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ABSTRACT

Dating of single crystals from rhyolites in the Jemez Mountains volcanic field
(JMVF) by the laser fusion 4°Ar/39Ar technique reveals phenocryst populations
dominated by juvenile crystals, but often containing xenocrystic and altered crystals.
Isochron plots of éingle crystal analyses allow identification of the eruptive age and
trapped Ar in the sample. Explosive caldera forming events commenced in the JMVF ‘at
1.78 Ma with eruption of the San Diego Canyon ignimbrites. Xenocrystic material in
these units was apparently responsible for the anomalously old K-Ar ages (2.84-3.64 Ma)
previously obtained. Further caldera collapse events occurred with eruption of the lower
Bandelier Tuff at 1.51 Ma (Toledo Caldera) and the upper Bandelier Tuff at 1.14 Ma
(Valles Caldera). These eruptions record the chemical evolution of a large, open system,
upper crustal, silicic magma chamber. Postcollapse rhyolites of the Valles Caldera were
erupted over an ~1 Ma interval from immediately following caldera formation until ~200
ka. Volcanism was periodic with eruptive activity at ~1.133 Ma, 973-915 ka, 800-787
ka, 557-521 ka, and ~300-170 ka. Most samples contain trapped atmospheric Ar,
however several have apparent 40Ar/38Ar ranging from 282 to 325. Approximately 30%
of the postcollapse rhyolites yield 49Ar/39Ar dates significantly older than previous K-
Ar dates. This is most likely due to incomplete extraction of 0Ar* from high-
temperature alkali feldspars. Variations in petrographic, geochemical, and isotopic
characteristics indicate that the discrete intervals of volcanic activity are related to the
emplacement of shallow upper crustal magma chambers. Magmas erupted at 973-787 ka
and 557-521 ka record differentiation sequences controlled by crystal-liquid fraction and
minor assimilation, whereas those vented at 1.133 Ma and ~300-170 ka were distinct
compositionally but show no differention. Nd isotopic compositions (eng = -2.7 to -4.6)
indicate that ~20-65% of these rhyolitic magmas was of mantle-derived origin. Sr
isotopic values as low as 0.70464 and calculated magmatic §180 of +6.6-7.0 °/,, suggest

that granulitic lower crust of igneous origin was assimilated by basaltic magmas.
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Work on the development of a Fourier transform ion cyclotron resonance (FT-
ICR) mass spectrometer has established a performance baseline for the initial goal of in
situ isotopic analysis. The levels of precision for isotope ratio measurements of Kr gas
using electron beam ionization provide a measure of the capabilities of FT-ICR under
ideal conditions. Ratios of major isotopes are measured to better than * 0.1%, whereas
those involving minor isotopes are reproducible to + 0.4%. Laser ionization (LI)
experiments yield significantly lower levels of precision due to variations in ion number
from shot to shot, mass fractionation at the sample surface, and a larger spread in ion
kinetic energy. LI experiments involving isotope ratios of abundant elements (metallic
Ti) give precisions on the order of 1-4%, whereas those involving trace elements (Pb in
zircon or monazite) are measured at 9-12%. The application of the SWIFT excitation
technique to eject more abundant ions should allow measurement of trace element

isotope ratios with precision approaching that seen for abundant elements.
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