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ABSTRACT

Continuous outcrop mapping (1:240) along coastal exposures in
southern Maine has led to the recognition of a complex brittle struc-
tural history that established the pre-existing structural grain for,
and culminated in, the intrusive development of several Mesozoic dike
swarms. The structural grain within the Rye Formation of the southern
part of the field area consists of a dominant NE-trending near-vertical
gneissic (mylonitized) foliation on which is superimposed the intense
brittle shear fracturing of the pseudotachylyte-bearing Fort Foster
Brittle Zone. This brittle shear fracturing was responsible for the
later localization of explosive igneous breccias and felsic melts above
the largely unexposed Gerrish Island Igneous Complex. The later emplace-
ment of the dominant N25E-trending dike swarm, possibly Late Jurassic to
Early Cretaceous in age, was primarily independent of the pre-existing
structural grain and directly related to a system of late rusty-weathering
open brittle fractures. The structural grain within the Kittery Forma-
tion of the northern part of the field area consists of a prominent
N60E-trending vertical planar bedding-anisotropy as limbs of Acadian
fold structures and a second N45E-trending vertical planar cleavage-
anisotropy related to a late Z-shaped asymmetric fold and dextral shear
zone development. These bedding-cleavage anisotropies are responsible
for the structural lecalization of a prominent N60-45F trending dike
swarm, possibly Early Triassic to Early Jurassic in age, associated with
the alkaline syenite complex at Agamenticus. The bedding-anisotropy is
found to play an important role in determing the character of strain
accommodation between en echelon dike terminations. A younger NNW-NNE

trending secondary dike swarm is interpreted as a termination structure



for the prominent N25E-trending dike swarm exposed farther south at
Gerrish Island. The emplacement of this N25E-trending dike swarm and
the development of the related late brittle fracture system involves a
N65W-S65E, Late Jurassic - Early Cretaceous, crustal extension and its
interaction with the prominent N60E-trending vertical bedding-anisotropy
and the large rigid cylindrical Agamenticus intrusion. Finally, a re-
gional synthesis of Mesozoic structural developments in eastern North
America results in a model for a complex decoupling history during
central Atlantic rifting. This model incorporates the varied interac-
tion between dextral shear, extension, sinistral shear and final crustel
separation along a wide, arcuate, near-pole, small-circle transform
system and the linear belt of pre-exising Appalachian structural grain.
The N60-45E and N25E trending dike swarms studied in southern Maine
would most likely be related to the Triassic-Jurassic extensional phase
and final Jurassic-Cretaceous crustal separation phase, respectively,

within the proposed model.
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