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Overview 

•  Identify periods of low and high forecast skill of the synoptic-scale flow over the 
Arctic and low-skill Arctic cyclones (ACs) occurring during these periods. 

•  Examine dynamical and thermodynamic quantities characterizing the Arctic 
environment and low-skill ACs during low-skill and high-skill periods. 

•  Conduct AC-centered composite analyses of intense low-skill ACs during low-skill 
periods to identify features and processes governing the evolution of these ACs.  

 
 
 



Arctic forecast skill evaluation 

•  Utilize day-5 forecasts of 500-hPa geopotential height initialized at 0000 UTC 
during June, July, and August of 2007–2017 from 11-member 1° GEFS reforecast 
dataset v2 (Hamill et al. 2013). 

•  Calculate area-averaged root mean square error (RMSE) of 500-hPa 
geopotential height over the Arctic, using ERA-Interim as verification. 

  
•  Calculated standardized anomaly of area-averaged RMSE (σRMSE). 

 
 
 



Arctic forecast skill evaluation 

•  Refer to forecast days valid at day 5 associated with the top and bottom 10% 
of σRMSE as low-skill days and high-skill days, respectively. 

•  Refer to forecasts initialized 5 days prior to low-skill days and high-skill days as 
low-skill forecasts and high-skill forecasts, respectively. 

•  Refer to time periods through day 5 encompassed by low-skill forecasts and high-
skill forecasts as low-skill periods and high-skill periods, respectively. 

 
 
 



Quantities characterizing the Arctic environment 
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Identification of low-skill ACs 

•  Create a climatology of ACs occuring during June, July, and August of 2007–2017 
by obtaining cyclone tracks from 1° ERA-Interim cyclone climatology prepared by 
Sprenger et al. (2017). 

•  Deem cyclones that last ≥ 48 h and spend at least some portion of their lifetimes 
in the Arctic (> 70°N) as ACs. 

 

 
 
 



Identification of low-skill ACs 

•  Track ACs in forecasts from GEFS reforecast dataset v2 by utilizing an objective 
sea level pressure (SLP)-based tracking algorithm (Crawford et al. 2020). 

•  Consider forecasts initialized 120 h prior to the time of lowest SLP of the ACs 
when located in the Arctic during low-skill and high-skill periods. 

•  Calculate 120-h intensity RMSE based on minimum SLP of the ACs at the 
aforementioned time of lowest SLP, using ERA-Interim as verification.  

•  Refer to ACs associated with the top 25% of 120-h intensity RMSE for low-skill 
and high-skill periods as low-skill ACs for these respective periods. 

 

 
 
 



Identification of low-skill ACs 



Quantities characterizing low-skill ACs 
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AC-centered composites 

•  Composite top 25% strongest low-skill ACs during low-skill periods (N = 14) at 
various lag times relative to the time of lowest SLP of the ACs when located in the 
Arctic using ERA5 (0.25°×0.25°). 
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•  For each lag time: 

–  Determine mean latitude and longitude of ACs. 
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AC-centered composites 

•  Composite top 25% strongest low-skill ACs during low-skill periods (N = 14) at 
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AC-centered composites 
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AC-centered composites 

•  Composite top 25% strongest low-skill ACs during low-skill periods (N = 14) at 
various lag times relative to the time of lowest SLP of the ACs when located in the 
Arctic using ERA5 (0.25°×0.25°). 

 
•  For each lag time: 

–  Determine mean latitude and longitude of ACs. 

–  Rotate and project ERA5 grids to a 25×25 km                                                  
Equal-Area Scalable Earth 2.0 (EASE2)                                                             
grid such that the AC center lies on                                                                  
y-axis (0° longitude) of the EASE2 grid. 

–  Shift projected grids to mean latitude of ACs. 
 
–  Rotate shifted grids to mean longitude of ACs. 

 
 
 



AC location at lag 0 h (time of lowest SLP of AC in Arctic) 

Red lines show tracks of ACs during lag –48 h to lag 36 h,  
when valid. 
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Summary 

•  The Arctic environment tends to be characterized by more amplified synoptic-
scale flow, greater baroclinic growth, and potentially greater latent heating during 
low-skill periods compared to high-skill periods. 

•  Low-skill ACs tend to be stronger and embedded in a region of more amplified 
synoptic-scale flow, greater baroclinic growth, and potentially greater latent 
heating during low-skill periods compared to high-skill periods. 

•  Intense low-skill ACs during low-skill periods intensify downstream of a mid-to-
upper-tropospheric vortex in a region of relatively strong lower-to-midtropospheric 
baroclinicity, lower-to-midtropospheric ascent, tropospheric-integrated vapor 
transport, and upper-tropospheric divergence.  

•  A combination of baroclinic processes and latent heating likely play important 
roles in the intensification of intense-low-skill ACs during low-skill periods. 

 
 
 


