Lower-Latitude Linkages to Two Intense Arctic Cyclones in Early June 2018

Lance F. Bosart¹, Kevin A. Biernat¹, Daniel Keyser¹, and Steven M. Cavallo²

¹Department of Atmospheric and Environmental Sciences University at Albany, State University of New York ²University of Oklahoma

American Meteorological Society 32nd Conference on Climate Variability and Change Tuesday 8 January 2019 Phoenix, Arizona

Research Supported by ONR Grant N00014-18-1-2200

Motivation

- Rare occurrence of two sequential intense Arctic cyclones, AC1 and AC2, in early June 2018
- AC1 formed over southern Europe in response to a deepening trough in northwesterly flow
- AC2 formed east of Greenland and may have had antecedent vorticity "DNA" from TS Alberto
- AC1 and AC2 underwent a cyclonic rotation over the Arctic Ocean during which AC2 absorbed AC1

Data and Methods

- Gridded ERA-5 datasets (0.25°) were downloaded to depict all analysis fields
- Gridded ERA-I datasets were used to compute mean and standardized anomalies
- TS Alberto and surface cyclones were tracked from NHC positions and ERA-5 datasets, respectively
- Szapiro and Cavallo (2018) algorithm was used to identify and track tropopause polar vortices (TPVs)
- NOAA HYSPLIT Trajectory Model was used to compute backward trajectories

Big Picture

- AC1 and AC2 tracks and intensities
- Relevant TPV tracks
- Standardized 300-hPa height anomalies and 850hPa temperature anomalies

Track and Intensity of Cyclones

Cyclone	Genesis	Lysis	Lifetime
AC1	1 June	6 June	~5 d
AC2	2 June	13 June	~11 d

(a) 26 May–1 June 2018 time-mean 300-hPa geopotential height (dam, black) and standardized geopotential height anomalies (σ , shaded); (b) 1–7 June 2018 time-mean 850-hPa temperature (°C, black) and standardized temperature anomalies (σ , shaded).

Track and Intensity of Cyclones

Tracks of TPVs

Synoptic-Scale Flow Evolution: North America 30 May–2 June 2018

1200 UTC 31 May 2018

1200 UTC 31 May 2018

winds (m s⁻¹, flags and barbs)

700-hPa geopotential height (dam, black)

1200 UTC 31 May 2018

(a) PV (PVU, shaded), θ (K, black), ascent (red, every 5 × 10⁻³ hPa s⁻¹), and wind speed (white, every 10 m s⁻¹ starting at 30 m s⁻¹); (b) 300-hPa wind speed (m s⁻¹, shaded),1000–500-hPa thickness (dam, blue/red), SLP (hPa, black), and PW (mm, shaded); (c) 850-hPa θ_e (K, shaded), geopotential height (dam, black), and wind (m s⁻¹, flags and barb)

1200 UTC 1 Jun 2018

1200 UTC 1 Jun 2018

Lagrangian Perspective: Selected Trajectories (Pre-AC2)

Synoptic-Scale Flow Evolution: Eurasia 2–7 June 2018

1200 UTC 2 Jun 2018

1200 UTC 3 Jun 2018

1800 UTC 3 Jun 2018

(a) PV (PVU, shaded), θ (K, black), ascent (red, every 5 × 10⁻³ hPa s⁻¹), and wind speed (white, every 10 m s⁻¹ starting at 30 m s⁻¹); (b) 300-hPa wind speed (m s⁻¹, shaded),1000–500-hPa thickness (dam, blue/red), SLP (hPa, black), and PW (mm, shaded); (c) 850-hPa θ_e (K, shaded), geopotential height (dam, black), and wind (m s⁻¹, flags and barb)

1200 UTC 5 Jun 2018

1200 UTC 7 Jun 2018

0000 UTC 7 Jun 2018

(a) PV (PVU, shaded), θ (K, black), ascent (red, every 5 × 10⁻³ hPa s⁻¹), and wind speed (white, every 10 m s⁻¹ starting at 30 m s⁻¹); (b) 300-hPa wind speed (m s⁻¹, shaded),1000–500-hPa thickness (dam, blue/red), SLP (hPa, black), and PW (mm, shaded); (c) 850-hPa θ_e (K, shaded), geopotential height (dam, black), and wind (m s⁻¹, flags and barb)

Lagrangian Perspective: Selected Trajectories (AC2)

Interactions between Arctic Cyclones

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ , shaded)

Conclusions:

- Anomalously amplified flow from eastern North America to Europe permits midlatitude disturbances to reach the Arctic
- TS Alberto remnants merge with a Canadian cyclone, move northeastward and weaken over the Davis Strait windward of Greenland
- AC2 forms in the lee (east) of Greenland near the nose of a strong upperlevel jet and along a moisture axis linked back to TS Alberto
- AC1 forms along a cold front near the Caspian Sea ahead of an amplified upper-level trough, deepens northeastward, and reaches the Kara Sea
- Cyclonic wave breaking and amplifying flow over western and central Europe enables AC1 and AC2 to strengthen and move poleward
- TPVs embedded within deep upper-level troughs foster rapid deepening of AC1 and AC2 in the left-exit regions of jet streaks
- AC2 absorbs AC1 after a Fujiwara cyclonic rotation, becomes the dominant Arctic cyclone (962 hPa), and has a standardized SLP anomaly of < -6 σ

Lagrangian Perspective: Selected Trajectories (AC1)

0000 UTC 7 Jun 2018

(a) θ_e (K, shaded), ascent (blue, every 5 × 10⁻³ hPa s⁻¹), and wind (m s⁻¹, flags and barb);
(b) 300-hPa wind speed (m s⁻¹, shaded),1000–500-hPa thickness (dam, blue/red), SLP (hPa, black), and PW (mm, shaded); (c) 850-hPa θ_e (K, shaded), geopotential height (dam, black), and wind (m s⁻¹, flags and barb)

1200 UTC 2 Jun 2018

1200 UTC 4 Jun 2018

1200 UTC 3 Jun 2018

1200 UTC 6 Jun 2018

1200 UTC 4 Jun 2018

1200 UTC 5 Jun 2018

1200 UTC 6 Jun 2018

1200 UTC 7 Jun 2018

Mean 300-hPa Geopotential Heights (m) for 1–4 June 2018 (left) and 4–7 June 2018 (right)

Anomaly 300-hPa Geopotential Heights (m) for 1–4 June 2018 (left) and 4–7 June 2018 (right)

