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(left) Dynamic tropopause (DT) wind speed (every 15 m s−1  starting at 50 m s−1, thick contours) and                          
DT potential temperature (K, thin contours and shading) on 1.5-PVU surface valid at 0000 UTC 1 Dec 

1991; (right) same as left except DT pressure (hPa, thin contours and shading).                                          
Adapted from Fig. 11 in Pyle et al. (2004). 

What are Tropopause Polar Vortices (TPVs)? 

•  TPVs are defined as tropopause-based vortices of high-
latitude origin and are material features (Pyle et al. 2004; 
Cavallo and Hakim 2009, 2010, 2012, 2013) 

 



•  TPVs may interact with and strengthen jet streams, and 
act as precursors to the development of intense Arctic 
cyclones (e.g., Tao et al. 2017) 

 
•  Arctic cyclones may be associated with strong surface 

winds and poleward advection of warm, moist air, 
contributing to reductions in Arctic sea-ice extent (e.g., 
Zhang et al. 2013) 

•  Heavy precipitation, strong surface winds, and large 
waves accompanying Arctic cyclones may pose hazards 
to ships navigating through open passageways in the 
Arctic Ocean 

 

Motivation 



•  AC12 formed over Siberia on 2 August 2012 and tracked 
northeastward into the Arctic, reaching a minimum 
central sea level pressure (SLP) of 962.3 hPa at 1000 
UTC 6 August in the ERA5 
 

•  Strong surface winds and waves associated with AC12 
helped break up thin sea ice (e.g., Parkinson and 
Comiso 2013)  

•  Strong surface winds and waves associated with AC12 
also contributed to increased upward ocean heat 
transport and bottom melting of ice, with sea-ice volume 
decreasing twice as fast as normal during AC12 (e.g., 
Zhang et al. 2013) 

 

The Great Arctic Cyclone of August 2012 (AC12) 



•  Simmonds and Rudeva (2012), Yamazaki et al. (2015), 
and Tao et al. (2017) found that a TPV played an 
important role in the life cycle of AC12 

The Great Arctic Cyclone of August 2012 (AC12) 



•  Yamagami et al. (2018) examined the medium-range 
forecast skill of AC12 with five operational ensemble 
prediction systems 

 
•  They found that AC12 has relatively low predictability, 

with accurate forecasts of AC12 only out to 2–3 d lead 
time prior to peak intensity of AC12 

•  They also found that a more-accurate prediction of 
upper-level features, including TPVs, in the vicinity of 
AC12 results in a more-accurate prediction of AC12  

The Great Arctic Cyclone of August 2012 (AC12) 



•  This presentation examines linkages between TPVs and 
AC12, and the impact of AC12 on Arctic sea-ice extent 

  
 

The Great Arctic Cyclone of August 2012 (AC12) 



•  Identification and synoptic examination of three TPVs, a 
predecessor surface cyclone (L1), and AC12 

 
•  Impact of AC12 on Arctic sea-ice extent 

 

Outline 



•  Data: ERA5 (Hersbach and Dee 2016) gridded to 0.3° 
horizontal resolution  

 
•  Identified and tracked TPVs of interest for AC12 

objectively by utilizing a TPV tracking algorithm (Szapiro 
and Cavallo 2018)  

 
•  Tracked L1 and AC12 manually by following the 

locations of minimum SLP  

Data and Methods 
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Genesis 

1–7 Aug 2012 time-mean (left) 300-hPa geopotential height 
(dam, black) and standardized geopotential height 

anomalies (σ, shaded); (right) 850-hPa temperature (°C, 
black) and standardized temperature anomalies (σ, shaded) 
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•  TPV 1 is the longest-lived of the three TPVs and 
corresponds to the TPV shown in previous studies to 
play an important role in the evolution of AC12 

 
•  TPV 2 and TPV 3 are shorter-lived TPVs and play 

supporting roles in the evolution of AC12 
 
•  L1 is the predecessor cyclone that interacts and merges 

with AC12  
 
•  AC12 is the main cyclone of interest and has a lifetime  

of ~13 days 
 
•  TPV 1 and AC12 track in a region of tropospheric-deep 

baroclinicity over Siberia 

Track and Intensity 



Track and Intensity 

Maximum 925-hPa relative 
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100 km of grid point) 
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0000 UTC 3 Aug 2012 

Potential temperature (K, shaded), wind speed 
(black, every 10 m s−1  starting at 30 m s−1), and 
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1200 UTC 3 Aug 2012 

Potential temperature (K, shaded), wind speed 
(black, every 10 m s−1  starting at 30 m s−1), and 
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Potential temperature (K, shaded), wind speed 
(black, every 10 m s−1  starting at 30 m s−1), and 
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1200 UTC 4 Aug 2012 

Potential temperature (K, shaded), wind speed 
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1200 UTC 5 Aug 2012 
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1200 UTC 6 Aug 2012 

Potential temperature (K, shaded), wind speed 
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1200 UTC 3 Aug 2012 

925-hPa area-averaged (100 km) relative 
vorticity (10−5 s−1, shaded), geopotential height 
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0000 UTC 4 Aug 2012 

925-hPa area-averaged (100 km) relative 
vorticity (10−5 s−1, shaded), geopotential height 
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1200 UTC 4 Aug 2012 

925-hPa area-averaged (100 km) relative 
vorticity (10−5 s−1, shaded), geopotential height 
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0000 UTC 5 Aug 2012 

925-hPa area-averaged (100 km) relative 
vorticity (10−5 s−1, shaded), geopotential height 
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1200 UTC 5 Aug 2012 

925-hPa area-averaged (100 km) relative 
vorticity (10−5 s−1, shaded), geopotential height 
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1200 UTC 6 Aug 2012 
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vorticity (10−5 s−1, shaded), geopotential height 
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•  TPV 1 approaches and interacts with AC12 in a region of 
strong baroclinicity, likely supporting the development of 
AC12 through baroclinic processes 

 
•  TPV 2 forms at 0000 UTC 3 Aug east of TPV 1, and TPV 

3 forms at 0000 UTC 4 Aug by splitting off from TPV 1 
 
•  TPV–jet interactions involving TPV 1, TPV 2, and TPV 3 

likely contribute to the formation of a dual-jet 
configuration and jet coupling over AC12 during 1200 
UTC 3 Aug–0000 UTC 4 Aug (jet coupling phase) 

 

Synoptic Evolution 



•  Upper-level divergence associated with the jet coupling 
likely supports the intensification of AC12  

•  The interaction and merger of L1 with AC12 may further 
support the intensification of AC12 

•  Cold air advection in the wake of L1 helps maintain the 
strong baroclinicity in the vicinity of AC12, which also 
may support the intensification of AC12  

 

Synoptic Evolution 



•  Most rapid intensification of AC12 occurs during 0000 
UTC 5 Aug–0000 UTC 6 Aug, when AC12 crosses from 
the warm side to the cold side of a strong upper-level jet 
streak (jet crossing phase)  
 

•  AC12 attains peak intensity of 962.3 hPa at 1000 UTC 6 
Aug in the ERA5 and becomes vertically aligned with 
TPV 1 by 1200 UTC 6 Aug 

•  AC12 and TPV 1 then meander slowly in tandem over 
the Arctic, while AC12 slowly weakens 

 

Synoptic Evolution 
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•  At 2100 UTC 3 Aug, TPV–jet interactions involving TPV1 
and TPV 2 likely contribute to the dual-jet configuration 
and jet coupling over AC12 (jet coupling phase) 

 
•  Jet coupling likely supports relatively strong low-level 

ascent over AC12  

•  Latent heating related to the low-level ascent in the 
presence of warm, moist air likely contributes to the 
formation of a potential vorticity (PV) tower associated 
with AC12 and the concomitant intensification of AC12  

 

Cross Sections 



•  At 2100 UTC 3 Aug, the interaction between TPV 1 and 
the PV tower also likely supports the intensification of 
AC12  

 

Cross Sections 



1200 UTC 5 Aug 2012 Cross Sections: Jet Crossing 
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•  At 1200 UTC 5 Aug, latent heating likely contributes to 
the maintenance of the PV tower associated with AC12 
and the intensification of AC12 (jet crossing phase) 

•  The contribution of latent heating at 1200 UTC 5 Aug  
(jet crossing phase) likely is smaller than at 2100 UTC 3 
Aug (jet coupling phase) 

 

Cross Sections 
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•  AC12 is associated with an expansive field of relatively 
strong winds 

•  The relatively strong southerly winds to the east of the 
center of AC12 are approximately perpendicular to the 
sea-ice edge, likely helping to move and break up the 
thin sea ice 

•  AC12 meanders slowly over the Arctic, leading to a 
prolonged impact on the sea ice, as illustrated by the 
relatively large reduction in sea-ice concentration 
northeast of Siberia 

 

Impacts of AC12 on Arctic Sea Ice 



•  TPV 1 approaches and interacts with AC12 in a region of 
strong baroclinicity, likely supporting the development of 
AC12 through baroclinic processes  

•  Cold air advection in the wake of L1 helps maintain the 
strong baroclinicity in the vicinity of AC12, which also 
may support the intensification of AC12  

 
•  TPV–jet interactions involving TPV 1, TPV 2, and TPV 3 

likely contribute to the formation of a dual-jet 
configuration over AC12 during the jet coupling phase 

 

Summary 



•  Latent heating related to low-level ascent in the 
presence of warm, moist air in the region of jet coupling 
likely contributes to the formation of a PV tower 
associated with AC12 and the concomitant intensification 
of AC12  

•  The interaction between TPV 1 and the PV tower during 
jet coupling also likely supports the intensification of 
AC12  
 

•  The interaction and merger of L1 with AC12 may further 
support the intensification of AC12 

Summary 



•  Most rapid intensification of AC12 occurs when AC12 
crosses from the warm side to the cold side of a strong 
upper-level jet streak 

•  Latent heating likely contributes to the maintenance of 
the PV tower associated with AC12 and the 
intensification of AC12 during the jet crossing phase 

•  Widespread, relatively strong surface winds associated 
with AC12 contribute to a reduction in Arctic sea-ice 
extent as AC12 meanders slowly over the Arctic 

 

Summary 
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