

An analysis of precipitation events associated with terrain-generated convergence in the Mohawk and Hudson River valleys of New York

Dylan Card, Kristen L. Corbosiero, and Ross Lazear

University at Albany, State University of New York Albany, New York

Michael Augustyniak

WCCO Minneapolis, MN

Hugh Johnson

National Weather Service Forecast Office Albany, New York

9–10 February 2017

"My house is located approximately due N of Voorheesville and due W of Westmere on the radar. Snow is falling at the rate of 2-3" per hour and we have accumulated ~12" so far."

-Lance Bosart

Courtesy of Nick Bassill

Cold season Mohawk–Hudson convergence (MHC):

 Northerly, channeled flow in the Hudson
 Valley and westerly, channeled flow in the Mohawk Valley

Cold season Mohawk–Hudson convergence (MHC):

 Northerly, channeled flow in the Hudson
 Valley and westerly, channeled flow in the Mohawk Valley

Cold season Mohawk–Hudson convergence (MHC):

 Northerly, channeled flow in the Hudson
 Valley and westerly, channeled flow in the Mohawk Valley

Case selection of cold MHC events

 Cases had to *lack strong* synoptic scale forcing in the Capital District Region and had to be *independent of lake-effect snow*

12 identified *cases* from November 2002 to September 2013

Pure cold season MHC events (n=12)			
Year	Month	Day	Time of maximum reflectivity (UTC)
2002	11	27	1800
	12	16	0000
2003	1	24	0000
2005	1	17	1200
2007	1	29	0600
	2	23	0600
2008	1	2	1200
	12	19	1200
		31	1800
2011	1	12	1800
	10	30	0600
2013	9	13	1800

 Composited using the 0.5° Climate Forecast Reanalysis System (CFSR), centered on the time of maximum reflectivity

Coarse resolution for a mesoscale event, but simply using the CFSR to determine the overall synoptic setup for these events

13-km Rapid Update Cycle (RUC) initialized at 1200
 UTC was used for the case study of 2 January 2008

Mean sea level pressure

Mean sea level pressure

850-hPa temperature advection

 At 850-hPa cold air advection dominates 泉

Motivation Introduction Methodology Results Conclusion

850-hPa temperature advection

- At 850-hPa cold air advection dominates
- Nearly *neutral* temperature *advection* occurs in the *Capital District*

500-hPa relative vorticity

 Maximum 500-hPa relative vorticity over eastern NY

500-hPa relative vorticity

- Maximum 500-hPa relative vorticity over eastern NY
- Implied anticyclonic relative vorticity advection upstream of the trough axis

500-hPa relative vorticity

- Maximum 500-hPa relative vorticity over eastern NY
- Implied anticyclonic relative vorticity advection upstream of the trough axis
- Signals *upper-level descent*, at least in the layer

120

300-hPa jet

 Jet and trough configuration is not favorable for upper-level divergence over the Capital District

Key points from MHC composite:

• Low positioned off the coast of New England

- Low positioned off the coast of New England
- North/northwesterly geostrophic flow at low-levels

- Low positioned off the coast of New England
- North/northwesterly geostrophic flow at low-levels
- Cold air advection aloft with weak warm air advection at the surface

- Low positioned off the coast of New England
- North/northwesterly geostrophic flow at low-levels
- Cold air advection aloft with weak warm air advection at the surface
- Anticyclonic vorticity advection at 500-hPa

- Low positioned off the coast of New England
- North/northwesterly geostrophic flow at low-levels
- Cold air advection aloft with weak warm air advection at the surface
- Anticyclonic vorticity advection at 500-hPa
- Capital District *not* located in a region of *upper-level divergence*

Case study:

- On 2 January 2008, a
 departing low off the New
 England coast had dropped
 more than 15 cm of snow
 around the Capital District
- Upwards of an *additional 12.7 cm* was reported in
 Cohoes, NY *due to MHC*

1200 UTC mean sea level pressure

1200 UTC 850-hPa temperature advection

Warm air advection at 850-hPa

-0.4

-0.8

-1.2

-1.6

-2.0

1200 UTC 850-hPa temperature advection

- Warm air advection at 850-hPa
- Matches the composite, just with a *stronger signal*

1200 UTC 500-hPa relative vorticity

 Cyclonic relative vorticity advection at 500-hPa

1200 UTC 500-hPa relative vorticity

- Cyclonic relative vorticity advection at 500-hPa
- After the vorticity maximum moves through, the Capital
 District is in a region of anticyclonic relative vorticity advection forcing descent

1200 UTC 300-hPa jet

 Jet pattern is not favorable
 for upper-level
 divergence over
 the Capital
 District

Forecasting tips:

MHC is most likely when....

 Surface cyclone located just east of Cape Cod inducing geostrophic north/northwesterly flow over NY

Forecasting tips:

MHC is most likely when....

- Surface cyclone located just east of Cape Cod inducing geostrophic north/northwesterly flow over NY
- Low-level warm air advection leads to low-level upward vertical motion in a saturated boundary layer

Forecasting tips:

MHC is most likely when....

- Surface cyclone located just east of Cape Cod inducing geostrophic north/northwesterly flow over NY
- Low-level warm air advection leads to low-level upward vertical motion in a saturated boundary layer
- Mid-level anticyclonic vorticity advection associated with a 500-hPa trough forces mid-level descent, capping the phenomenon

 Composites and case studies should help forecasters predict MHC events with more lead-time

- Composites and case studies should help forecasters predict MHC events with more lead-time
- **NYS Mesonet** will provide **high-resolution analysis** and **better forecasting** for future events

- Composites and case studies should help forecasters predict MHC events with more lead-time
- **NYS Mesonet** will provide **high-resolution analysis** and **better forecasting** for future events
- Need to *examine null cases* to as *subtle differences* in features can lead to *forecast busts*

- Composites and case studies should help forecasters predict MHC events with more lead-time
- **NYS Mesonet** will provide **high-resolution analysis** and **better forecasting** for future events
- Need to *examine null cases* to as *subtle differences* in features can lead to *forecast busts*
- MHC also occurs in the warm season and can lead to unexpected severe weather events

- Composites and case studies should help forecasters predict MHC events with more lead-time
- **NYS Mesonet** will provide **high-resolution analysis** and **better forecasting** for future events
- Need to examine null cases to as subtle differences in features can lead to forecast busts
- MHC also occurs in the warm season and can lead to unexpected severe weather events
 Questions?

dcard@albany.edu