Intense Arctic Cyclones in June 2018

Lance F. Bosart, Kevin A. Biernat, and Daniel Keyser

Department of Atmospheric and Environmental Sciences University at Albany, State University of New York

> Polar Prediction Workshop 2019 Wednesday 25 April 2019 University of Oklahoma

Research Supported by ONR Grant N00014-18-1-2200

Case Overview

- Two sequential intense Arctic cyclones, AC1 and AC2, occurred in early June 2018
- AC1 forms northeast of the Caspian Sea within a frontal trough
- AC2 forms east of Greenland and may be linked to the remnants of Tropical Storm (TS) Alberto
- AC1 and AC2 strengthen over western Eurasia as they interact with tropopause polar vortices (TPVs)
- AC1 and AC2 undergo a cyclonic rotation over the Arctic Ocean, during which AC2 absorbs AC1

Data and Methods

- Obtained gridded analyses from ERA-5 (Hersbach and Dee 2016) at 0.25° resolution
- Tracked cyclones manually by following locations of minimum sea level pressure (SLP)
- Identified and tracked TPVs objectively by utilizing a TPV tracking algorithm (Szapiro and Cavallo 2018)
- Computed backward trajectories by using NOAA HYSPLIT trajectory model

Big Picture

- Depict AC1 and AC2 tracks and intensities
- Show relevant TPV tracks
- Illustrate large-scale flow evolution

Track and Intensity of Cyclones

Cyclone	Genesis	Lysis	Lifetime
AC1	1 June	6 June	~5 d
AC2	2 June	13 June	~11 d

(a) 26 May–1 June 2018 time-mean 300-hPa geopotential height (dam, black) and standardized geopotential height anomalies (σ , shaded); (b) 1–7 June 2018 time-mean 850-hPa temperature (°C, black) and standardized temperature anomalies (σ , shaded).

Track and Intensity of Cyclones

Tracks of TPVs

Synoptic-Scale Flow Evolution: North America 30 May–2 June 2018

0000 UTC 30 May 2018

1200 UTC 30 May 2018

0000 UTC 30 May 2018

1200 UTC 30 May 2018

1200 UTC 29 May 2018

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ, shaded)

0000 UTC 30 May 2018

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ , shaded)

1200 UTC 30 May 2018

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ, shaded)

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ, shaded)

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ, shaded)

(a) PV (PVU, shaded), θ (K, black), ascent (red, every 5 × 10⁻³ hPa s⁻¹), and wind speed (white, every 10 m s⁻¹ starting at 30 m s⁻¹); (b) 300-hPa wind speed (m s⁻¹, shaded),1000–500-hPa thickness (dam, blue/red), SLP (hPa, black), and PW (mm, shaded); (c) 850-hPa θ_e (K, shaded), geopotential height (dam, black), and wind (m s⁻¹, flags and barb)

0000 UTC 1 Jun 2018

1200 UTC 1 Jun 2018

0000 UTC 2 Jun 2018

1200 UTC 2 Jun 2018

0000 UTC 1 Jun 2018

1200 UTC 1 Jun 2018

0000 UTC 2 Jun 2018

winds (m s^{-1} , flags and barbs)

700-hPa geopotential height (dam, black)

1200 UTC 2 Jun 2018

Lagrangian Perspective: Selected Trajectories (Pre-AC2)

NOAA HYSPLIT MODEL

1200 UTC 1 Jun 2018

1200 UTC 2 Jun 2018

Synoptic-Scale Flow Evolution: Eurasia 2–7 June 2018

1200 UTC 2 Jun 2018

(a) PV (PVU, shaded), θ (K, black), ascent (red, every 5 × 10⁻³ hPa s⁻¹), and wind speed (white, every 10 m s⁻¹ starting at 30 m s⁻¹); (b) 300-hPa wind speed (m s⁻¹, shaded),1000–500-hPa thickness (dam, blue/red), SLP (hPa, black), and PW (mm, shaded); (c) 850-hPa θ_e (K, shaded), geopotential height (dam, black), and wind (m s⁻¹, flags and barb)

0000 UTC 4 Jun 2018

1200 UTC 4 Jun 2018

0000 UTC 5 Jun 2018

1200 UTC 5 Jun 2018

0000 UTC 6 Jun 2018

1200 UTC 6 Jun 2018

(a) PV (PVU, shaded), θ (K, black), ascent (red, every 5 × 10⁻³ hPa s⁻¹), and wind speed (white, every 10 m s⁻¹ starting at 30 m s⁻¹); (b) 300-hPa wind speed (m s⁻¹, shaded),1000–500-hPa thickness (dam, blue/red), SLP (hPa, black), and PW (mm, shaded); (c) 850-hPa θ_e (K, shaded), geopotential height (dam, black), and wind (m s⁻¹, flags and barb)

1200 UTC 2 Jun 2018

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

0000 UTC 4 Jun 2018

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

1200 UTC 4 Jun 2018

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

0000 UTC 5 Jun 2018

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

1200 UTC 5 Jun 2018

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

0000 UTC 6 Jun 2018

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

1200 UTC 6 Jun 2018

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

925-hPa relative vorticity (10⁻⁵ s⁻¹, shaded), geopotential height (dam, black), and winds (m s⁻¹, flags and barbs)

Lagrangian Perspective: Selected Trajectories (AC1)

1200 UTC 2 Jun 2018

Lagrangian Perspective: Selected Trajectories (AC2)

0000 UTC 4 Jun 2018

NOAA HYSPLIT MODEL

												$(kg m^{-1} s^{-1})$
20	0 3	600 4	00 50	00 60	0 70	00 80	00 10 ⁰	00 12	00 14	·00 ·	1600	
IVT 700-	(kg m⁻ୀ hPa ge	¹ s ^{−1} , sh eopotent	aded ar tial heig	nd vector ht (dam	rs) and , black)		NOA/ e	A HYSP ending a	LIT 5-d t 0000	backv UTC 4	ward traje 1 June 20	ectories)18

1200 UTC 5 Jun 2018

												$(kg m^{-1} s^{-1})$
20	0 30	00 40	00 5	00 60	00 7	00 80	00 10	00 12	200	1400	1600	
IVT (700-	(kg m⁻¹ hPa ge	s ^{−1} , sha sopotent	aded ar ial heig	nd vecto ht (dam	rs) and , black))	NOA/ e	A HYSF ending a	PLIT 5 at 120	5-d back 00 UTC	ward traj 5 June 20	ectories 018

												$(kg m^{-1} s^{-1})$
20	00 3	00 40	00 50	00 60	0 7	00 8	00 10	00 12	200	1400	1600	
IVT 700-	(kg m⁻¹ hPa ge	^I s ^{−1} , sha sopotent	aded ar tial heig	nd vecto ht (dam	rs) and , black)	,	NOA/ e	A HYSF ending a	PLIT 5 at 000	-d back 0 UTC 7	ward traj 7 June 2	ectories 018

Interactions between Arctic Cyclones

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ , shaded)

Impacts of AC1 and AC2 on Arctic Sea Ice

0000 UTC 4 Jun 2018

1200 UTC 4 Jun 2018

0000 UTC 5 Jun 2018

1200 UTC 5 Jun 2018

0000 UTC 6 Jun 2018

1200 UTC 6 Jun 2018

0000 UTC 7 Jun 2018

1200 UTC 7 Jun 2018

0000 UTC 8 Jun 2018

1200 UTC 8 Jun 2018

0000 UTC 9 Jun 2018

Conclusions:

- Anomalously amplified flow from eastern North America to Europe permits midlatitude disturbances to reach the Arctic
- TS Alberto remnants merge with a Canadian cyclone, move northeastward, and weaken over the Davis Strait windward of Greenland
- AC2 forms leeward of Greenland near the nose of a strong upper-level jet and along a moisture axis linked back to the remnants of TS Alberto
- AC1 forms along a cold front near the Caspian Sea ahead of an amplified upper-level trough

Conclusions:

- Anomalously amplifying flow over western and central Eurasia enables AC1 and AC2 to strengthen and move poleward
- TPVs embedded within amplified upper-level troughs foster rapid deepening of AC1 and AC2 in the left-exit regions of jet streaks
- AC2 absorbs AC1 after a Fujiwara cyclonic rotation and becomes the dominant Arctic cyclone, with a peak intensity of 962 hPa (SLP standardized anomaly of < -6 σ)
- Warm, moist air and strong low-level winds associated with AC1 and AC2 may contribute to reductions in Arctic sea ice

Extra Slides

Ocean Currents

1200 UTC 4 June 2018

0000 UTC 8 June 2018

Ocean current speed and direction (cm s⁻¹, streamlines colored according to speed) at 5 m below sea level (Data source: CFSR)

0000 UTC 1 Jun 2018

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ , shaded)

700-hPa geopotential height (dam, black) and winds (m s⁻¹, flags and barbs), and standardized PW anomalies (σ, shaded)

1200 UTC 1 Jun 2018

SLP (hPa, black), 10-m winds (m s⁻¹, flags and barbs), and standardized SLP anomalies (σ , shaded)

700-hPa geopotential height (dam, black) and winds (m s⁻¹, flags and barbs), and standardized PW anomalies (σ, shaded)