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Background	  

Stratospheric and tropospheric annular
mode variations are sometimes independent of
each other, but (on average) strong anomalies
just above the tropopause appear to favor tro-
pospheric anomalies of the same sign. Oppos-
ing anomalies as in December 1998 (Fig. 1) are
possible, but anomalies of the same sign dom-
inate the average (Fig. 2).

To examine the tropospheric circulation
after these extreme events, we define weak
and strong vortex “regimes” as the 60-day
periods after the dates on which the !3.0 and
"1.5 thresholds were crossed. Our results are
not sensitive to the exact range of days used
and do not depend on the first few days after
the “events.” We focus on the average behav-
ior during these “weak vortex regimes” and

“strong vortex regimes,” as characterized by
the normalized AO index (22). The average
value (1080 days) during weak vortex re-
gimes is !0.44, and "0.35 for strong vortex
regimes (1800 days). The large sample sizes
contribute to the high statistical significance
of these averages (23). During the weak and
strong vortex regimes the average surface
pressure anomalies (Fig. 3) are markedly like
opposite phases of the AO (11) or NAO (14),
with the largest effect on pressure gradients
in the North Atlantic and Northern Europe.

The probability density functions (PDFs) of
the daily normalized AO and NAO indices (24)
during weak and strong vortex regimes are
compared in Fig. 4. More pronounced than the
shift in means are differences in the shapes of

the PDFs, especially between the tails of the
curves. Values of AO or NAO index greater
than 1.0 are three to four times as likely during
strong vortex regimes than weak vortex re-
gimes. Similarly, index values less than !1.0
are three to four times as likely during weak
vortex regimes than strong vortex regimes. Val-
ues of the daily AO index greater than 1.0 and
less than !1.0 are associated with statistically
significant changes in the probabilities of
weather extremes such as cold air outbreaks,
snow, and high winds across Europe, Asia, and
North America (25). The observed circulation
changes during weak and strong vortex regimes
are substantial from a meteorological viewpoint
and can be anticipated by observing the strato-
sphere. These results imply a measure of pre-
dictability, up to 2 months in advance, for AO/
NAO variations in northern winter, particularly
for extreme values that are associated with un-
usual weather events having the greatest impact
on society.

Since the NAO and AO are known to mod-
ulate the position of surface cyclones across the
Atlantic and Europe, we examine the tracks of
surface cyclones with central pressure less than
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Fig. 1. Time-height development of the northern annular mode during the winter of 1998–1999.
The indices have daily resolution and are nondimensional. Blue corresponds to positive values
(strong polar vortex), and red corresponds to negative values (weak polar vortex). The contour
interval is 0.5, with values between !0.5 and 0.5 unshaded. The thin horizontal line indicates the
approximate boundary between the troposphere and the stratosphere.
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Fig. 2. Composites of time-height development of the northern annular mode for (A) 18 weak
vortex events and (B) 30 strong vortex events. The events are determined by the dates on which
the 10-hPa annular mode values cross –3.0 and"1.5, respectively. The indices are nondimensional;
the contour interval for the color shading is 0.25, and 0.5 for the white contours. Values between
!0.25 and 0.25 are unshaded. The thin horizontal lines indicate the approximate boundary
between the troposphere and the stratosphere.
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Fig. 3. Average sea-level pressure anomalies
(hPa) for (A) the 1080 days during weak vortex
regimes and (B) the 1800 days during strong
vortex regimes.
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FIG. 3. Composite means of the JF zonal-mean zonal wind (m s21)
and EP flux vectors in the years with (a) weak and (b) strong wave
activity during the ND period and (c) their difference. Positive contour
values are solid, negative values are dotted, and zero contours are
dashed. The arrow scale is four times larger in (c) than in (a) and
(b). The 99% confidence level for zonal wind is shaded.

plane channel model. They found that, when wave forc-
ing at the lower boundary is raised beyond a critical
amplitude, the eddy components and mean zonal flow
in the stratosphere oscillate quasiperiodically. In their
model vertically propagating planetary waves 1 and 2
decelerate westerly zonal flow until it turns into east-
erlies. Since planetary waves cannot propagate in east-
erlies (Charney and Drazin 1961), this results in trapping
of the waves. In the absence of wave forcing the strato-
sphere relaxes to the radiative equilibrium, westerlies
are recovered, and waves can again propagate into the
stratosphere. This mechanism suggests that the period
of oscillations is determined by the time that the strato-
sphere takes to relax to the radiative equilibrium. The
period of the vacillations is roughly 2–3 months, which
coincides with the period of the heat flux anticorrelation
found here.
A connection between eddy components and mean

zonal flow oscillations was afterward found in general
circulation models and in observations (Cristiansen
1999, 2001). Cristiansen (2001) pointed out that these
oscillations originate from competition between zonal
wind deceleration caused by vertical convergence of the
vertical component of the EP flux and zonal wind ac-
celeration caused by relaxation toward the radiative
equilibrium. Figure 3 shows the JF wind anomalies for
years with the weak and strong ND heat flux as well as
their differences. Only winters when the ND normalized
latitudinal averaged heat flux anomalies at 20 hPa were
more (1985, 1994, 1998, 2001, 2002) or less (1980,
1981, 1989, 1990, 1996, 2000) than 1 s were included
in these statistics. It is seen that, when wave flux is
weak in the early winter, the midwinter polar night jet
is well developed between 608 and 708N (Fig. 3a). In
contrast, when the early winter heat flux is strong, the
midwinter polar night jet is decelerated between 608 and
708N with a secondary maximum appearing at about
308N (Fig. 3b). The positive JF wind speed differences
between the winters with weak and strong ND heat flux-
es are statistically significant throughout the majority of
the extratropical stratosphere (Fig. 3c). There is also a
negative statistically significant wind speed anomaly in
the upper part of the plot at about 308N. To see the wave
propagation behavior for these periods, we calculated
the EP fluxes (see Andrews et al. 1987) and superim-
posed them on the wind fields. The arrows of the EP
flux vector are scaled by density to make the strato-
spheric part of the picture more readable. The JF EP
flux differences between the winters with weak and
strong ND heat flux are shown in Fig. 3c. It is seen that
the direction of the anomalous EP flux is consistent with
the correlation pattern shown in Fig. 1a. It is directed
upward throughout the midlatitude stratosphere and tro-
posphere on the southern part of the positive wind dif-
ference, where significant anticorrelation between the
heat fluxes is observed (Fig. 1a). The anomalous EP
flux is directed downward in the polar stratosphere in
the upper part of the plot on the northern side of the

positive wind difference. The statistical significance of
the differences between the EP flux components during
midwinter in the years with weak and strong ND heat
flux can be seen in Fig. 4. The picture for the vertical
component (Fig. 4a) is essentially the same as that for
the heat flux correlation (Fig. 1a). It shows that the
vertical component of the EP flux is stronger in the
midlatitude troposphere and stratosphere and weaker in
the vicinity of the subtropical jet stream in the years
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FIG. 3. Composite means of the JF zonal-mean zonal wind (m s21)
and EP flux vectors in the years with (a) weak and (b) strong wave
activity during the ND period and (c) their difference. Positive contour
values are solid, negative values are dotted, and zero contours are
dashed. The arrow scale is four times larger in (c) than in (a) and
(b). The 99% confidence level for zonal wind is shaded.

plane channel model. They found that, when wave forc-
ing at the lower boundary is raised beyond a critical
amplitude, the eddy components and mean zonal flow
in the stratosphere oscillate quasiperiodically. In their
model vertically propagating planetary waves 1 and 2
decelerate westerly zonal flow until it turns into east-
erlies. Since planetary waves cannot propagate in east-
erlies (Charney and Drazin 1961), this results in trapping
of the waves. In the absence of wave forcing the strato-
sphere relaxes to the radiative equilibrium, westerlies
are recovered, and waves can again propagate into the
stratosphere. This mechanism suggests that the period
of oscillations is determined by the time that the strato-
sphere takes to relax to the radiative equilibrium. The
period of the vacillations is roughly 2–3 months, which
coincides with the period of the heat flux anticorrelation
found here.
A connection between eddy components and mean

zonal flow oscillations was afterward found in general
circulation models and in observations (Cristiansen
1999, 2001). Cristiansen (2001) pointed out that these
oscillations originate from competition between zonal
wind deceleration caused by vertical convergence of the
vertical component of the EP flux and zonal wind ac-
celeration caused by relaxation toward the radiative
equilibrium. Figure 3 shows the JF wind anomalies for
years with the weak and strong ND heat flux as well as
their differences. Only winters when the ND normalized
latitudinal averaged heat flux anomalies at 20 hPa were
more (1985, 1994, 1998, 2001, 2002) or less (1980,
1981, 1989, 1990, 1996, 2000) than 1 s were included
in these statistics. It is seen that, when wave flux is
weak in the early winter, the midwinter polar night jet
is well developed between 608 and 708N (Fig. 3a). In
contrast, when the early winter heat flux is strong, the
midwinter polar night jet is decelerated between 608 and
708N with a secondary maximum appearing at about
308N (Fig. 3b). The positive JF wind speed differences
between the winters with weak and strong ND heat flux-
es are statistically significant throughout the majority of
the extratropical stratosphere (Fig. 3c). There is also a
negative statistically significant wind speed anomaly in
the upper part of the plot at about 308N. To see the wave
propagation behavior for these periods, we calculated
the EP fluxes (see Andrews et al. 1987) and superim-
posed them on the wind fields. The arrows of the EP
flux vector are scaled by density to make the strato-
spheric part of the picture more readable. The JF EP
flux differences between the winters with weak and
strong ND heat flux are shown in Fig. 3c. It is seen that
the direction of the anomalous EP flux is consistent with
the correlation pattern shown in Fig. 1a. It is directed
upward throughout the midlatitude stratosphere and tro-
posphere on the southern part of the positive wind dif-
ference, where significant anticorrelation between the
heat fluxes is observed (Fig. 1a). The anomalous EP
flux is directed downward in the polar stratosphere in
the upper part of the plot on the northern side of the

positive wind difference. The statistical significance of
the differences between the EP flux components during
midwinter in the years with weak and strong ND heat
flux can be seen in Fig. 4. The picture for the vertical
component (Fig. 4a) is essentially the same as that for
the heat flux correlation (Fig. 1a). It shows that the
vertical component of the EP flux is stronger in the
midlatitude troposphere and stratosphere and weaker in
the vicinity of the subtropical jet stream in the years
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FIG. 3. Composite means of the JF zonal-mean zonal wind (m s21)
and EP flux vectors in the years with (a) weak and (b) strong wave
activity during the ND period and (c) their difference. Positive contour
values are solid, negative values are dotted, and zero contours are
dashed. The arrow scale is four times larger in (c) than in (a) and
(b). The 99% confidence level for zonal wind is shaded.

plane channel model. They found that, when wave forc-
ing at the lower boundary is raised beyond a critical
amplitude, the eddy components and mean zonal flow
in the stratosphere oscillate quasiperiodically. In their
model vertically propagating planetary waves 1 and 2
decelerate westerly zonal flow until it turns into east-
erlies. Since planetary waves cannot propagate in east-
erlies (Charney and Drazin 1961), this results in trapping
of the waves. In the absence of wave forcing the strato-
sphere relaxes to the radiative equilibrium, westerlies
are recovered, and waves can again propagate into the
stratosphere. This mechanism suggests that the period
of oscillations is determined by the time that the strato-
sphere takes to relax to the radiative equilibrium. The
period of the vacillations is roughly 2–3 months, which
coincides with the period of the heat flux anticorrelation
found here.
A connection between eddy components and mean

zonal flow oscillations was afterward found in general
circulation models and in observations (Cristiansen
1999, 2001). Cristiansen (2001) pointed out that these
oscillations originate from competition between zonal
wind deceleration caused by vertical convergence of the
vertical component of the EP flux and zonal wind ac-
celeration caused by relaxation toward the radiative
equilibrium. Figure 3 shows the JF wind anomalies for
years with the weak and strong ND heat flux as well as
their differences. Only winters when the ND normalized
latitudinal averaged heat flux anomalies at 20 hPa were
more (1985, 1994, 1998, 2001, 2002) or less (1980,
1981, 1989, 1990, 1996, 2000) than 1 s were included
in these statistics. It is seen that, when wave flux is
weak in the early winter, the midwinter polar night jet
is well developed between 608 and 708N (Fig. 3a). In
contrast, when the early winter heat flux is strong, the
midwinter polar night jet is decelerated between 608 and
708N with a secondary maximum appearing at about
308N (Fig. 3b). The positive JF wind speed differences
between the winters with weak and strong ND heat flux-
es are statistically significant throughout the majority of
the extratropical stratosphere (Fig. 3c). There is also a
negative statistically significant wind speed anomaly in
the upper part of the plot at about 308N. To see the wave
propagation behavior for these periods, we calculated
the EP fluxes (see Andrews et al. 1987) and superim-
posed them on the wind fields. The arrows of the EP
flux vector are scaled by density to make the strato-
spheric part of the picture more readable. The JF EP
flux differences between the winters with weak and
strong ND heat flux are shown in Fig. 3c. It is seen that
the direction of the anomalous EP flux is consistent with
the correlation pattern shown in Fig. 1a. It is directed
upward throughout the midlatitude stratosphere and tro-
posphere on the southern part of the positive wind dif-
ference, where significant anticorrelation between the
heat fluxes is observed (Fig. 1a). The anomalous EP
flux is directed downward in the polar stratosphere in
the upper part of the plot on the northern side of the

positive wind difference. The statistical significance of
the differences between the EP flux components during
midwinter in the years with weak and strong ND heat
flux can be seen in Fig. 4. The picture for the vertical
component (Fig. 4a) is essentially the same as that for
the heat flux correlation (Fig. 1a). It shows that the
vertical component of the EP flux is stronger in the
midlatitude troposphere and stratosphere and weaker in
the vicinity of the subtropical jet stream in the years
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FIG. 3. Composite means of the JF zonal-mean zonal wind (m s21)
and EP flux vectors in the years with (a) weak and (b) strong wave
activity during the ND period and (c) their difference. Positive contour
values are solid, negative values are dotted, and zero contours are
dashed. The arrow scale is four times larger in (c) than in (a) and
(b). The 99% confidence level for zonal wind is shaded.

plane channel model. They found that, when wave forc-
ing at the lower boundary is raised beyond a critical
amplitude, the eddy components and mean zonal flow
in the stratosphere oscillate quasiperiodically. In their
model vertically propagating planetary waves 1 and 2
decelerate westerly zonal flow until it turns into east-
erlies. Since planetary waves cannot propagate in east-
erlies (Charney and Drazin 1961), this results in trapping
of the waves. In the absence of wave forcing the strato-
sphere relaxes to the radiative equilibrium, westerlies
are recovered, and waves can again propagate into the
stratosphere. This mechanism suggests that the period
of oscillations is determined by the time that the strato-
sphere takes to relax to the radiative equilibrium. The
period of the vacillations is roughly 2–3 months, which
coincides with the period of the heat flux anticorrelation
found here.
A connection between eddy components and mean

zonal flow oscillations was afterward found in general
circulation models and in observations (Cristiansen
1999, 2001). Cristiansen (2001) pointed out that these
oscillations originate from competition between zonal
wind deceleration caused by vertical convergence of the
vertical component of the EP flux and zonal wind ac-
celeration caused by relaxation toward the radiative
equilibrium. Figure 3 shows the JF wind anomalies for
years with the weak and strong ND heat flux as well as
their differences. Only winters when the ND normalized
latitudinal averaged heat flux anomalies at 20 hPa were
more (1985, 1994, 1998, 2001, 2002) or less (1980,
1981, 1989, 1990, 1996, 2000) than 1 s were included
in these statistics. It is seen that, when wave flux is
weak in the early winter, the midwinter polar night jet
is well developed between 608 and 708N (Fig. 3a). In
contrast, when the early winter heat flux is strong, the
midwinter polar night jet is decelerated between 608 and
708N with a secondary maximum appearing at about
308N (Fig. 3b). The positive JF wind speed differences
between the winters with weak and strong ND heat flux-
es are statistically significant throughout the majority of
the extratropical stratosphere (Fig. 3c). There is also a
negative statistically significant wind speed anomaly in
the upper part of the plot at about 308N. To see the wave
propagation behavior for these periods, we calculated
the EP fluxes (see Andrews et al. 1987) and superim-
posed them on the wind fields. The arrows of the EP
flux vector are scaled by density to make the strato-
spheric part of the picture more readable. The JF EP
flux differences between the winters with weak and
strong ND heat flux are shown in Fig. 3c. It is seen that
the direction of the anomalous EP flux is consistent with
the correlation pattern shown in Fig. 1a. It is directed
upward throughout the midlatitude stratosphere and tro-
posphere on the southern part of the positive wind dif-
ference, where significant anticorrelation between the
heat fluxes is observed (Fig. 1a). The anomalous EP
flux is directed downward in the polar stratosphere in
the upper part of the plot on the northern side of the

positive wind difference. The statistical significance of
the differences between the EP flux components during
midwinter in the years with weak and strong ND heat
flux can be seen in Fig. 4. The picture for the vertical
component (Fig. 4a) is essentially the same as that for
the heat flux correlation (Fig. 1a). It shows that the
vertical component of the EP flux is stronger in the
midlatitude troposphere and stratosphere and weaker in
the vicinity of the subtropical jet stream in the years
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FIG. 3. Composite means of the JF zonal-mean zonal wind (m s21)
and EP flux vectors in the years with (a) weak and (b) strong wave
activity during the ND period and (c) their difference. Positive contour
values are solid, negative values are dotted, and zero contours are
dashed. The arrow scale is four times larger in (c) than in (a) and
(b). The 99% confidence level for zonal wind is shaded.

plane channel model. They found that, when wave forc-
ing at the lower boundary is raised beyond a critical
amplitude, the eddy components and mean zonal flow
in the stratosphere oscillate quasiperiodically. In their
model vertically propagating planetary waves 1 and 2
decelerate westerly zonal flow until it turns into east-
erlies. Since planetary waves cannot propagate in east-
erlies (Charney and Drazin 1961), this results in trapping
of the waves. In the absence of wave forcing the strato-
sphere relaxes to the radiative equilibrium, westerlies
are recovered, and waves can again propagate into the
stratosphere. This mechanism suggests that the period
of oscillations is determined by the time that the strato-
sphere takes to relax to the radiative equilibrium. The
period of the vacillations is roughly 2–3 months, which
coincides with the period of the heat flux anticorrelation
found here.
A connection between eddy components and mean

zonal flow oscillations was afterward found in general
circulation models and in observations (Cristiansen
1999, 2001). Cristiansen (2001) pointed out that these
oscillations originate from competition between zonal
wind deceleration caused by vertical convergence of the
vertical component of the EP flux and zonal wind ac-
celeration caused by relaxation toward the radiative
equilibrium. Figure 3 shows the JF wind anomalies for
years with the weak and strong ND heat flux as well as
their differences. Only winters when the ND normalized
latitudinal averaged heat flux anomalies at 20 hPa were
more (1985, 1994, 1998, 2001, 2002) or less (1980,
1981, 1989, 1990, 1996, 2000) than 1 s were included
in these statistics. It is seen that, when wave flux is
weak in the early winter, the midwinter polar night jet
is well developed between 608 and 708N (Fig. 3a). In
contrast, when the early winter heat flux is strong, the
midwinter polar night jet is decelerated between 608 and
708N with a secondary maximum appearing at about
308N (Fig. 3b). The positive JF wind speed differences
between the winters with weak and strong ND heat flux-
es are statistically significant throughout the majority of
the extratropical stratosphere (Fig. 3c). There is also a
negative statistically significant wind speed anomaly in
the upper part of the plot at about 308N. To see the wave
propagation behavior for these periods, we calculated
the EP fluxes (see Andrews et al. 1987) and superim-
posed them on the wind fields. The arrows of the EP
flux vector are scaled by density to make the strato-
spheric part of the picture more readable. The JF EP
flux differences between the winters with weak and
strong ND heat flux are shown in Fig. 3c. It is seen that
the direction of the anomalous EP flux is consistent with
the correlation pattern shown in Fig. 1a. It is directed
upward throughout the midlatitude stratosphere and tro-
posphere on the southern part of the positive wind dif-
ference, where significant anticorrelation between the
heat fluxes is observed (Fig. 1a). The anomalous EP
flux is directed downward in the polar stratosphere in
the upper part of the plot on the northern side of the

positive wind difference. The statistical significance of
the differences between the EP flux components during
midwinter in the years with weak and strong ND heat
flux can be seen in Fig. 4. The picture for the vertical
component (Fig. 4a) is essentially the same as that for
the heat flux correlation (Fig. 1a). It shows that the
vertical component of the EP flux is stronger in the
midlatitude troposphere and stratosphere and weaker in
the vicinity of the subtropical jet stream in the years
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FIG. 3. Composite means of the JF zonal-mean zonal wind (m s21)
and EP flux vectors in the years with (a) weak and (b) strong wave
activity during the ND period and (c) their difference. Positive contour
values are solid, negative values are dotted, and zero contours are
dashed. The arrow scale is four times larger in (c) than in (a) and
(b). The 99% confidence level for zonal wind is shaded.

plane channel model. They found that, when wave forc-
ing at the lower boundary is raised beyond a critical
amplitude, the eddy components and mean zonal flow
in the stratosphere oscillate quasiperiodically. In their
model vertically propagating planetary waves 1 and 2
decelerate westerly zonal flow until it turns into east-
erlies. Since planetary waves cannot propagate in east-
erlies (Charney and Drazin 1961), this results in trapping
of the waves. In the absence of wave forcing the strato-
sphere relaxes to the radiative equilibrium, westerlies
are recovered, and waves can again propagate into the
stratosphere. This mechanism suggests that the period
of oscillations is determined by the time that the strato-
sphere takes to relax to the radiative equilibrium. The
period of the vacillations is roughly 2–3 months, which
coincides with the period of the heat flux anticorrelation
found here.
A connection between eddy components and mean

zonal flow oscillations was afterward found in general
circulation models and in observations (Cristiansen
1999, 2001). Cristiansen (2001) pointed out that these
oscillations originate from competition between zonal
wind deceleration caused by vertical convergence of the
vertical component of the EP flux and zonal wind ac-
celeration caused by relaxation toward the radiative
equilibrium. Figure 3 shows the JF wind anomalies for
years with the weak and strong ND heat flux as well as
their differences. Only winters when the ND normalized
latitudinal averaged heat flux anomalies at 20 hPa were
more (1985, 1994, 1998, 2001, 2002) or less (1980,
1981, 1989, 1990, 1996, 2000) than 1 s were included
in these statistics. It is seen that, when wave flux is
weak in the early winter, the midwinter polar night jet
is well developed between 608 and 708N (Fig. 3a). In
contrast, when the early winter heat flux is strong, the
midwinter polar night jet is decelerated between 608 and
708N with a secondary maximum appearing at about
308N (Fig. 3b). The positive JF wind speed differences
between the winters with weak and strong ND heat flux-
es are statistically significant throughout the majority of
the extratropical stratosphere (Fig. 3c). There is also a
negative statistically significant wind speed anomaly in
the upper part of the plot at about 308N. To see the wave
propagation behavior for these periods, we calculated
the EP fluxes (see Andrews et al. 1987) and superim-
posed them on the wind fields. The arrows of the EP
flux vector are scaled by density to make the strato-
spheric part of the picture more readable. The JF EP
flux differences between the winters with weak and
strong ND heat flux are shown in Fig. 3c. It is seen that
the direction of the anomalous EP flux is consistent with
the correlation pattern shown in Fig. 1a. It is directed
upward throughout the midlatitude stratosphere and tro-
posphere on the southern part of the positive wind dif-
ference, where significant anticorrelation between the
heat fluxes is observed (Fig. 1a). The anomalous EP
flux is directed downward in the polar stratosphere in
the upper part of the plot on the northern side of the

positive wind difference. The statistical significance of
the differences between the EP flux components during
midwinter in the years with weak and strong ND heat
flux can be seen in Fig. 4. The picture for the vertical
component (Fig. 4a) is essentially the same as that for
the heat flux correlation (Fig. 1a). It shows that the
vertical component of the EP flux is stronger in the
midlatitude troposphere and stratosphere and weaker in
the vicinity of the subtropical jet stream in the years

Weak−Strong	  

99%	  confidence	  
level	  

Weak	  Nov/Dec	  wave	  acavity	   Strong	  Nov/Dec	  wave	  acavity	  

Karpetchko	  and	  
Nikulin	  2004	  

How	  do	  we	  determine	  if	  there	  is	  wave	  acavity?	  
•  Planetary	  scale	  EP	  flux	  

January/
February	  zonal	  
mean	  zonal	  
wind	  
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Why	  EP	  flux?	  

The	  100	  hPa	  zonal-‐mean	  eddy	  heat	  flux	  describes	  the	  veracal	  
component	  of	  EP	  flux	  and	  describes	  

ver$cal	  wave	  ac$vity	  flux	  near	  the	  tropopause	  
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Why	  the	  November	  decelera9on?	  
•  Rapid	  zonal	  mean	  zonal	  wind	  

deceleraaons	  in	  November	  are	  
uncommon	  
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•  ERA-‐Interim	  data	  
– ～80	  km	  horizontal	  resoluaon	  
–  60	  veracal	  levels	  from	  1000	  hPa	  to	  0.1	  hPa	  
–  6-‐hourly	  data	  available	  	  from	  1000	  hPa	  to	  1	  hPa	  

•  31-‐year	  climatology	  from	  1979—2010	  	  	  
•  Heat	  flux:	  	  
–  Zonal	  mean	  (v'T')	  

•  Anomalies	  with	  respect	  to	  climatology	  (e.g.,	  Polvani	  &	  
Waugh	  2004)	  

•  Full	  heat	  flux	  (not	  anomaly)	  
–  Longitudinal	  distribuaon	  (v'T')	  
– Averaged	  from	  45°-‐75°N,	  weighted	  by	  the	  cosine	  of	  
laatude	  

Data	  and	  	  
Methods	  
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The	  tropospheric	  
synopac	  evoluaon	   North	  Pacific	  

0000	  UTC	  4	  November	  2014	  

•  Potenaal	  
temperature	  
on	  the	  DT	  
(shaded)	  

•  Wind	  on	  the	  
DT	  (barbs)	  

	  
•  925—850	  

hPa	  relaave	  
voracity	  
(black)	  every	  
0.5	  ×	  10-‐4	  s-‐1	  

	  
Alicia	  M.	  Bentley	  Typhoon	  Nuri	  
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Alicia	  M.	  Bentley	  
Severe	  Tropical	  Storm	  

North	  Pacific	  
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(shaded)	  
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(black)	  every	  
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North	  Pacific	  
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Alicia	  M.	  Bentley	  

Extratropical	  Low	  

North	  Pacific	  
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Alicia	  M.	  Bentley	  

North	  Pacific	  
0000	  UTC	  12	  November	  2014	  

•  Potenaal	  
temperature	  
on	  the	  DT	  
(shaded)	  

•  Wind	  on	  the	  
DT	  (barbs)	  

	  
•  925—850	  

hPa	  relaave	  
voracity	  
(black)	  every	  
0.5	  ×	  10-‐4	  s-‐1	  

	  

The	  tropospheric	  
synopac	  evoluaon	  



Alicia	  M.	  Bentley	  

North	  America	  
0000	  UTC	  18	  November	  2014	  

•  Potenaal	  
temperature	  
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(shaded)	  

•  Wind	  on	  the	  
DT	  (barbs)	  

	  
•  925—850	  

hPa	  relaave	  
voracity	  
(black)	  every	  
0.5	  ×	  10-‐4	  s-‐1	  
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40-‐day	  heat	  flux	  and	  zonal	  mean	  zonal	  wind	   These	  are	  all	  
anomalies	  

Conclusions	  
haCard@albany.edu	  

•  23	  November:	  	  
–  rapid	  deceleraaon	  of	  the	  10	  hPa	  65°N	  zonal	  mean	  
zonal	  wind	  

–  40-‐day	  average	  100	  hPa	  heat	  flux	  anomaly	  maximum	  
•  10	  November:	  Anomalously	  large	  and	  posiave	  
100	  hPa	  heat	  flux	  anomaly	  	  
–  associated	  with	  the	  ridge	  just	  downstream	  of	  Nuri	  

•  20	  November:	  anomalously	  large	  and	  posiave	  
100	  hPa	  heat	  flux	  anomaly	  	  
–  associated	  with	  the	  downstream	  wavetrain	  excited	  by	  
the	  recurvature	  of	  Nuri	  


