Strong Extratropical Cyclones leading to Cool-Season Extreme Weather Events over Central and Eastern North America

Alicia M. Bentley, Daniel Keyser, and Lance F. Bosart Department of Atmospheric and Environmental Sciences University at Albany, SUNY

> 42nd Northeastern Storm Conference Saratoga Springs, NY 11 March 2017

Research support provided by NSF Grant AGS-1355960

Motivation

- Extratropical cyclones (ECs) play a major role in determining day-to-day weather conditions in the midlatitudes during the cool season
- Strong ECs can have considerable socioeconomic impacts on the regions they traverse due to their frequent association with damaging winds and heavy precipitation
- Strong ECs may lead to extreme weather events (EWEs)

EWEs are defined as high-impact weather events that are societally disruptive, geographically widespread, exceptionally prolonged, and climatologically infrequent

Motivation

- Opportunity to investigate ECs leading to EWEs over central and eastern North America motivates this study
- A climatology of ECs leading to EWEs over central and eastern North America will be constructed to investigate the location, frequency, and downstream impacts of this category of EC

Outline

Data and Methodology

- Candidate ECs leading to EWEs
- Identification of ECs leading to EWEs

Climatological Results

- Track density
- Genesis locations
- Intraseasonal variability
- Downstream impacts
- Summary

Candidate ECs leading to EWEs

- Cyclone tracks are identified during October–March 1979– 2016 by applying the Hodges (1995) tracking algorithm to the MSLP field from the 0.5° NCEP CFSR (Saha et al. 2010)
- Time of formation (t_0) considered the first time a cyclone is identified using the Hodges (1995) tracking algorithm

Candidate ECs leading to EWEs

- Cyclone tracks are identified during October–March 1979– 2016 by applying the Hodges (1995) tracking algorithm to the MSLP field from the 0.5° NCEP CFSR (Saha et al. 2010)
- Time of formation (t_0) considered the first time a cyclone is identified using the Hodges (1995) tracking algorithm
- Cyclones are required to form over and traverse the region surrounding central and eastern North America between t_0 and t_0 + 48 h
- Cyclone tracks corresponding to tropical cyclones in the IBTrACS dataset (Knapp et al. 2010) are removed (N = 12)

Candidate ECs leading to EWEs

Tracks of ECs forming over and traversing the region surrounding central and eastern North America during October–March 1979–2016, shaded according to MSLP value (hPa)

- ECs leading to EWEs are identified by examining 925-hPa standardized wind speed anomalies associated with each candidate EC leading to an EWE during its life cycle
 - Calculate the area-averaged 925-hPa standardized wind speed anomaly within 1200 km of each candidate EC leading to an EWE during its life cycle

MSLP (black contours, hPa), 925-hPa wind (barbs, kt), and 925-hPa standardized wind speed anomaly (shaded, σ)

MSLP (black contours, hPa), 925-hPa wind (barbs, kt), and 925-hPa standardized wind speed anomaly (shaded, σ)

MSLP (black contours, hPa), 925-hPa wind (barbs, kt), and 925-hPa standardized wind speed anomaly (shaded, σ)

MSLP (black contours, hPa), 925-hPa wind (barbs, kt), and 925-hPa standardized wind speed anomaly (shaded, σ)

MSLP (black contours, hPa), 925-hPa wind (barbs, kt), and 925-hPa standardized wind speed anomaly (shaded, σ)

MSLP (black contours, hPa), 925-hPa wind (barbs, kt), and 925-hPa standardized wind speed anomaly (shaded, σ)

MSLP (black contours, hPa), 925-hPa wind (barbs, kt), and 925-hPa standardized wind speed anomaly (shaded, σ)

- ECs leading to EWEs are identified by examining 925-hPa standardized wind speed anomalies associated with each candidate EC leading to an EWE during its life cycle
 - Calculate the area-averaged 925-hPa standardized wind speed anomaly within 1200 km of each candidate EC leading to an EWE during its life cycle

- ECs leading to EWEs are identified by examining 925-hPa standardized wind speed anomalies associated with each candidate EC leading to an EWE during its life cycle
 - Calculate the area-averaged 925-hPa standardized wind speed anomaly within 1200 km of each candidate EC leading to an EWE during its life cycle
 - Identify ECs leading to EWEs as those candidate ECs leading to EWEs that attain an area-averaged 925-hPa standardized wind speed anomaly ≥1σ for longer than 95% of candidate ECs leading to EWEs

Distribution of hours that candidate ECs leading to EWEs attain an area-averaged 925-hPa standardized wind speed anomaly $\geq 1\sigma$

Tracks of ECs forming over and traversing the region surrounding central and eastern North America during October–March 1979–2016, shaded according to MSLP value (hPa)

N = 118 80°N 60°N 40°N 20°N ٩... : 120°W 100°W 80°W 60°W 40°W 20°W 0° 20°E 40°E hPa 940 945 950 955 960 965 970 975 980 985 990 995 1000

> Tracks of ECs leading to EWEs during October–March 1979–2016, shaded according to MSLP value (hPa)

Genesis Locations

Genesis Locations

Genesis locations of ECs leading to EWEs during October–March 1979–2016, shaded according to their location of formation

Intraseasonal Variability

Intraseasonal variability associated with the formation of ECs leading to EWEs during October–March 1979–2016, shaded according to their location of formation

Tracks associated with NAO index changes >1 σ between t_0 and t_0 + 120 h

Tracks of ECs leading to EWEs for which the NAO index decreases >1 σ (blue) or increases >1 σ (red) between t_0 and t_0 + 120 h

Tracks associated with NAO index changes >1 σ between t_0 and t_0 + 120 h

Track density of ECs leading to EWEs for which the NAO index decreases >1 σ (left) or increases >1 σ (right) between t_0 and t_0 + 120 h, shaded according to the percentage of ECs passing within 350 km of a given grid point

Tracks associated with NAO index changes >1 σ between t_0 and t_0 + 120 h

Track density of ECs leading to EWEs for which the NAO index decreases >1 σ (left) or increases >1 σ (right) between t_0 and t_0 + 120 h, shaded according to the percentage of ECs passing within 350 km of a given grid point

Tracks associated with NAO index changes >1 σ between t_0 and t_0 + 120 h

Track density of ECs leading to EWEs for which the NAO index decreases >1 σ (left) or increases >1 σ (right) between t_0 and t_0 + 120 h, shaded according to the percentage of ECs passing within 350 km of a given grid point

Earth-relative composite analyses of 500-hPa geopotential height (thin black contours, dam; enclosed by thick black contours and shaded where significant at 95% confidence level), wind (barbs, kt), and wind speed (shaded, m s⁻¹)

Earth-relative composite analyses of 500-hPa geopotential height (thin black contours, dam; enclosed by thick black contours and shaded where significant at 95% confidence level), wind (barbs, kt), and wind speed (shaded, m s⁻¹)

Summary

- ECs leading to EWEs over central and eastern North America during October–March 1979–2016 are identified in terms of their 925-hPa standardized wind speed anomalies
- ECs leading to EWEs typically form in the lee of the Rockies, over the south central United States, and along the east coast of North America
- ECs leading to EWEs form most frequently during November and March, and least frequently during October and January
- ECs leading to EWEs associated with a decrease in the NAO index of >1 σ between t_0 and t_0 + 120 h typically pass to the west of Greenland
- ECs leading to EWEs associated with an increase in the NAO index of >1 σ between t_0 and t_0 + 120 h typically pass to the south of Greenland

Questions? AMBentley@albany.edu

- ECs leading to EWEs over central and eastern North America during October–March 1979–2016 are identified in terms of their 925-hPa standardized wind speed anomalies
- ECs leading to EWEs typically form in the lee of the Rockies, over the south central United States, and along the east coast of North America
- ECs leading to EWEs form most frequently during November and March, and least frequently during October and January
- ECs leading to EWEs associated with a decrease in the NAO index of >1 σ between t_0 and t_0 + 120 h typically pass to the west of Greenland
- ECs leading to EWEs associated with an increase in the NAO index of >1 σ between t_0 and t_0 + 120 h typically pass to the south of Greenland

Special thanks: Brian Colle and Alicia Camacho