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•  Obtained polar lows from the Sea Surface Temperature and Altimeter Synergy for Improved 

Forecasting of Polar lows (STARS) database of polar lows over the Norwegian and Barents Sea 
during 2002–2011 (Sætra et al. 2010) 

 
•  Compared STARS database to a 1979–2015 database of TPVs constructed using the ERA-

Interim (Dee et al. 2011) and a TPV tracking algorithm (Szapiro and Cavallo 2018), and identified 
polar lows linked to TPVs 

•  Conducted a multiscale analysis of a Barents Sea polar low linked to a TPV occurring during 
1800 UTC 10–1200 UTC 11 February 2011 using the ERA5 (Hersbach and Dee 2016) 

 
•  Used the ECMWF Ensemble Prediction System (Buizza et al. 2007) initialized at 1200 UTC 9 

February 2011 (30 h prior to polar low genesis) to evaluate the forecast skill of the polar low, with 
the ERA5 used as the verification  

•  Assessed forecast skill of polar low in terms of a metric adapted from Lamberson et al. (2016) 
that combines forecast track and intensity error of polar low based on 850-hPa relative vorticity 

•  Separated ensemble members into two groups: the eight most accurate and the eight least 
accurate members in terms of aforementioned metric 

A Predictability Study of a Polar Low Linked to a                                                       
Tropopause Polar Vortex 

3) Climatology and Case Tracks 

	
		
•  Tropopause polar vortices (TPVs) are tropopause-based vortices of high-latitude origin and are 

material features (e.g., Cavallo and Hakim 2010) 
 
•  Polar lows are small, intense cyclones characterized by horizontal scales from 10s to 100s of km, 

short lifetimes, and rapid evolution, and often form within, or at the leading edge of, a cold air 
mass moving over warmer sea surfaces in high latitudes (e.g., Rasmussen and Turner 2003) 

•  Polar lows may be associated with strong surface winds and heavy precipitation, posing hazards 
to ships and infrastructure (e.g., Rasmussen and Turner 2003) 

 
•  TPVs may act as precursors for the development of polar lows (e.g. Kolstad 2011) 
 
•  This study investigates physical processes that influence the evolution and predictability of a 

polar low linked to a TPV 

1) Background 

2) Data and Methods 

4) Polar Low and TPV Evolution 5) Ensemble Differences at 1800 UTC 10 Feb 2011 (30-h Forecast) 

Figure 2 (below). Tracks of (a) polar low and (b) TPV, 
and 10–11 Feb 2011 time-mean (a) 850-hPa 
temperature (°C, gray) and standardized temperature 
anomalies (σ, shaded), and (b) 300-hPa geopotential 
height (dam, gray) and standardized geopotential height 
anomalies (σ, shaded). 0000 UTC positions (every      
48 h) of TPV shown by dots, and numbers represent 
dates corresponding to the 0000 UTC positions.  
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Feature Date of Genesis Date of Lysis Lifetime 
PL 10 Feb 2011 11 Feb 2011 18 h 

TPV 31 Jan 2011 20 Feb 2011 20 d 

Table 1. Lifetimes of polar low (PL) and TPV of interest 
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STARS Polar Lows 

Polar lows linked 
to TPVs (N = 104) 
Polar lows not linked 
to TPVs (N = 36) 
Genesis positions 

Fig. 1 (left). Tracks of STARS polar lows linked to TPVs 
(red) and STARS polar lows not linked to TPVs (blue). 
Dots indicate the genesis locations of the polar lows. 
104 out of a total 140 polar lows, or 74.3%, are linked to 
TPVs.  
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Figure 3. (left) DT (2-PVU surface) θ (K, shaded), wind speed (black, every 10 m s−1 starting at 30    
m s−1), and wind (m s−1, flags and barbs); (right) 850-hPa ζ (10−5 s−1, shaded), 850–600-hPa ascent 
(blue, every 2.5 × 10−3 hPa s−1), SLP (hPa, black), and 10-m wind (m s−1, barbs). “L1” and “TPV” 
denote positions of a predecessor cyclone (L1) and the TPV, respectively. 

Figure 4. (a) SLP (hPa, blue); 600–400-hPa Q (K m−1 s−1, vectors), Q forcing for vertical motion (10−17 
Pa−1 s−3, shaded), θ (°C, red), and geopotential height (dam, black); (b) 900–600-hPa static stability    
[K (100 hPa)−1, shaded], SLP (hPa, black), and SST (°C, blue). “TPV” denotes position of TPV. 

4) Ensemble Track and Intensity 

Figure 5. (a) Track and (b) intensity of 850-hPa ζ maximum (10−5 s−1) associated with polar low, 
every 6 h during 1800 UTC 10–1200 UTC 11 February 2011. 

Ensemble 
mean 

shading: normalized 
composite differences (σ; 
most accurate group minus 
least accurate group) 

stippling: statistically significant 
differences between groups at 
95% confidence level according 
to a two-sided Student’s t test 

	 Mean polar low position in 
least accurate group* 

Mean polar low position in 
most accurate group* *Track: 1800 UTC 10–                                      

1200 UTC 11 Feb 2011 

Figure 6. Fields as specified above at 1800 UTC 10 Feb 2011. Normalized composite differences calculated using the equation below, adapted 
from Lamberson et al. (2016). “R1”, “R2”, “L1”, and “TPV” denote ensemble-mean positions of ridge 1 (R1), ridge 2 (R2), L1, and TPV, 
respectively. 

= mean of ith state variable for most accurate members  
= mean of ith state variable for least accurate members  
= ensemble standard deviation of xi  computed for all members    
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Figure 7. Cross sections along (a) AA’ and (b) BB’ of area-averaged (200 km) ζ, and (c) plan-view map of 500-hPa area-averaged (200 km) ζ 
at 1800 UTC 10 Feb 2011. Contours, shading, and stippling as in Fig. 6. “TPV”, “R1”, “L1”, and “PL” denote ensemble-mean positions of TPV, 
R1, L1, and polar low, respectively. 
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(a) 500-hPa geopotential height (dam) (b) 500-hPa area-averaged (200 km) ζ (10−5 s−1) 

(c) 850-hPa area-averaged (200 km) ζ (10−5 s−1) (d) 850-hPa temperature (K) 
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•  A large percentage, 74.3%, of the STARS polar lows are linked to TPVs (Fig. 1) 
 
•  The evolution of the polar low appears to be related to the interaction between the TPV and a tropospheric-

deep baroclinic zone (Figs. 2a,b and Figs. 3a–f) 

•  Forcing for ascent associated with the TPV (Fig. 4a) and a favorable thermodynamic environment (Fig. 4b) 
likely support the intensification of the polar low (Figs. 3b,d,f) 

 
•  The polar low is stronger and positioned farther northeastward in the most accurate group compared to the 

least accurate group (Figs. 5a,b) 

•  Composite differences between the most and least accurate groups suggest that the TPV and a predecessor 
cyclone (L1; Figs. 3b,d,f) are positioned farther northeastward (Figs. 6a–c and Figs. 7a,b) and the 
tropospheric-deep baroclinic zone is positioned farther eastward (Fig. 6d) in the most accurate group 

      −   These position differences may be tied to the ridges flanking the TPV (R1 and R2) being less amplified (Fig. 6a)  
           and R1 extending farther eastward (Figs. 6a,b and Fig. 7b) in the most accurate group 
 
      −   These position differences likely contribute to the polar low position differences between the groups 
 
•  A more conducive thermodynamic environment in most accurate group, as suggested by a polar low track 

mainly over the Barents Sea (Figs. 6a–d), may contribute to polar low being stronger in most accurate group 
 

7) Discussion 
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