Linkages Between Tropopause Polar Vortices and Cold Air Outbreaks

Kevin Biernat Friday Map Discussion (3 March 2017)

What are Tropopause Polar Vortices (TPVs)?

 TPVs are defined as tropopause-based vortices of highlatitude origin and are material features (Pyle et al. 2004; Cavallo and Hakim 2009, 2010)

(left) Dynamic tropopause (DT) wind speed (every 15 m s⁻¹ starting at 50 m s⁻¹, thick contours) and DT potential temperature (K, thin contours and shading) on 1.5-PVU surface valid 0000 UTC 1 Dec 1991; (right) same as left except DT pressure (hPa, thin contours and shading). Adapted from Fig. 11 in Pyle et al. (2004).

TPVs in Relation to the "Polar Vortex" Waugh et al. (2017)

TPVs in Relation to the "Polar Vortex" Waugh et al. (2017)

Example: 9–12 Jan 1982 CAO 0000 UTC 8 Jan 1982

Data Source: ERA-Interim

Potential temperature (K, shaded), wind speed (black, every 10 m s⁻¹ starting at 50 m s⁻¹), and wind (m s⁻¹, flags and barbs) on 2-PVU surface

Example: 9–12 Jan 1982 CAO 0000 UTC 9 Jan 1982

Data Source: ERA-Interim

Potential temperature (K, shaded), wind speed (black, every 10 m s⁻¹ starting at 50 m s⁻¹), and wind (m s⁻¹, flags and barbs) on 2-PVU surface

Example: 9–12 Jan 1982 CAO 0000 UTC 10 Jan 1982

Data Source: ERA-Interim

(black, every 10 m s⁻¹ starting at 50 m s⁻¹), and wind (m s⁻¹, flags and barbs) on 2-PVU surface

Example: 9–12 Jan 1982 CAO 0000 UTC 11 Jan 1982

Data Source: ERA-Interim

(black, every 10 m s⁻¹ starting at 50 m s⁻¹), and wind (m s⁻¹, flags and barbs) on 2-PVU surface

TPV and Cold Pool Tracking

- Data:
 - 0.5° ERA-Interim (Dee et al. 2011)
 - 1979-2015, every 6 h
- Utilized TPV tracking algorithm developed by Nicholas Szapiro and Steven Cavallo to identify and track TPVs
 - Track dynamic tropopause potential temperature minima
- Adapted TPV tracking algorithm to track cold pools
 - Track 1000–500-hPa thickness minima

Link for Tracking Algorithm: <u>https://github.com/nickszap/tpvTrack</u>

Filtering TPV and Cold Pool Tracks

- TPVs and cold pools must last at least 2 days and spend at least 6 h poleward of 60°N (adapted from criteria of Cavallo and Hakim 2010)
- Focus on TPVs and cold pools transported from high latitudes into middle latitudes
 - Require that TPVs and cold pools in high latitudes move equatorward of 60°N

TPV and Cold Pool Track Density

TPVs (N = 25,085)

Total number of unique TPVs (left) and cold pools (right) within 500 km of each grid point (using a 0.5° grid) for TPVs and cold pools that move equatorward of 60°N during 1979–2015

CAOs Linked to Cold Pools Associated with TPVs

least one cold pool associated with a TPV [(purple/blue) × 100]