.  

 Mica-fish mylonites are characterized by an abundance of  muscovite mica-fish 

and a paucity of biotite. This may reflect protolith bulk composition, or it may indicate a 

prolonged deformation event when the mylonites were approximately at 400° C (~ 16 km 

depth; based on an average 25°/km thermal gradient), as this is the temperature at which 

biotite is replaced by muscovite through the continuous reaction:  garnet + biotite + 

quartz + H2O = chlorite + muscovite (Yardley, 1995). If the latter is the case, then the 

southern boundary mylonites were approximately at 4.8 kbar and 400° C shortly after 

peak Acadian metamorphism (Figure 4.0) (presumed to be 380 Ma; Tucker et al., in 

press). As an alternative to protolith, the occurrence of two types of mylonites in the 

Liberty-Orrington shear zone may reflect differences in the H2O content of the shear zone 

rocks, as water is required to drive the above reaction.   

 In mylonites in the ‘bend’ area of the southern boundary, late chlorite-filled shear 

bands with a dextral sense cut all previous mylonitic foliation, and along with the 

dynamic recrystallization of quartz and plagioclase, probably represent the last portion of 

dextral movement along the Liberty-Orrington shear zone. Some garnets are fractured 

and filled with chlorite, suggesting the retrograde reaction in the previous paragraph was 

still taking place. I infer that this dextral C’ foliation formed prior to intrusion of the Mt. 

Waldo granite (Figure 4.1), because the granite cuts (in large scale) the shear zone (just 

south of the study area) and is not known to have undergone ductile strain. 
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 After formation of the mica-fish mylonites and C’ foliation, rocks within the 

western half of the southern boundary were hornfelsed during the intrusion of the 371±2 

Ma Mt. Waldo pluton (Figure 4.1). Garnets, tourmalines, and sillimanite needles all 

overgrow mylonitic foliation to various degrees, and their occurrence extends from the 

Penobscot River east, to Jacob Buck Pond. The adjacent Bucksport Formation is also 

noticeably hornfelsed, manifested through growth of amphiboles and biotite 

porphyroblasts that also overgrow foliation. 

 

  Eastern boundary 

 The mylonites of the Rider Bluff unit follow a similar T-t path as that described 

above for the southern boundary mylonites, except they may have only reached a 

maximum pressure and temperature of  ~6 kbar and 475° C, as garnet is the highest-grade 

phase present. As with the southern boundary mylonites, the prograde metamorphic 

history of the Rider Bluff unit has been obscured by peak and later deformation and 

metamorphism (Figures 4.0 and 4.1).  

 The most striking feature of the Rider Bluff mylonite is its fine compositional 

layering, described in Chapter 3 and defined as the primary mylonitic foliation. The 

presence of garnet porphyroclasts indicates that the present foliation formed after garnet 

formation, presumed to be sometime in the early-mid Devonian (Figure 4.1). A small but 

recognizable amount of chlorite is involved in the primary foliation, indicating that the 

dextral movement that produced it continued through a temperature of 350° C, which the  
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mylonites experienced shortly after peak Devonian metamorphism (Figure 

4.1) (presumed 380 Ma; Tucker et al., in press).  

 Biotite porphyroblasts nucleate from and overgrow the primary 

compositional foliation (Figure 2.4), and may have grown in response to the 

intrusion of the Lucerne pluton, so foliation must be older than 380 Ma 

(Bradley et al., 1998). Some garnets are nearly euhedral, yet are clearly 

involved as porphyroclasts in the foliation, so were probably annealed and/or 

overgrown during the same metamorphic event. Because the chlorite 

involved in the primary foliation must have formed sometime after 380 Ma, 

porphyroclast/blast growth within this boundary was probably syn-kinematic 

(Figure 4.1). 

 A younger C’ foliation cuts the compositional layering and biotite 

porphyroblasts, is chlorite-filled, and displays the opposite sense of shear 

(Bucksport over Passagassawakeag) than the earlier shear zone, where they 

do not occur. These chlorite shear bands are most prevalent in the northern 

portion of the eastern boundary mylonites where the rocks are in close 

proximity to the Norumbega Fault Zone, decrease in occurrence to the south, 

and are not present near the ‘bend’ in the mylonite outcrop pattern, near 

Bucks Mills. Because this foliation is the youngest structural and 

metamorphic feature in the Rider Bluff unit, it is most likely related to later, 
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post-Acadian strike-slip motion along the Norumbega Fault Zone after 

movement along the Liberty-Orrington shear zone had ceased (Figure 4.1). 
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CHAPTER 5 

TECTONIC EVOLUTION OF THE BUCKSPORT-ORLAND AREA 

 

Tectonic models 

 The Liberty-Orrington shear zone juxtaposes two lithotectonic terranes of very 

different metamorphic grade and age that crop out in the midst of the wide suture zone of 

the Acadian orogeny. With the discovery of a wide mylonite belt along the trace of this 

terrane boundary (Figure 1.4; Plate 1), it is clear that the two terranes are separated by a 

major fault, the nature of which is discussed below. 

  Both tectonic models for the region proposed by Stewart et al. (1995) and Osberg 

et al. (1998) invoke a pre-metamorphic thrust fault as the mechanism for emplacement of 

the Passagassawakeag terrane during the early Acadian or earlier (Figure 1.3). If this 

were the case, one would expect to see mylonitic foliation with steeply pitching 

stretching lineations indicating movement of the Passagassawakeag terrane either from 

the northwest or the southeast (present coordinates). As described in Chapter 3, 

throughout the southern boundary mylonites, foliation is consistently vertical or near 

vertical with near-horizontal stretching lineations. Mylonitic foliation in the Rider Bluff 

unit of the eastern boundary has very strong stretching lineations oriented perpendicular 

to its strike, suggesting a thrust fault. Given only this information, it is arguable that the 

Liberty-Orrington Fault could be an elaborately folded pre-metamorphic, pre-Acadian-

deformation thrust fault. However, the entire eastern boundary dips moderately to the 

east, and when ‘unfolded’, along with the vertical foliation of the southern boundary, the 

kinematic indicators present require along-strike transport of the Passagassawakeag 



 79 

terrane from the southwest (Figure 5.0). It is unlikely that the dextral shear present in the 

Liberty-Orrington southern mylonites is an overprinting of  earlier thrust motion,  as any 

other direction of movement is not reconcilable with the direction and sense of shear in 

the eastern mylonites, which could not have formed through orogen-parallel dextral shear 

(Figure 5.1). 

 The simplest tectonic model that explains the macro and micro structures, outcrop 

pattern, and kinematic indicators of the Liberty-Orrington shear zone is one in which the 

southern boundary mylonites represent prolonged dextral movement along a strike-slip 

shear zone, with the eastern boundary mylonites representing an overturned  

transpressional thrust (formed along a restraining bend in the shear system), along which 

the Passagassawakeag terrane was exhumed (Figure 5.2). The overturning of the eastern 

thrust boundary may be due to regional folding, prolonged strike-slip motion along the 

southern boundary, late dextral motion along the Norumbega Fault Zone, or a 

combination of any of the above. As the pervasive dextral shear in the southern boundary 

mylonites requires prolonged strike-slip motion, and petrographic analysis of the 

mylonites shows that dextral shearing did occur through most of the Devonian, this is the 

most feasible explanation.  

 The difference in mylonite lithology between the southern and eastern boundaries 

lends further support to the dextral shear zone + transpressive thrust tectonic model 

proposed here in that different strain regimes (strike-slip vs. thrust) may well produce 

different mylonites. Foliation in the southern mylonites turns north at the ‘bend’ in the 

map pattern, and dip of the foliation makes a transition from near-vertical or steeply  
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north-dipping in the southern boundary to vertical at the ‘bend’, to east-dipping along the 

eastern boundary, indicating a mechanical continuity between the two boundaries (Figure 

5.0). Kinematic indicators in the mylonites from the ‘bend’ area appear less systematic 

but the rocks remain highly-strained, implying that these rocks represent a transition from 

a region of strong dextral shear to one of thrusting. This apparent structural if not 

lithologic continuity at the bend in the Liberty-Orrington shear zone requires a similar 

geometry at depth, with transition mylonites occurring between the strike-slip and thrust 

components of the shear zone.  

 

The role of transpression in the Acadian orogeny 

 The majority of the tectonic models for the amalgamation of coastal Maine have 

been focused on the nature of the initial collisions and sutures between terranes, all 

thought to be major thrust faults (Robinson et al., 1998; Osberg et al., 1995). The 

Norumbega Fault Zone has long been considered a late, although possibly reactivated 

feature with moderate dextral offset that has obscured the original terrane boundary 

relationships in coastal Maine (Keppie, 1989; Osberg et al., 1989; Ludman, 1986).  

 In recent years, extensive, long-lived dextral strike-slip fault systems have been 

described for coastal Maine (Stewart et al., 1995; Swanson, 1995; West and Hubbard, 

1997). While many of these fault systems are still considered secondary tectonic features, 

a Silurian strike-slip fault system in Penobscot Bay is recognized as the primary 

mechanism of terrane amalgamation, in conjunction with a major thrust fault at depth 

(Stewart et al, 1995). The Penobscot Bay-Smith Cove-Blue Hill dextral strike-slip fault  
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zone is 3 km or more wide, and juxtaposes Avalonian and peri-Gondwanan rocks. This 

fault is believed to be the earliest active fault in the Penobscot Bay region (before 419.5± 

1 Ma, U-Pb age of a cross-cutting intrusive suite; Stewart et al., 1995), and dextral 

movement migrated northward (present coordinates) throughout the later part of the 

Silurian. West and Hubbard (1997) describe a wide zone of dextral shear along a major 

splay of the Norumbega Fault Zone to the southwest of Penobscot Bay, interpreted to 

represent a major episode of Late Devonian (360 Ma) to Early Carboniferous (320 Ma) 

transpressive tectonism. Dextral strike-slip movement along the Liberty-Orrington shear 

zone fills both a geographic and temporal gap in the progressive migration of strike-slip 

motion northward (present coordinates) during the Acadian orogeny, and provides a 

means for the exhumation of the high-grade Casco Bay- Passagassawakeag terrane.  

 This migration of strike-slip deformation northward during the Silurian and 

Devonian fits well with a new model for the migration of the Acadian orogen proposed 

by Bradley et al. (1998). A comparison of the first-order migration of the dextral strike-

slip shear zones discussed above with the position of the Acadian orogen as shown by 

Bradley et al., (1998; Figure 12) suggests that the shear zones developed near the 

hinterland-side of the orogenic wedge, and moved inland with the orogen (Figure 5.3). 

This relationship implies that orogen-parallel motion was an integral part of the Acadian 

orogeny and must be taken into consideration when reconstructing the nature of the 

amalgamation of lithotectonic terranes in coastal Maine and New England (Moecher and 

Wintsch, 1994; Peterson and Robinson, 1993). 
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 Transpressional tectonics have long been recognized in other portions of the 

Appalachians and equivalents in the Canadian Maritimes, Newfoundland, Scandinavia, 

and the British Isles (Doig et al., 1990; Piasecki, 1995; Van Staal et al., 1998; Stewart et 

al., 1999). Interestingly, all evidence for strike-slip accretion of exotic terranes in all of 

these areas is of a sinistral sense, opposite of that documented for the northern U.S. 

Appalachians in this thesis. The 435.5±1.5 Ma (Early Silurian) Kingston Dyke complex 

of southern New Brunswick was injected during sinistral movement between Avalon and 

Laurentia (Doig et al., 1990). In Newfoundland, Piasecki (1995) documented complex 

ductile shearing early (Ordovician to Silurian) in the development of the boundaries 

between the Gander, Dunnage, and Humber zones of both sinistral and dextral sense. The 

Great Glen Fault Zone of the Caledonian orogenic belt of the British Isles has been 

shown to be a major, sinistral shear zone active between 428 Ma and 390 Ma (Stewart et 

al., 1999). This sinistral shearing would have taken place along strike to the northeast 

(present coordinates) of the concomitant dextral shearing in Penobscot Bay and the 

Liberty-Orrington shear zone in coastal Maine. While it is clear that ductile shearing 

produced by orogen-parallel motion was ubiquitous, the plate kinematics required to 

produce this motion in opposite directions appears more complex than simple oblique 

collision, and probably would involve escape tectonics. 
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CHAPTER 6 
 

SUMMARY 

 

 Coastal Maine consists of a conglomeration of distinct lithotectonic terranes 

separated by faults that were juxtaposed during a complex, multi-component Paleozoic 

orogen (Bradley et al., 1998; Van Staal et al., 1998). The purpose of this study was to 

find and document evidence for the existence of one of these faults and to try to 

determine its nature and, subsequently, the nature of the relationship between the 

Passagassawakeag and Fredericton Trough terranes that it separates. Because the 

Passagassawakeag (Liberty-Orrington/Casco Bay) terrane is regionally extensive, the 

nature of its emplacement into the Bucksport turbidites of the Fredericton Trough has 

significant implications for the style of amalgamation of the Coastal Lithotectonic Block 

of Maine and the Acadian orogeny.  

 Abundant evidence for the existence of the Liberty-Orrington fault was found in 

the form of an extensive and continuous belt of mylonites along its trace. Foliation in the 

mylonites is vertical or near-vertical with near-horizontal stretching lineations. Kinematic 

indicators include feldspar and biotite porphyroclasts, z-folds, coarse mica-fish, quartz 

ribbons, boudined quartz veins, and delta and sigma-type porphyroclasts of garnet, 

feldspar + quartz, and tourmaline, all displaying consistent and strong dextral shear. A 

localization of strain as the shear zone is approached is clearly demonstrated in the 

biotite-grade turbidites of the Bucksport Formation, as hornblende-filled fractures 

originally normal to foliation become oblique and are eventually involved in the foliation 
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and small z-folds. This evidence clearly dictates that the Liberty-Orrington fault is a 

major shear zone with right-lateral strike-slip kinematics in its present orientation. 

 As the shear zone is followed to the east of Jacob Buck Pond, the mylonites turn 

north, and the sense of shear becomes more complex. Foliation is vertical in this 

transition zone, and eventually dips moderately to the east along the entire eastern 

boundary, interpreted in this thesis as an over-turned transpressional thrust. Here, the 

original thrust sense of the primary foliation (the Rider Bluff unit) is overprinted by late, 

chlorite-filled shear bands displaying a Bucksport-over-Passagassawakeag thrust sense 

that are most prominent in the northern part of the eastern boundary. I interpret this C’ 

fabric with a younger-on-top-of-older sense as developing due to its proximity to the 

Norumbega Fault Zone.  

 The transition between the southern boundary and the eastern boundary mylonites 

is continuous, and the intense deformation found within the Liberty-Orrington shear zone 

does not extend east-northeast into the surrounding Bucksport turbidites at the transition-

bend, as would be expected if the boundaries were entirely separate faults. When 

considering the southern and eastern boundaries as a continuous fault system, the 

kinematics simply do not allow for the entire shear zone to have originated as a thrust 

fault, as most previous workers have proposed, unless the thrust was directed from the 

southwest along strike, in which case the root zone is missing. 

 Time constraints on the development of the Liberty-Orrington shear zone are 

provided by the cross-cutting late Devonian Mt. Waldo pluton, and the early Devonian 

migmatitic Stricklen Ridge granite, which is involved in the shear zone deformation. 

Petrographic analysis reveals a sequence of metamorphic and deformational events 
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through which the exhumation of the Passagassawakeag terrane can be qualitatively 

traced through T-t space. Essentially, the earliest preserved movement within the shear 

zone occurred sometime in the Early to Middle Devonian, during the Acadian orogeny. 

 The Liberty-Orrington shear zone is in some part responsible for the exhumation 

of a major high-metamorphic grade terrane in coastal Maine, extending from the present 

study area south at least to the vicinity of Portland, Maine. Major dextral strike-slip fault 

systems have been described for the Silurian in Penobscot Bay, across strike to the south, 

and for the Late Devonian- Carboniferous Norumbega Fault Zone, across strike to the 

north (Stewart et al., 1995; West and Hubbard, 1997). I interpret the Liberty-Orrington 

shear zone to represent a part of a more extended continuum of dextral shear during the 

early part of the Acadian orogeny, which migrated north with the orogenic wedge 

(Bradley et al., 1998). The evidence presented in this thesis strongly suggests that 

transpressive tectonism due to oblique collision was a major component of the Acadian 

orogeny, and that dextral strike-slip shearing played an integral part in the amalgamation 

of the terranes in coastal Maine. 
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TABLE A-1                   - Mineralogy of Thin Sectioned-samples 
 
Sample  # 
 

Major minerals Accessory 
minerals 

Metamorphic 
grd (observed) 

Formation 
/protolith 

5-7-20 pl, qtz, ms, chl*  grt, tur, bt, 
zrn, ap 

≥ garnet mylonitized 
Stricklen Ridge 
Granite 

10-6-15 qtz, pl, bt, chl, 
grt  

mag ≥ garnet; recryt 
bt+chl w/defm. 

Rider Bluff: 
mylonitized 
Copeland 

16-7-24 qtz, pl, bt, hbl, 
ms 

ill, hem, 
zrn 

biotite; slightly 
hornfelsed 

Bucksport 

17-7-24 qtz, pl, bt, hbl, 
Fe-amphibole 

spn, hem, 
ill 

biotite; 
hornfelsed 

Bucksport 

19-7-24 qtz, pl, bt, hbl, 
cal 

chl, ill, ap, 
zrn 

biotite-chlorite? Bucksport 

28-6-19 pl, qtz, sil, bt, 
hbl, spn 

hem, zrn sillimanite  PGW gneiss, calc-
silicate unit 

36-6-19 pl, qtz, ms, bt, 
chl, grt, sil 

hem, tur, 
glt, aln, zrn 

sillimanite Mica-fish mylonite: 
Copeland? 

49-6-29 qtz, pl, bt, cal, 
hbl 

tur, aln, 
hem, ill 

≥ biotite 
hornfelsed? 

Bucksport (near 
shear zone) 

50-6-29 qtz, pl, bt, hbl hem, aln, 
tur, cal?, 
chl*, zrn 

~ biotite; prob. 
hornfelsed 

Bucksport (near 
shear zone) 

51-6-29 qtz, pl, bt, hbl, 
cal 

hem, tur, 
mag, zrn 

~ biotite; prob. 
hornfelsed 

Bucksport or calc-
silicate unit of PGW 

53-6-29 qtz, hbl, bt, cal, 
pl? 

hem, aln, 
prl 

≥ chlorite (crd) Bucksport (?) 

54-6-29 qtz, bt, pl, grt hem, tur, 
chl*, zrn 

≥ garnet fine-grained schisty 
mylonite: Copeland 

55-6-29 qtz, ms, pl, grt tur, chl*, 
zrn, hem, 
ill 

≥ garnet Mica-fish mylonite: 
Copeland (?) 

56-6-29 qtz, pl, chl, bt, 
hbl, tr 

aln, hem, 
prl 

≥ biotite Fine-grained 
mylonite: 
Bucksport (?) 

57-6-29 qtz, pl, bt, Fe-
hbl, ms 

hem, zrn, 
ill 

≥ biotite; 
hornfelsed 

Fine-grained 
mylonite: Bucksport 
or PGW 

58-6-29 qtz, pl, bt, tur, 
grt 

chl*, hem, 
zrn, prl 

≥ garnet; 
hornfelsed 

Fine-grained 
mylonite: Copeland 

59-6-29 qtz, bt, pl, chl*, 
ms? 

hem, aln ≥ biotite; 
hornfelsed? 

Fine-grained 
mylonite: Bucksport 

61-7-1 qtz, pl, prl*, hem, zrn, ≥ biotite; Schisty-mylonite(?): 
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Sample  # 
 

Major minerals Accessory 
minerals 

Metamorphic 
grd (observed) 

Formation 
/protolith 

chl*, bt spn, tur hornfelsed? SRG 
65-7-6 qtz, pl, bt, ms, 

cal, tur, grt, sil 
aln, hem, 
ill, chl* 

~ sillimanite; 
hornfelsed? 

Fine-grained 
mylonite:  PGW 

71-7-7 qtz, pl, ms, cal hem, bt, tur biotite Bucksport 
80b-7-10 qtz, pl, hbl, aln, 

spn, sil 
hem, zrn, 
chl* 

~sillimanite Fine-grained 
mylonite: 
PGW 

84-7-13 qtz, ms, bt, cal, 
pl 

chl*, mag, 
aln, tur 

biotite Bucksport 

90-7-11 hbl, qtz, pl sil, ill, ap, 
zrn 

~sillimanite amphibolite lens of 
the Copeland 

91-7-13 bt, pl, qtz, green 
biotite 

ms, grt, ill, 
hem, zrn, 
ap 

≥ garnet Rider Bluff 

97-7-15 qtz, pl, bt, ms hbl, ill, 
hem, chl* 

biotite-chlorite Bucksport, strained, 
hornfelsed? 

99-7-16 qtz, pl, bt, ms hbl, hem, 
ap 

≥ biotite Bucksport, strained, 
hornfelsed (?) 

100-7-16 qtz, pl, bt zrn, hem, 
chl*, ap 

biotite-chlorite Bucksport, strained, 
hornfelsed (?) 

101-7-16 qtz, ms, bt, pl? hem, tur, 
zrn, opaq. 

biotite Bucksport 

113-7-21 qtz, pl, bt, ms, 
hbl 

ap ≥ biotite Bucksport, strained 
(comp. banding) 

115-7-24 ms, qtz, alb, tur, 
grt, bt 

hem, ill?, 
zrn 

≥ garnet Fine-grained 
mylonite: Copeland? 

117-7-24 qtz, alb, hbl, 
spn, mc, sil 

hem, bt, 
chl, zrn 

~ sillimanite 
hornfelsed? 

PGW or sheared 
SRG 

119-7-24 
________ 

qtz, alb, bt, hbl, 
mc 

spn, hem, 
mag, zrn 

≥ biotite; 
hornfelsed? 

PGW gneiss 

 
 Mineral abbreviations according to Kretz: Symbols for rock-forming minerals: 
qtz=quartz, pl=plagioclase, bt=biotite, hbl=hornblende, ms=muscovite, grt=garnet, 
mag=magnetite, ill=illmanite, hem=hematite, zrn=zircon, spn=sphene, chl=chlorite,  
sil=sillimanite, cal=calcite, tur=tourmaline, aln=allenite, prl=pyrophyllite. (≥) indicates  
that the observed metamorphic grade is lower than previously reported, and the sample 
probably did not contain key phases such as garnet or sillimanite. * indicates that the  
phase is secondary. 



TABLE A-2                                       - Summary of structures in thin-sectioned samples 
 
Sample 
# 

macrostructures strike 
& dip 

lineations 
(pitch) 

microstructures SOS Formation & 
location  

5-7-20 highly strained, mica-fish N70E, 
90 

17E S-C foliation (micas + inclusions= S; 
micas = C); bands of Q & P domains; 
foliation overprinted by crenulation 

dextral mylonitized Stricklen 
Ridge Granite, west side 
of Jacob Buck Mtn. 

10-6-15 2mm light & dark mineral 
bands, small open folds, qtz 
rods 

N320W, 
60NE; 
fold axes 
60° 

strong,  87N  chl-filled C’ fabric cuts bands of 
pl+qtz+chl & bt+qtz+mag; over- 
printing older C’ fabric of opposite 
sense of shear 

sinistral, 
cutting 
dextral 

Rider Bluff, top of Rider 
Bluff on eastern boundary 

16-7-24 Weak foliation at an angle to 
comp. banding; late hbl-filled 
fracts.; one large pl+qtz augen 

c. b. 
N10E, 
90; fol.= 
N348W, 
90, frac. 
N69E 

none late qtz-filled fractures ~ 60°- 45° from 
foliation = extensional shear bands ? 

dextral Bucksport, Silver Lake 
Rd 

17-7-24 Comp. banding intersected by 
foliation 

N332W, 
82E 

none 
apparent 

slight S- foliation with small shear 
zones developed around calc-silicate 
‘pod’ 

 Bucksport, Silver Lake 
Rd 

19-7-24 Foliated, fissile in places, 
concordant hbl-filled fracts. , 
qtz veins, and small folds 

N40E, 
62SE 

16NE S-C’ foliation; qtz has undulose ext., 
micas in C’ dir., qtz & late qtz veins in 
S dir. 

dextral Bucksport, intersection of 
State Farm Rd. & Silver 
Lake Rd. 

28-6-19 Gneissic banding, fine-grained, 
intruded by SR granite 

N70E, 
50N- 
70N 

30E foliation defined by compositional 
banding; minerals are annealed 

dextral Calc-silicate unit of 
Passagassawakeag gneiss, 
west side of Jacob Buck 
Mtn. 

36-6-19 Crenulated schist with qtz 
ribbons 

N298W 
60NE 

mica fish Mica fish & boudined qtz ribbons; S-C 
foliation, cut by crenulation (local?) 

dextral Mica fish mylonite, 
Copeland; south side of 
Jacob Buck Mtn. 

49-6-29 Comp. banding, moderate 
foliation, late hbl-filled veins 

N68E, 
90; v. 
N46E- 
N58E 
 

03W Chaotic: initial fol. is S-C’, with C’ 
dominant; late hbl-fracts. oriented in S 
direction 

dextral Bucksport, SE of Cobb 
Hill 



Sample 
# 

macrostructures strike 
& dip 

lineations 
(pitch) 

microstructures SOS Formation & 
location  

50-6-29 Foliated, boudined & 
overlapped qtz ribbons 

N68E, 
85NW 

07E Looks ‘chewed up’: primary S-C’ fol. 
defined by matrix mica, qtz ribbons, & 
stretched hbl. Locally intersected by a 
weak crenulation ~45° to the C dir. 

dextral Moderate-high strained 
Bucksport; SE of Cobb 
Hill 

51-6-29 Very fine-grained, foliated N67E, 
70NW 

05W Nice S-C foliation (micas & hbl), late 
C’ fabric is dominant; small isoclinal 
folds 

dextral Fine-grained mylonite: 
Bucksport or calc-sil. 
PGW; SE of Cobb Hill 

53-6-29 Fine-grained, sugary texture, 
foliation defined by qtz ribbons 

N68E, 
81NW 

07E Clear S-C fol. (qtz=S, fine micas= C), 
w/C’ developed in pelitic layers; comp. 
banding, late pervasive fracts. in S dir. 

dextral Fine-grained mylonite: 
Bucksport or calc-sil. 
PGW; SE of Cobb Hill 

54-6-29 Foliated schist, very fine 
crenulations, qtz ribbons 

N62E, 
78NW 

08W S-C & C’ foliation with beautiful grt 
porphyroclasts w/mica tails, some grt 
fish; cordierite porphyroclasts 

dextral 
(and 
how) 

Mica-fish mylonite: 
pelitic PGW or Copeland  

55-6-29 Mylonitic schist, mica fish 
‘eyes’, qtz ribbons, grt 
porphyroclasts 

N50E, 
65SE 

08E Gorgeous S-C & C’ foliation, loads of 
mica fish, dynam. recrys. qtz, rotated 
grt porphyroclasts 

dextral Mica-fish mylonite: 
pelitic PGW or Copeland; 
SE of Cobb Hill 

56-6-29 Fine-grained mylonite, surgery 
texture, boudined qtz ribbons, 
porphyroclasts 

N59E, 
82N 

05E Nice S-C & C’ foliation, qtz ‘fish’ in S 
dir., bt & chl in C & C’ dirs. All 
foliation is cut by a late crenulation 

dextral, 
late 
sinistral? 

Fine-grained mylonite: 
Bucksport; SE of Cobb 
Hill 

57-6-29 Comp. banding, fine-grained, 
heterogeneously strained 

N52E, 
86N 

00 S-C & C’ foliation defined by micas, δ 
pl porphyroclast, boudined qtz ribbons; 
qtz veins cut fol., late fracts. cut all fol. 
~ ⊥, hbl & qtz ‘fish’ 

dextral Fine-grained, hornfelsed 
mylonite: Bucksport or 
calc-sil. PGW; SE of 
Cobb Hill 

58-6-29 Very fine-grained mylonite w’ 
tur & grt porphyroclasts 

N54E, 
90 

07W S-C & C’ fol. defined by micas; grt 
porphyroclasts are rounded or oblong 
w/ δ-type foliation tails; large tur 
cross-cut fol. but are also broken by it; 
all fol. is cut by late, ⊥ qtz fractures 

dextral Fine-grained mylonite: 
Bucksport or pelitic 
PGW; SE of Cobb Hill 

59-6-29 Mylonitic texture, large dextral 
indicators 

N56E, 
90 

13E S-C foliation defined by micas, 
boudined & folded qtz ribbons, dyn. 
recrys. qtz matrix, chl fish & ribbons 

dextral Fine-grained mylonite: 
Bucksport or pelitic 
PGW; SE of Cobb Hill 

61-7-1 Mylonite schist, qtz ribbons N60E, 
90 

02W extensive pl fish, qtz ribbons w/Z-
folds, C’ ?, heterogeneous strain- areas 
of brittle deformation  

dextral Mylonite (?): PGW or 
granite; SE of Cobb Hill 



Sample 
# 

macrostructures strike 
& dip 

lineations 
(pitch) 

microstructures SOS Formation & 
location  

65-7-6 Very fine-grained, foliated, 
stretching lineations 

N54E, 
86NW 

06NW cal & ms fish, micas & tur define a 
faint S-fabric, qtz horizons = C; subtle 
folds cut S-C foliation 

dextral Mylonitic, hornfelsed 
Bucksport (?); Rte. 15-
blueberry field 

71-7-7 Sandy & pelitic, open folds, 
strong horizontal mineral 
lineation 

N54E, 
84S 

17W Only horizons of foliation, a few of qtz 
ribbons 

dextral relatively undeformed 
Bucksport 

80b-7-10 Fine-grained, grey mylonite, 
qtz ribbons 

N80E, 
80N 

31W S-C & C’ foliation (elongate hbl & 
micas = S; qtz & pl = C; micas = C’); 
late qtz/crd ribbons; chl/qtz veins cut 
S-C fol.; all cut by crenulation/ folding, 
with qtz recrys. along axes   

dextral Fine-grained mylonite: 
PGW (?); S side of Jacob 
Buck Mtn. 

84-7-13 Slightly foliated (?) N325W, 
54SW 

90 slight foliation defined by small zones 
of preferentially oriented micas; some 
recrys. elongate ms; smushed 
sigmoidal qtz & pl 

 relatively undeformed 
Bucksport 

90-7-11 very finely-laminated, 
alternating bands of light & 
dark minerals 

N42E, 
64N 

63W foliation defined by alternating bands 
of hbl & qtz+pl =C, larger hbl grows 
~40° to fol.=S; slight C’; very late 
extensional fractures cut all foliation 

dextral strained amphibolite lens 
of Copeland 

91-7-13 very fine-grained, small s-folds N41E, 
84N 

06W S-C & C’ foliation defined by matrix 
micas, qtz ribbons, & mica fish; qtz 
ribbons are boudined & isoclinaly 
folded; pl & grt porphyroclasts, grt is 
broken; C’= green biotite; brittle & 
ductile deformation 

dextral ductile & brittle deformed 
Copeland or Rider Bluff, 
mylonitic 

97-7-15 strained, with hbl-filled 
fractures 

N20E, 
66SE 

35S S-C (?) foliation (weak overall, heavy 
on C) defined by micas & qtz veins 
w/hbl; qtz is dynam. recryt. large bt has 
undulatory extinction, overgrow 
foliation & appear deformed; C’ fol. w/ 
opposite sense (?) 

dextral 
and 
sinistral? 

moderately foliated 
Bucksport with one, 
strong foliation 

99-7-16 foliated w/ hbl-filled fractures N62E, 
72NW 

35W weak S-C foliation defined by bt w/ 
hbl-fractures cutting fol. at ~45-60° 

dextral strained Bucksport near 
shear zone 

100-7-16 strong foliation w/ concordant N73E, 05E S-C’ foliation, biotite porphyroclasts dextral strained Bucksport near 



Sample 
# 

macrostructures strike 
& dip 

lineations 
(pitch) 

microstructures SOS Formation & 
location  

calc-silicate pods, boudined qtz 
veins 

60S with sigmoidal shape shear zone 

101-7-16 Foliated, very fine-grained N354W, 
64E 

04N slight segregation of P & Q domains; 
micas define C’, no obvious S-C; late 
hem-filled C’ fabric of opposite sense 

dextral, 
then 
sinistral 

Bucksport; out of field 
area near Hancock Pond, 
at ‘bend’ in terrane 
boundary 

113-7-21 finely-laminated N08E, 
58SE 

85SE diffuse bands of P & Q domains = 
foliation; poikolititc bt porphyroclasts  

dextral moderately strained 
Bucksport 

115-7-24 Fine-grained, small qtz ribbons N34E, 
84NW 

03W Z-folded qtz veins, porphyroclasts of 
pl; boudined/stacked qtz ribbons; ms 
mica fish; strong C’ in pelitic layers; S-
C fol. is broadly folded (brittle & 
ductile); fractures along fold axes 

dextral: 
ductile 
then 
brittle 

Mylonite: Bucksport or 
Copeland; just off Rte 46, 
Bucks Mills 

117-7-24 Gneissic banding N64E, 
60NW 

29NE Foliation defined by alignment of bt & 
hbl, layers of qtz veins, dyn. recrys. qtz 
w/ undulose extinction 

dextral sheared, hornfelsed 
granite; Cobb Hill 

119-7-24 Gneissic banding, stretching 
lineations ~⊥ to bands 

N36E, 
90 

90 weak S-C foliation (bt = S, qtz & pl = 
C) 

dextral Passagassawakeag gneiss; 
Cobb Hill 
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TABLE A-3              - Attitudes of foliations and stretching lineations 
 
Outcrop # Strike Dip Lineation: 

pitch 
 
trend 

 
plunge 

Formation 

1-6-15 N48E 70NW    mylonite 
2-6-15 N47E 72NW    Bucksport 
3-6-15 N56E 80SE    “ 
4-6-15 N50E 75S    “ 
4b-6-15 N37E 65S    “ 
5-7-20 N70E 90 17E N70E 17E mylonite-granite 
5-7-20 N72E 62NW 03W 254W 03W mylonite 
7-6-15 N79E 87N    PGW- pelitic 
8-6-15 N77E 46N    Copeland 
9-6-15 N70E 80N    “ 
10-6-15 N334

W 
60E 87N N68E 60NE Rider Bluff 

12-6-16 N68E 79N 13NW N66E 13N mylonite 
13-6-16 N40E 84SE 27W 217W 27SW Bucksport (?) 
14-6-16 N40E 84SE    “ 
15-6-16 N292

W 
70NE    fault rock 

16-6-17 N10E 85W    Bucksport 
17-6-17 N332

W 
82E    “ 

17b-6-17 N26E 85NW    “ 
18-6-17 N45E 87N    “ 
19-6-17 N40E 80SE 16NE N44E 16N “ 
22-6-18 N78E 25NW    Copeland (?) 
23-6-18 N42E 50NW    PGW-pelitic 
25-6-18 N58E 30N    “ 
26-6-18 N78E 50NW 09SW 264W 07SW PGW- calc-

silicate 
27-6-18 N78E 52N    PGW- pelitic 
28-6-19 N70E 60N 30E N55E 26NE PGW- calc-

silicate 
29-6-19 N75E 70N    “ 
30-6-19 N82E 40NW    PGW- pelitic 
31-6-19 N326

W 
59N 69SE N274W 53E “ 

32-6-19 N50E 64N 20NE N41E 18NE “ 
33-6-22 N44E 84S    PGW (?) 

mylonite 
36-6-22 N298

W 
60NE 03W N300W 03NW Copeland 

mylonite 
37-6-23 N54E 86SE 16E N55E 16NE Bucksport? 
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Outcrop # Strike Dip Lineation: 
pitch 

 
trend 

 
plunge 

Formation 

38-6-23 N60E 68NW 17NW 246W 16SW “ 
39-6-23 N59E 60NW 22W 246W 19SW fault rock 
40-6-23 N62E 82N 08W 243W 08SW PGW- pelitic 
44-6-25 N70E 40N 10E N61E 07NE mylonite 
45-6-25 N55E 90    ultra(?)mylonite 
46-6-25 N52E 90 07E N52E 07NE mylonite 
47-6-25 N75E 80N 24W 260W 24SW “ 
47b-6-25 N90E 80N    “ 
49-6-29 N68E 90 03W N68E 03W Bucksport 
50-6-29 N68E 85N 07E N67E 07E “ 
51-6-29 N67E 70N 05W 249W 05W mylonite 
52-6-29 N62E 60N    “ 
53-6-29 N68E 80N 07E N68E 07E “ 
54-6-29 N62E 78N 08W 244W 08W “ 
55-6-29 N50E 65S 08E N54E 07E “ 
56-6-29 N59E 82N 05E N58E 05E “ 
57-6-29 N52E 86N 00 N52E 00 “ 
58-6-29 N54E 90 07W 234W 07W “ 
59-6-29 N56E 90 13E N56E 13E “ 
60-7-1 N53E 87NW    “ 
61-7-1 N60E 90 02W 240W 02W “ 
63-7-6 N30E 90    Bucksport? 
64-7-6 N60E 64N    “ 
65-7-6 N54E 86N 06W 234W 06W mylonite 
66-7-6 N43E 83NW 05SW 224W 05SW “ 
66b-7-6 N44E 80N 20SW 228W 20SW “ 
67-7-6 N35E 70NW    mylonite? 
68-7-6 N42E 74N 08SW 225 08SW mylonite 
69-7-6 N60E 80N 04NE N60E 04NE “ 
71-7-7 N54E 84S 17W 232W 17SW Bucksport 
72-7-7 N60E 79S    “ 
73-7-9 N46E 70N 19NE N39E 18NE mylonite 
74-7-9 N48E 42N    “ 
75-7-9 N42E 70N    “ 
76-7-9 N50E 75N    “ 
77-7-9 N48E 81N    “ 
78-7-9 N56E 90 00 N56E 00 “ 
79-7-9 N42E 52N    foliated granite 
80-7-10 N80E 90    mylonite 
80b-7-10 N80E 80N 31W 266W 30SW “ 
81-7-10 N62E 86S    “ 
82-7-10 N70E 66N 05SW 252W 04SW “ 
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Outcrop # Strike Dip Lineation: 
pitch 

 
trend 

 
plunge 

Formation 

83-7-10 N90E 90    “ 
84-7-13 N325

W 
54SW 90 234W 54SW Bucksport 

85-7-13 N312
W 

45NE    “ 

86-7-13 N66E 52N    “ 
88-7-13 N06E 50NW 18N 354W 14NW mylonite 
90-7-13 N42E 64N 63W 262W 52SW Rider Bluff? 
91-7-13 N41E 84N 06W 222W 06SW mylonite 
92-7-13 N28E 62SE 07N N25E 06N Rider Bluff 
93-7-15 N286

W 
64SW 25NW 274W 22NW Bucksport 

94-7-15 N16E 70SE    Copeland 
95-7-15 N24E 76SE 08SW 202W 08SW Bucksport 
96-7-15 N36E 86S    “ 
97-7-15 N20E 66SE 35SW 186W 32SW “ 
98-7-16 N28E 84NW 17SW 210W 17SW “ 
99-7-16 N62E 72NW 35W 254W 33SW “ 
100-7-16 N73E 60S 05E N75E 05NE “ 
101-7-16 N354

W 
64E 04N 356NW 04NW “ 

102-7-16 N10E 60E    “ 
103-7-17 N60E 40NW    mylonite 
104-7-17 N320

W 
90    “ 

105-7-17 N330
W 

90    “ 

106-7-17 N30E 40SE    “ 
108-7-20 N40E 76NW    PGW-pelitic 
109-7-21 N27E 68SE    Bucksport 
110-7-21 N24E 84NW    “ 
111-7-21 N00 50E    “ 
112-7-21 N40E 50SE    Rider Bluff 
113-7-21 N08E 58E 85SE 108E 62S Bucksport 
114-7-21 N60E 88NW    Copeland? 
115-7-24 N34E 84NW 03W 214W 03SW mylonite 
116-7-24 N62E 86SE 09W 240W 09SW foliated granite 
117-7-24 N64E 60NW 29NE N49E 24NE fol. granite & 

PGW 
118-7-24 N72E 72NW 48E N56E 45NE “ 
119-7-24 N36E 90    “ 
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TABLE  A-4                           - Orientations of fold axes 
 
Outcrop # Fold axes Notes 
10-6-15 N60E, 60NE fractures along axes, qtz rods in same orientation  

11-6-16 N28E, 72NE near shear zone 

12-6-16 N04E, 80NE in mylonites 

15-6-16 N335W, 20N  

19-6-17 N40E, 80SW Bucksport 

30-6-19 N40E, 53NE PGW 

34-6-22 N46E, 87NE PGW/SRG 

35-6-22 N16E, 81NE Bucksport? 

39-6-23 N52E, 60NE  

41-6-23 N42E, 27NE small sheath fold; pegmatite involved 

41b-6-23 N32E, 31NE beautiful Z-folds 

43-6-24 N40E, 77NE PGW, multiply folded 

43b-6-24 N78E, 82NE “ 

43c-6-24 N58E, 76NE “ 

46-6-25 N292W, 90 Z-folds, parasitic 

62-7-3 N10E, 80SW Copeland; crenulation N346 

63-7-6 N31E, 90 Bucksport? 

66-7-6 N02E, 81NE mylonite 

70-7-7 N06E, 86NE Bucksport 

71-7-7 N29E, 84SW Bucksport 

76-7-9  small Z-folds 

81-7-10  small Z-folds 

84-7-13 N25E, 51NE Bucksport, farthest from shear zone 

85-7-13  S-fold 

86-7-13  Z-folds 

87-7-13 N22E, 87NE parasitic Z-folds 

88-7-13 N06E, 52NE Z-folds, Bucks Mills 

90-7-13 N00, 64N eastern boundary 

91-7-13  small S-folds, & Z-folds 

92-7-13 N17E, 62NE Rider Bluff? 

94-7-15 N20E, 60NE Copeland 

96-7-15 N36E, 86SW Bucksport? 

106-7-17 N346W, 40NW eastern boundary 

107-7-17 N42E, 48SW weird outcrop 

109-7-21 N53E, 25SW large, upright 

110-7-21 N24E, 30NE Bucksport, east 

111-7-21  small Z-folds 

112-7-21 N40E, 50SW small, isoclinal, Rider Bluff  

115-7-24 N00, 28S;  and 
N24E, 20SW 

eastern boundary; north-trending folds overprint small NE 
folds 
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TABLE A-5                  -Orientations of late fractures and veins 
 
Outcrop # Feature Strike Dip Formation Notes 
2-6-15 fractures 1) N316W 

2) N338W 
3) N22E 

 Bucksport #1 appears offset 
by foliation 

3-6-15 qtz vein N34E 54SE “ 22° N from fol. 
3-6-15 fractures N273W  “ several 
4-6-15 qtz veins N30E  “ 20° N from fol. 
10-6-15 qtz-filled 

fractures 
N60E 60NE Rider Bluff along fold hinges 

16-6-17 fractures N69E  Bucksport 59° E from fol.; 
hbl-filled 

17-6-17 fractures N332W 82NE “ hbl-filled 
17b-6-17 “ N292W & 

N356W 
 “ “ 

18-6-17 “ 1) N296W 
2) N64E 
3) N27E 

 “  

19-6-17 qtz veins N40E 80SE “ with foliation 
19-6-17 fractures 1) N296W 

2) N316W 
3) N292W 
4) N72E 

84NW 
 
70SE 

“  

27-6-18 dike N32E  PGW-pelitic granite, small 
28-6-19 fractures N284W & 

N324W  
 PGW- calc-

silicate 
late, cuts 
everything 

29-6-19 sill N64E 70NW “ SRG, with fol. 
46-6-25 fractures N18E  mylonite? hbl-filled, folded 

in places 
46-6-25 “ N358W 40E “ cut fol. & hbl 

fracs. 
47-6-25 “ N354W & 

N318W 
90 “ very late 

conjugate shears 
(?) 

47b-6-25 “ N64E  “ hbl-filled 
49-6-29 “ N46E to 

N58E 
 “ “ 

52-6-29 “ N51E 90 mylonite “ 
86-7-13 fractures N318W to 

N324W 
 Bucksport hbl-filled, near ⊥ 

to foliation 
93-7-15 qtz veins N312W 30SE “ several, 

boudined 
93-7-15 chert veins N290W 70SE “ ~8mm ‘veins’ of 

black chert 
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Outcrop # Feature Strike Dip Formation Notes 
94-7-15 fractures N33E  Copeland late 
97-7-15 “ N300W to 

N324W 
 Bucksport near ⊥ to 

foliation; hbl-
filled 

99-7-16 “ N340W  “ near ⊥ to 
foliation; hbl-
filled 

100-7-16 qtz veins N56E  “ ~20° N from fol. 
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APPENDIX B – STEREOPLOTS 
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