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“My house is located 
approximately due N of 
Voorheesville and due 
W of Westmere on the 
radar. Snow is falling at 
the rate of 2-3” per 
hour and we have 
accumulated ~12” so 
far.”

-Lance Bosart

Motivation ConclusionMethodology ResultsIntroduction
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Cold season
Mohawk–Hudson 
convergence (MHC):

• Northerly, channeled 
flow in the Hudson 
Valley and westerly, 
channeled flow in the 
Mohawk Valley
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Case selection of cold MHC events 

• Cases had to lack strong 
synoptic scale forcing in the 
Capital District Region and 
had to be independent of 
lake-effect snow

• 12 identified cases from 
November 2002 to 
September 2013

Pure cold season MHC events (n=12)

Year Month Day
Time of maximum

reflectivity (UTC)

2002
11 27 1800

12 16 0000

2003 1 24 0000

2005 1 17 1200

2007
1 29 0600

2 23 0600

2008

1 2 1200

12
19 1200

31 1800

2011
1 12 1800

10 30 0600

2013 9 13 1800
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• Composited using the 0.5° Climate Forecast 
Reanalysis System (CFSR), centered on the time of 
maximum reflectivity

• Coarse resolution for a mesoscale event, but simply 
using the CFSR to determine the overall synoptic 
setup for these events

• 13-km Rapid Update Cycle (RUC) initialized at 1200 
UTC was used for the case study of 2 January 2008
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• At 850-hPa cold air 
advection dominates

850-hPa temperature advection
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• At 850-hPa cold air 
advection dominates

• Nearly neutral 
temperature advection 
occurs in the Capital 
District

850-hPa temperature advection
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• Maximum 500-hPa 
relative vorticity over 
eastern NY

500-hPa relative vorticity
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• Maximum 500-hPa 
relative vorticity over 
eastern NY

• Implied anticyclonic 
relative vorticity 
advection upstream of 
the trough axis

• Signals upper-level 
descent, at least in the 
layer

500-hPa relative vorticity
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• Jet and trough 
configuration is 
not favorable for 
upper-level 
divergence over 
the Capital District

300-hPa jet
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Composite sounding
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Composite sounding

Moist



Motivation ConclusionMethodology ResultsIntroduction

Composite sounding

Moist
Warm air
advection
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Composite sounding

Moist
Warm air
advection

Cold air
advection
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• Low positioned off the coast of New England
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Key points from MHC composite:

• Low positioned off the coast of New England

• North/northwesterly geostrophic flow at low-levels

• Cold air advection aloft with weak warm air 
advection at the surface

• Anticyclonic vorticity advection at 500-hPa

• Capital District not located in a region of upper-level 
divergence
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Case study:

• On 2 January 2008, a 
departing low off the New 
England coast had dropped 
more than 15 cm of snow
around the Capital District

• Upwards of an additional 
12.7 cm was reported in 
Cohoes, NY due to MHC



Motivation ConclusionMethodology ResultsIntroduction

1200 UTC mean sea level pressure
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• Warm air advection at 
850-hPa

1200 UTC 850-hPa temperature advection
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• Warm air advection at 
850-hPa

• Matches the composite, 
just with a stronger signal

1200 UTC 850-hPa temperature advection
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• Cyclonic relative 
vorticity advection at 
500-hPa

1200 UTC 500-hPa relative vorticity
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• Cyclonic relative 
vorticity advection at 
500-hPa

• After the vorticity 
maximum moves 
through, the Capital 
District is in a region of 
anticyclonic relative 
vorticity advection 
forcing descent

1200 UTC 500-hPa relative vorticity



Motivation ConclusionMethodology ResultsIntroduction

1200 UTC 500-hPa relative vorticity

1200 UTC

1500 UTC
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1200 UTC 300-hPa jet

• Jet pattern is 
not favorable
for upper-level 
divergence over 
the Capital 
District



Motivation ConclusionMethodology ResultsIntroduction

a)
MHC composite soundingObserved sounding at 1200 UTC
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Forecasting tips:

MHC is most likely when….

• Surface cyclone located just east of Cape Cod inducing geostrophic 
north/northwesterly flow over NY
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Forecasting tips:

MHC is most likely when….

• Surface cyclone located just east of Cape Cod inducing geostrophic 
north/northwesterly flow over NY

• Low-level warm air advection leads to low-level upward vertical motion
in a saturated boundary layer

• Mid-level anticyclonic vorticity advection associated with a 500-hPa 
trough forces mid-level descent, capping the phenomenon



Motivation ConclusionMethodology ResultsIntroduction

• Composites and case studies should help forecasters predict MHC events with 
more lead-time

Conclusions:
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Questions?
dcard@albany.edu


