The Influence of Boundary Layer Mixing on the 26–28 January 2015 “Twitter” Snowstorm

Matthew Vaughan and Robert Fovell
18th Cyclone Workshop
5 October 2017
Motivating Question

• How do physics parameterizations affect extratropical cyclone (ET) development and evolution?
Motivating Question

• How do physics parameterizations affect ET development and evolution?
Motivating Question (more focused)

- How does boundary layer mixing strength effect ET development and evolution within WRF
Background

• How can the boundary layer affect ET development and evolution?
Background

• How can the boundary layer affect ET development and evolution?
 – Adamson et al. (2005) highlighted PV generation (dry) through Ekman pumping and baroclinic processes
Background

• How can the boundary layer affect ET development and evolution?
 – Adamson et al. (2005) highlighted PV generation (dry) through Ekman pumping and baroclinic processes
 – Stoelinga (1996) found PV generated from latent heating was crucial to cyclone evolution
 • ~70% of the low-level nondivergent circulation
 • PBL can influence thermal and moisture profiles
Background

- Beare (2007) found Ekman pumping, forced mostly by the cold conveyor-belt, important to cyclone evolution.

PBL Mixing Sensitivity
- Turning off PBL mixing in the unstable cold-sector boundary layer increased deepening by 22.5 hPa
- Turning off all mixing produced ~25hPa of deepening

Figure 10. Time series of (a) the minimum mean-sea-level pressure over the cyclone for the coarse sensitivity experiment. (Beare 2007)
Background

• Motivated by these results, we use WRF to assess the impact of PBL mixing on extratropical cyclones.
PBL Processes in WRF

• Turbulent PBL processes are too small to resolve for km-scale models
 – Subgrid scale processes must be parameterized

• Goal is to describe the mean turbulent vertical transport of heat, momentum and moisture by eddies
 – One common approach is through a nonlocal (e.g., YSU), K-profile scheme
All about the eddies

- How do you obtain an eddy diffusivity (K) profile?
 - Develop it (MYJ)
 - Enforce it (YSU)

\[-(w' \phi') = K \frac{\partial \phi}{\partial z}, \]

Coniglio et al. (2013)

Fig. 1. Typical variation of eddy viscosity \(K \) with height in the boundary layer proposed by O’Brien (1970). Adopted from Stull (1988).

Hong and Pan (1996)
YSU Scheme

- YSU scheme estimates PBL height and imposes K-profile shape function
 - PBL height \(h \) is where the bulk Richardson number equals the critical Richardson number (BCR)

\[
K_{zm} = \kappa w_s z \left(1 - \frac{z}{h}\right)^2
\]

\[
\text{Rib}(z) = \frac{g[\theta_v(z) - \theta_s]z}{\theta_{ua} U(z)^2}
\]

Hong (2006)
YSU Scheme

- YSU scheme estimates PBL height and imposes K-profile shape function

\[K_{zm} = \kappa w_s z (1 - \frac{z}{h})^2 \]

\[\text{Rib}(z) = \frac{g[\theta_v(z) - \theta_s]z}{\theta_{va} U(z)^2} \]

- Critical Richardson number varies with version (~0.75–0.0).
- Appropriate surface potential temp
- Potential temp at lowest model level

Hong (2006)
YSU Scheme

• Iterative process to find PBL height

Fig. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O’Brien (1970). Adopted from Stull (1988).

Hong and Pan (1996)
YSU Scheme

- Iterative process to find PBL height
- Find where bulk Ri is less than critical Ri

Fig. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O’Brien (1970). Adopted from Stull (1988).

Hong and Pan (1996)
YSU Scheme

- Iterative process to find PBL height
- Find where bulk \(Ri \) is less than critical \(Ri \)

Hong and Pan (1996)

Fig. 1. Typical variation of eddy viscosity \(K \) with height in the boundary layer proposed by O’Brien (1970). Adopted from Stull (1988).
YSU Scheme

- Iterative process to find PBL height
- Find where bulk Ri is less than critical Ri
YSU Scheme

- Iterative process to find PBL height
- Find where bulk Ri is less than critical Ri

Fig. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O’Brien (1970). Adopted from Stull (1988).

Hong and Pan (1996)
YSU Scheme

- Iterative process to find PBL height

- Find where bulk Ri is less than critical Ri

Fig. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O’Brien (1970). Adopted from Stull (1988).

Hong and Pan (1996)
YSU Scheme

- Iterative process to find PBL height

\[\text{Ri} = \text{Ri}_c \]

- Once PBL height is found...

Fig. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O’Brien (1970). Adopted from Stull (1988).

Hong and Pan (1996)
YSU Scheme

• Prescribe mixing profile

Fig. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O’Brien (1970). Adopted from Stull (1988).

Hong and Pan (1996)
Project Question

• What significance does critical bulk Richardson number have on winter cyclones?
EVENT HISTORY & EXPERIMENTAL DESIGN
26–28 January Snowstorm

- Coastal extratropical cyclone impacting New England and parts of the Mid-Atlantic

“My deepest apologies to many key decision makers and so many members of the general public,” said Gary Szatkowski, meteorologist-in-charge at the National Weather Service in Mount Holly (NJ.com)
26–28 January Snowstorm

- Crippling snowfall over much of the Northeast. Sharp gradient on Long Island
26–28 January Snowstorm

- Substantial spread within the models
Experimental Design

• Vary the critical bulk Richardson number in a WRF simulation of the 27 January 2015 snowstorm
 – 0000 UTC 26 to 0000 UTC 29 January 2015

• Recall iterative process used by YSU scheme
 – Altering critical Richardson number effectively changes the strength and depth of PBL mixing
Experimental Design

- Initial and boundary conditions: ERA-I
- **Triple Nest**
 - 4-km inner domain,
- Similar physics to RAP
 - Benjamin et al. (2016)
- Use YSU PBL scheme
- Set critical Richardson number to 0.0 or 0.25
Experimental Design

- Initial and boundary conditions: ERA-I
- Triple Nest
 - 4-km inner domain,
- Similar physics to RAP
 - Benjamin et al. (2016)
- Use YSU PBL scheme
- Set critical Richardson number to 0.0 or 0.25

Radius vs. height cross-sections showing the temporally-averaged symmetric components of water vapor (shaded) and eddy diffusivity applied to vapor (K_h; 10 m2 s$^{-1}$ contours) using YSU with (a) Ribcr=0.25, and (b) the default setup. (Bu et al. 2017)
Vertical Profiles in the Warm Sector

- Results for eddy diffusivity, wind speed, and mixing ratio all are consistent with prior PBL studies.
Vertical Profiles in the Warm Sector

- Results for eddy diffusivity, wind speed, and mixing ratio all are consistent with prior PBL studies.
MSLP
Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0000 UTC
27 January
MSLP Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0600 UTC 27 January
MSLP Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

1200 UTC 27 January
MSLP Difference (fill; less mixing—more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)
MSLP Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0000 UTC 28 January
MSLP Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0600 UTC 28 January
Remarks

• Less mixing storm has generally higher precipitation totals and lags behind more mixing case
 – What does the mixing do to the lower-tropospheric PV field?
950–700-hPa PV Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0000 UTC 27 January
950–700-hPa PV Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0600 UTC 27 January
950–700-hPa PV Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

1200 UTC 27 January
950–700-hPa PV Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

1800 UTC 27 January
950–700-hPa PV Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0000 UTC 28 January
950–700-hPa PV Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0600 UTC 28 January
Remarks

• Less mixing storm has higher low-level PV to the north and west
 – Likely influences low-level circulation
 – What may cause the additional PV?
925–800-hPa Theta-e Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0000 UTC
27 January
925–800-hPa Theta-e Difference
(fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0600 UTC 27 January
925–800-hPa Theta-e Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

1200 UTC 27 January
925–800-hPa Theta-e Difference
(fill; less mixing–more mixing) and MSLP
(contoured; Magenta = less mixing, Black = more mixing)

1800 UTC
27 January
925–800-hPa Theta-e Difference (fill; less mixing–more mixing) and MSLP (contoured; Magenta = less mixing, Black = more mixing)

0000 UTC 28 January
RECAP
Total Snowfall Difference (less mixing–more mixing) and MSLP (Magenta contours = less mixing) at 0600 UTC 28 January 2015

Cyclone with less mixing is less progressive
925–800-hPa Theta-e Difference (Fill, PVU, less mixing–more mixing) and MSLP (Red contours = less mixing) at 1800 UTC 27 January 2015

Cyclone with less mixing exhibits higher low-level PV
950–700-hPa PV Difference (Fill, PVU, less mixing–more mixing) and MSLP (Red contours = less mixing) at 1800 UTC 27 January 2015

Cyclone with less mixing exhibits higher theta-e
Concluding Remarks

– Less mixing leads to more precipitation and a less progressive storm

– Stronger PV evident on the north and west side of the cyclone in the less-mixing case

– Preservation of PBL theta-e within the less-mixing case may lead to more PV generation upon release of instability.

– Storm may be less progressive due to influence of PV on storm low-level circulation (Stoelinga 1996) and/or enhanced divergent outflow via latent heating
Future Work

– Trajectory analysis and PV inversion (Stoelinga 1996)

– Test additional cases (varying PWAT)

Swing by the poster: *The Influence of Boundary Layer Mixing on the 27–28 January 2015 “Twitter” Snowstorm: Sensitivity Experiments*

I was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Extra Slides

950–700-hPa PV (00Z 28 Jan)

300–200-hPa PV (00Z 28 Jan)
Poor Man’s Warm Sector

– Used layer-averaged 950–800-hPa theta to compute anomalies for each time-step within the domain
– Used positive anomalies for designating the warm sector
NOLH & Control

950–700-hPa PV (00Z 28 Jan)