Background

- The radial distribution of lightning in tropical cyclones (TCs) is often characterized by the following (Molinari et al. 1999):
 1. A weak maximum in the eyewall region (<100 km)
 2. A minimum extending 100 km beyond the eyewall (moat)
 3. A strong maximum in the outer rainbands (~210-290 km)

- The azimuthal distribution of lightning in TCs depends strongly on the deep-layer vertical wind shear (Corbino and Molinari 2002, 2003), to where environments with shear exceeding 5 m s\(^{-1}\) are characterized by the following:
 1. In the inner core (<100 km), lightning peaks downshear left
 2. In the outer rainbands, lightning peaks downshear right

- Recent studies have found differing results on the link between lightning activity and intensity trends in TCs:
 - Increased lightning activity precedes intensification (Price et al. 2009; Pan et al. 2010, 2014)
 - Increased lightning activity precedes weakening (DeMaria et al. 2012; Thomas et al. 2010)

WWLLN

- The World Wide Lightning Location Network detects the very low frequency (VLF) wave bands of lightning strikes via Earth-ionosphere waveguide propagation, allowing detection several thousand of kilometers away

- WWLLN consists of over 70 sensors spread out around the globe:

- Global lightning detection efficiency is thought to be around 10% (Abarca et al. 2010), with detection efficiency highest over the oceans (Rudlosky and Shea 2013)

- Abarca et al. (2011) showed WWLLN captures the spatial structure of lightning in TCs despite the low detection efficiency

Intensity Changes

Inner Core (IC) Lightning

- Larger flash densities in weakening TCs vs. intensifying TCs in TDDS and HH12
- The IC lightning and intensity change relationship may be controlled by the location relative to the radius of maximum wind (RMW):
 - Inside the RMW → intensification by warming the core
 - Outside the RMW → weakening by compensating subsidence over the core & broader heating profile

Outer Rainband (OR) Lightning

- Flash densities in the OR are much less than in the IC
- Larger flash densities in intensifying TCs vs. weakening TCs in TDDS (East Pacific) and HH12
- Hypotheses suggest strong convection in OR could weaken (or intensify) TCs

References

This research was conducted under NASA Award NNH12AJ81G.

For more information on the case study of the lightning in Hurricane Earl (2010), please see our journal article: