A Case Study of Two Intense Arctic Cyclones in Early June 2018

Kevin A. Biernat, Daniel Keyser, and Lance F. Bosart

Department of Atmospheric and Environmental Sciences University at Albany, SUNY

44th Annual Northeastern Storm Conference 9 March 2019 Saratoga Springs, NY

Research Supported by ONR Grant N00014-18-1-2200

What are Arctic Cyclones?

- Arctic cyclones are synoptic-scale cyclones that may originate within the Arctic or move into the Arctic from lower latitudes (e.g., Crawford and Serreze 2016)
- Arctic cyclones may be associated with strong surface winds and poleward advection of warm, moist air, contributing to reductions in Arctic sea-ice extent (e.g., Zhang et al. 2013)
- Heavy precipitation, strong surface winds, and large waves accompanying Arctic cyclones may pose hazards to ships navigating through open passageways in the Arctic Ocean

What are Tropopause Polar Vortices (TPVs)?

 TPVs are tropopause-based vortices of high-latitude origin and are material features (e.g., Pyle et al. 2004; Cavallo and Hakim 2009, 2010)

(left) Dynamic tropopause (DT) wind speed (every 15 m s⁻¹ starting at 50 m s⁻¹, thick contours) and DT potential temperature (K, thin contours and shading) on 1.5-PVU surface valid at 0000 UTC 1 Dec 1991; (right) same as left except DT pressure (hPa, thin contours and shading). Adapted from Fig. 11 in Pyle et al. (2004).

What are Tropopause Polar Vortices (TPVs)?

• TPVs may act as precursors to the development of Arctic cyclones (e.g., Tao et al. 2017)

(left) Dynamic tropopause (DT) wind speed (every 15 m s⁻¹ starting at 50 m s⁻¹, thick contours) and DT potential temperature (K, thin contours and shading) on 1.5-PVU surface valid at 0000 UTC 1 Dec 1991; (right) same as left except DT pressure (hPa, thin contours and shading). Adapted from Fig. 11 in Pyle et al. (2004).

Case Overview

- Two sequential intense Arctic cyclones, AC1 and AC2, occurred in early June 2018
- AC1 forms northeast of the Caspian Sea within a frontal trough
- AC2 forms east of Greenland and may be linked to the remnants of Tropical Storm (TS) Alberto
- AC1 and AC2 strengthen over western Eurasia as they interact with TPVs
- AC1 and AC2 undergo a cyclonic rotation over the Arctic Ocean, during which AC2 absorbs AC1

Data and Methods

- Obtained gridded analyses from ERA-5 (Hersbach and Dee 2016) at 0.25° resolution
- Tracked cyclones manually by following locations of minimum sea level pressure (SLP)
- Identified and tracked TPVs objectively by utilizing a TPV tracking algorithm (Szapiro and Cavallo 2018)
- Computed backward trajectories by using NOAA HYSPLIT trajectory model

Track and Intensity of Cyclones

Cyclone	Genesis	Lysis	Lifetime
AC1	1 June	6 June	~5 d
AC2	2 June	13 June	~11 d

(a) 26 May–1 June 2018 time-mean 300-hPa geopotential height (dam, black) and standardized geopotential height anomalies (σ , shaded); (b) 1–7 June 2018 time-mean 850-hPa temperature (°C, black) and standardized temperature anomalies (σ , shaded).

Track and Intensity of Cyclones

Tracks of TPVs

TPV	Genesis	Lysis	Lifetime
TPV 1a	29 May	3 June	~5.4 d
TPV 1b	2 June	5 June	2.5 d
TPV 1c	5 June	7 June	~2.4 d
TPV 1d	6 June	8 June	2 d
TPV 2	30 May	4 June	~4.4 d
TPV 3	30 May	15 June	~17 d

O 0000 UTC positions

1–7 June 2018 time-mean 300-hPa geopotential height (dam, black) and standardized geopotential height anomalies (σ , shaded)

0000 UTC 30 May 2018

1200 UTC 30 May 2018

0000 UTC 31 May 2018

1200 UTC 31 May 2018

0000 UTC 1 June 2018

1200 UTC 1 June 2018

0000 UTC 2 June 2018

1200 UTC 2 June 2018

Moisture from TS Alberto

1200 UTC 31 May 2018

Moisture from TS Alberto

1200 UTC 1 June 2018

Moisture from TS Alberto

1200 UTC 2 June 2018

1200 UTC 2 June 2018

0000 UTC 3 June 2018

1200 UTC 3 June 2018

0000 UTC 4 June 2018

1200 UTC 4 June 2018

0000 UTC 5 June 2018

1200 UTC 5 June 2018

0000 UTC 6 June 2018

1200 UTC 6 June 2018

0000 UTC 7 June 2018

1200 UTC 7 June 2018

Conclusions

- AC1 forms within a cold frontal trough near the Caspian Sea
- AC2 forms in the lee of Greenland along a moisture axis accompanying the remnants of TS Alberto, which previously merged with CL

Conclusions

- Both AC1 and AC2 strengthen in a region of strong baroclinicity over western Eurasia ahead of respective high-amplitude upper-level troughs
- Upper-level forcing associated with TPVs embedded within the upper-level troughs and baroclinic processes likely foster the strengthening of AC1 and AC2
- AC2 interacts with and absorbs AC1, becoming the dominant Arctic cyclone with a peak intensity of 962 hPa (SLP standardized anomaly of < -6 σ)

Questions? *Email: kbiernat@albany.edu*

- Both AC1 and AC2 strengthen in a region of strong baroclinicity over western Eurasia ahead of respective high-amplitude upper-level troughs
- Upper-level forcing associated with TPVs embedded within the upper-level troughs and baroclinic processes likely foster the strengthening of AC1 and AC2
- AC2 interacts with and absorbs AC1, becoming the dominant Arctic cyclone with a peak intensity of 962 hPa (SLP standardized anomaly of < -6 σ)