An Examination of Low-Skill Arctic Cyclones During Summer

Kevin Biernat, Lance Bosart, and Dan Keyser
Department of Atmospheric and Environmental Sciences
University at Albany, State University of New York

Friday 26 February 2021
ONR Arctic Cyclone DRI Meeting

Research Supported by ONR Grant N00014-18-1-2200
Overview

- Identify periods of low and high forecast skill of the synoptic-scale flow over the Arctic and low-skill Arctic cyclones (ACs) occurring during these periods.

- Examine dynamical and thermodynamic quantities characterizing the Arctic environment and low-skill ACs during low-skill and high-skill periods.

- Conduct AC-centered composite analyses of intense low-skill ACs during low-skill periods to identify features and processes governing the evolution of these ACs.
Arctic forecast skill evaluation

• Utilize day-5 forecasts of 500-hPa geopotential height initialized at 0000 UTC during summers (June, July, and August) of 2007–2017 from 11-member 1° GEFS reforecast dataset v2 (Hamill et al. 2013).

• Calculate area-averaged root mean square error (RMSE) of 500-hPa geopotential height over the Arctic, using ERA-Interim as verification.

• Calculated standardized anomaly of area-averaged RMSE (σ_{RMSE}).
Arctic forecast skill evaluation

- Refer to forecast days valid at day 5 associated with the top and bottom 10% of σ_{RMSE} as **low-skill days and high-skill days**, respectively.

- Refer to forecasts initialized 5 days prior to low-skill days and high-skill days as **low-skill forecasts and high-skill forecasts**, respectively.

- Refer to time periods through day 5 encompassed by low-skill forecasts and high-skill forecasts as **low-skill periods and high-skill periods**, respectively.
Quantities characterizing the Arctic environment

(a) Abs. value of stnd. anom. of 500-hPa v wind (σ)

(b) 850–600-hPa Eady growth rate (day⁻¹)

(c) Integrated vapor transport (IVT) (kg m⁻¹ s⁻¹)

(d) Negative 800–600-hPa ω (10⁻³ hPa s⁻¹)

(e) 350–250-hPa divergence (10⁻⁶ s⁻¹)

Legend

Distribution of quantities area-averaged over the Arctic (≥ 70°N)

- Low-skill mean
- High-skill mean
- Statistically significant difference with respect to climo at 95% confidence level
- 2007–2017 climo mean

Shading: Interquartile range

Data: 1° ERA-Interim
Identification of low-skill ACs

- Create a 2007–2017 summer (June, July, and August) AC climatology by obtaining cyclone tracks from 1° ERA-Interim cyclone climatology prepared by Sprenger et al. (2017).

- Deem cyclones that last ≥ 48 h and spend at least some portion of their lifetimes in the Arctic (> 70°N) as ACs.
Identification of low-skill ACs

• Track ACs in forecasts from GEFS reforecast dataset v2 by utilizing an objective sea level pressure (SLP)-based tracking algorithm (Crawford et al. 2020).

• Consider forecasts initialized 120 h prior to the time of lowest SLP of the ACs when located in the Arctic during low-skill and high-skill periods.

• Calculate 120-h intensity RMSE based on minimum SLP of the ACs at the aforementioned time of lowest SLP, using ERA-Interim as verification.

• Refer to ACs associated with the top 25% of 120-h intensity RMSE for low-skill and high-skill periods as low-skill ACs for these respective periods.
Identification of low-skill ACs

120-h Intensity RMSE (hPa)

Legend

Red: Low-skill ACs during low-skill periods (N = 58)

Blue: Low-skill ACs during high-skill periods (N = 39)

○ mean
★ min and max
Quantities characterizing low-skill ACs

(a) Min SLP (hPa)
(b) Area-average abs. value of std. anom. of 500-hPa v wind (σ)
(c) Area-average 850–600-hPa Eady growth rate (day⁻¹)
(d) Area-average IVT (kg m⁻¹ s⁻¹)
(e) Area-average negative 800–600-hPa ω (10⁻³ hPa s⁻¹)
(f) Area-average 350–250-hPa divergence (10⁻⁶ s⁻¹)

Legend

Distribution of most extreme value of quantities characterizing ACs when the ACs are located in the Arctic for the following categories:

Gray: All ACs in 2007–2017 climatology (N = 730)
Red: Low-skill ACs during low-skill periods (N = 58)
Blue: Low-skill ACs during high-skill periods (N = 39)

Statistically significant difference with respect to climatology at 95% confidence level

Area-averaged quantities are calculated within 1000 km of AC center

Data: 1° ERA-Interim
AC-centered composites

- Composite top 25% strongest low-skill ACs during low-skill periods \((N = 14)\) at various lag times relative to the time of lowest SLP of the ACs when located in the Arctic using ERA5 \((0.25^\circ \times 0.25^\circ)\).
AC-centered composites

• Composite top 25% strongest low-skill ACs during low-skill periods ($N = 14$) at various lag times relative to the time of lowest SLP of the ACs when located in the Arctic using ERA5 ($0.25^\circ \times 0.25^\circ$).

• For each lag time:

 – Determine mean latitude and longitude of ACs.
AC-centered composites

- Composite top 25% strongest low-skill ACs during low-skill periods \((N = 14)\) at various lag times relative to the time of lowest SLP of the ACs when located in the Arctic using ERA5 \((0.25^\circ \times 0.25^\circ)\).

- For each lag time:
 - Determine mean latitude and longitude of ACs.
 - Rotate and project ERA5 grids to a 25×25 km EASE2 equal area grid such that the AC center lies on y-axis \((0^\circ\) longitude) of the EASE2 grid.

EASE2 Grid
AC-centered composites

- Composite top 25% strongest low-skill ACs during low-skill periods ($N = 14$) at various lag times relative to the time of lowest SLP of the ACs when located in the Arctic using ERA5 (0.25°×0.25°).

- For each lag time:
 - Determine mean latitude and longitude of ACs.
 - Rotate and project ERA5 grids to a 25×25 km EASE2 equal area grid such that the AC center lies on y-axis (0° longitude) of the EASE2 grid.

SLP (black) on 25x25 km EASE2 grid (grid points in red) valid 1200 UTC 6 Aug 2012
AC-centered composites

- Composite top 25% strongest low-skill ACs during low-skill periods \((N = 14)\) at various lag times relative to the time of lowest SLP of the ACs when located in the Arctic using ERA5 \((0.25° \times 0.25°)\).

- For each lag time:
 - Determine mean latitude and longitude of ACs.
 - Rotate and project ERA5 grids to a 25×25 km EASE2 equal area grid such that the AC center lies on y-axis (0° longitude) of the EASE2 grid.
 - Shift projected grids to mean latitude of ACs.

SLP (black) on 25x25 km EASE2 grid (grid points in red) valid 1200 UTC 6 Aug 2012
AC-centered composites

Grid before shifting to mean latitude

Grid after shifting to mean latitude
AC-centered composites

- Composite top 25% strongest low-skill ACs during low-skill periods ($N = 14$) at various lag times relative to the time of lowest SLP of the ACs when located in the Arctic using ERA5 (0.25°×0.25°).

- For each lag time:
 - Determine mean latitude and longitude of ACs.
 - Rotate and project ERA5 grids to a 25×25 km EASE2 equal area grid such that the AC center lies on y-axis (0° longitude) of the EASE2 grid.
 - Shift projected grids to mean latitude of ACs.
 - Rotate shifted grids to mean longitude of ACs.
AC-centered composites

Red lines show tracks of ACs during lag –48 h to lag 36 h, when valid.

Time series of minimum SLP (hPa) of ACs (red) and of mean minimum SLP (hPa) of ACs (black) during lag –48 h to lag 36 h, when valid.
(a) Lag = −48 h (N = 13)
(b) Lag = −36 h (N = 13)
(c) Lag = −24 h (N = 14)
(d) Lag = −12 h (N = 14)
(e) Lag = 0 h (N = 14)
(f) Lag = 12 h (N = 13)
(g) Lag = 24 h (N = 13)
(h) Lag = 36 h (N = 12)

18 21 24 27 30 33 36 39

300-hPa wind speed (m s\(^{-1}\))

Mean AC location

300-hPa wind speed (m s\(^{-1}\))

SLP (hPa)

1000–500-hPa thickness (dam)

Mean AC location
Lag = -48 h (N = 13)

Lag = -36 h (N = 13)

Lag = -24 h (N = 14)

Lag = -12 h (N = 14)

Lag = 0 h (N = 14)

Lag = 12 h (N = 13)

Lag = 24 h (N = 13)

Lag = 36 h (N = 12)

Mean AC location

200-km area-averaged 500-hPa relative vorticity (10^{-5} s$^{-1}$)

500-hPa geopotential height (dam)

500-hPa wind (m s$^{-1}$)
(a) Lag = -48 h (N = 13)
(b) Lag = -36 h (N = 13)
(c) Lag = -24 h (N = 14)
(d) Lag = -12 h (N = 14)
(e) Lag = 0 h (N = 14)
(f) Lag = 12 h (N = 13)
(g) Lag = 24 h (N = 13)
(h) Lag = 36 h (N = 12)

Mean AC location

700-hPa geopotential height (dam)

Integrated vapor transport (IVT) (kg m$^{-1}$ s$^{-1}$)

- 100
- 125
- 150
- 175
- 200
- 250
- 300
- 350
- 400
- 450
- 500

IVT (kg m$^{-1}$ s$^{-1}$)

700-hPa geopotential height (dam)

Mean AC location
(a) Lag = -48 h (N = 13)
(b) Lag = -36 h (N = 13)
(c) Lag = -24 h (N = 14)
(d) Lag = -12 h (N = 14)
(e) Lag = 0 h (N = 14)
(f) Lag = 12 h (N = 13)
(g) Lag = 24 h (N = 13)
(h) Lag = 36 h (N = 12)

200-km area-averaged 350–250-hPa divergence (10^{-6} \text{s}^{-1})

Mean AC location

Negative values of 800–600-hPa \(\omega \) (every 1 \times 10^{-3} \text{ hPa s}^{-1})

350–250-hPa irrotational wind (m s^{-1})

350–250-hPa PV (PVU)
(a) Lag = -48 h ($N = 13$)
(b) Lag = -36 h ($N = 13$)
(c) Lag = -24 h ($N = 14$)
(d) Lag = -12 h ($N = 14$)
(e) Lag = 0 h ($N = 14$)
(f) Lag = 12 h ($N = 13$)
(g) Lag = 24 h ($N = 13$)
(h) Lag = 36 h ($N = 12$)

Mean AC location

850–600-hPa Eady growth rate (day$^{-1}$)
Summary

- The Arctic environment tends to be characterized by more amplified synoptic-scale flow, greater baroclinic growth, and potentially greater latent heating during low-skill periods compared to high-skill periods.

- Low-skill ACs tend to be stronger and embedded in a region of more amplified synoptic-scale flow, greater baroclinic growth, and potentially greater latent heating during low-skill periods compared to high-skill periods.

- Intense low-skill ACs during low-skill periods intensify downstream of a mid-to-upper-tropospheric vortex in a region of relatively strong lower-to-midtropospheric baroclinicity, lower-to-midtropospheric ascent, tropospheric-integrated vapor transport, and upper-tropospheric divergence.

- A combination of baroclinic processes and latent heating likely play important roles in the intensification of intense-low-skill ACs during low-skill periods.