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ABSTRACT

The newly developed eXpendable Digital Dropsondes (XDDs) allow for high spatial and temporal resolu-
tion observations of the kinematic and thermodynamic structures in tropical cyclones (TCs). It is important
to evaluate both the temporal and spatial autocorrelations within the recorded data to address concerns about
spatial interpolation, statistical significance of individual data points, and launch rate spatial requirements for
future dropsonde studies in TCs. Data from 437 XDDs launched into hurricanes Marty (27–28 September),
Joaquin (2–5 October), and Patricia (20–23 October) during the 2015 Tropical Cyclone Intensity (TCI) exper-
iment are used to compute temporal and spatial autocorrelations for vertical velocity, temperature, horizontal
wind speed, and equivalent potential temperature. All of the examined variables had temporal autocorrelation
scales between approximately 10 and 40 s, with most between 20 and 30 s. Most of the spatial autocorrela-
tion scales were estimated to be 3–10 km. The temporal autocorrelation scales for vertical velocity, horizontal
wind speed, and equivalent potential temperature were correlated with updraft depth. Vertical velocity usually
had the smallest mean, and median, temporal and estimated spatial autocorrelation scales of approximately
20 s and 3–6 km, respectively. The estimated horizontal scales are below the median sounding spacing, and
suggest that an increase in the launch rate of the XDDs by a factor of three to four from the TCI sampling rate
is needed to adequately depict TC kinematics and structure in transects of soundings. The results also indicate
that current temporal sampling rates are adequate to depict TC kinematics and structure in a single sounding.

1. Introduction

The Office of Naval Research conducted the Tropical
Cyclone Intensity (TCI) experiment in 2015 (Doyle et al.
2017). Three of the tropical cyclones (TCs) that were sam-
pled during TCI are Marty (27–28 September), Joaquin
(2–5 October), and Patricia (20–23 October). A total
of 725 Global Positioning System (GPS) dropwindson-
des (hereafter, referred to as “dropsondes”) were launched
into these three TCs. The dropsondes used were the eX-
pendable Digital Dropsondes (XDDs) manufactured by
Yankee Environmental Systems, deployed using the High-
Definition Sounding System (HDSS) onboard a National
Aeronautics and Space Administration (NASA) WB-57
aircraft. The HDSS can launch one dropsonde every 10
s (Black et al. 2017), but during the 2015 TCI experiment,
the quickest launch rate was 20 s at 4-km horizontal spac-
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ing (Doyle et al. 2017). The XDDs recorded atmospheric
pressure (p), temperature (T ), and relative humidity (RH)
at 2 Hz, and dropsonde horizontal motion components and
GPS fall speed at a rate of 4 Hz (Black et al. 2017). The
zonal (u) and meridional (v) wind components were com-
puted directly from the dropsonde horizontal motion com-
ponents. Vertical velocity (w) can be computed from the
GPS fall speed or a calculated differential pressure fall
speed (Nelson et al. 2019).

The HDSS and its capability to launch a large num-
ber of XDDs in quick succession provided unprecedented,
high temporal and spatial resolution dropsonde observa-
tions during TCI. Due to the high sampling rate of the
XDDs, it is possible that successive data points in a sound-
ing, or data points from adjacent soundings, were ap-
preciably correlated (i.e., correlation values greater than
0.5; Brooks and Carruthers 1978), and likely represented
the same atmospheric phenomena, such as an updraft or
small-scale vorticity maximum. To the best of the authors’
knowledge, no study has considered the temporal and spa-
tial autocorrelations (Brett and Tuller 1991; Griffith 2003;
Khalili et al. 2007) of dropsondes in TCs. Only one study,
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Black et al. (1996), has directly examined the spatial auto-
correlations of radar data in TCs. Analysis of the temporal
and spatial autocorrelations of the TCI soundings are im-
portant to: 1) aid targeted dropsonde or dropsonde deni-
ability studies (studies examining the impact of removing
observational data to be assimilated into a model; e.g., Mu
et al. (2009), Torn and Hakim (2009), Wu et al. (2009),
and Romine et al. (2016)); 2) evaluate what coherent fea-
tures are resolvable by the dropsondes; 3) perform accu-
rate spatial interpolation of any recorded variable; and, 4)
provide guidance as to what horizontal spacing is required
to resolve various aspects of TC structure within transects
of soundings.

The autocorrelations of data from nearby soundings is
important in TC track and intensity modeling studies, and
is especially important for studies examining the impact of
targeted dropsonde observations and dropsonde data deni-
ability (Langland 2005; Mu et al. 2009; Torn and Hakim
2009; Wu et al. 2009; Irvine et al. 2011; Romine et al.
2016), the crux of which is to examine the influence of
data from a dropsonde, or set of dropsondes, at a spe-
cific location to the model forecast. The current approach
for targeted dropsonde studies is to launch 10–50 drop-
sondes, with high-quality observations, intermittently in a
predetermined sensitive area and assimilate the data into
the model to improve the forecast (e.g., Langland 2005;
Romine et al. 2016). Sensitive areas are determined by
examining the effect of perturbing the initial conditions
in a model, or by examining total energy singular vec-
tors or ensemble transforms (Langland 2005; Mu et al.
2009). The goal is to assimilate numerous observations
with small individual influence rather than one or two
highly influential observations (Langland 2005). Increas-
ing the number of observations and the observational hor-
izontal resolution improves model forecasts if the obser-
vational errors are uncorrelated (Liu and Rabier 2003). If
the observational errors are correlated, then increasing the
number of observations beyond a set threshold does not
improve the forecast (Liu and Rabier 2003).

Other studies have found that the resolution of the
model and the correlation scale of the background model
errors are important to determine the observational spac-
ing required for targeted studies (e.g., Leutbecher et al.
2002; Liu and Rabier 2002, 2003; Aberson 2008; Torn and
Hakim 2009). Leutbecher et al. (2002) state that sound-
ings assimilated into models should be spaced one to two
times the horizontal correlation length scale of the back-
ground model error. The length scale of the background
model error varies from approximately 90 to 350 km de-
pending on the model, resolution of the model, and the
variable considered (Andersson et al. 1993; Irvine et al.
2011; Rizvi et al. 2012; Wang et al. 2014). Liu and Rabier
(2002) found that the optimal observation spacing is ap-
proximately equal to the product of the analysis mesh size

and the ratio of the number of grid points to the number of
observations.

Knowledge of the temporal and spatial autocorrelations
of dropsondes is also required in order to accurately de-
pict TC structure from transects of dropsondes or aircraft.
Some studies indicate that to resolve features on the scale
of the radius of maximum wind (RMW), grid spacing of
approximately 14 km or less is required (Gentry and Lack-
mann 2010). The results of Gentry and Lackmann (2010),
however, show that increased model resolution down to 2-
km grid spacing or less is required to understand TC eye-
wall kinematics and physics. These results suggest that
observations should also be taken at high resolution. The
likelihood of highly correlated data points increases, how-
ever, with the increase in horizontal or vertical resolution
and should approach unity (Brett and Tuller 1991; Khalili
et al. 2007). Conversely, if dropsondes are launched too
far apart, the thermodynamic and kinematic structure of a
TC will not be well resolved or represented. Similarly, if
data in a single sounding is recorded at low frequency, the
thermodynamic and kinematic structure of a TC will not
be well resolved or represented.

Examination of the temporal and spatial autocorrela-
tions in the XDDs is critical to accurately perform any
objective spatial interpolation. One interpolation scheme,
called kriging, is a geostatistical interpolation method that
uses covariance information to interpolate data fields (e.g.,
Biau et al. 1999). If adjacent data points in space or
time are appreciably correlated, well modeled, or vary
slowly in time and space, interpolation can easily be con-
ducted between the data points (Gorman 2009). If adja-
cent data points are not appreciably correlated, however,
then interpolation cannot be as easily conducted and could
create unrealistic and uncharacteristic TCs by smoothing
or smearing small-scale phenomena or sharp gradients in
time and space (Privé and Errico 2016). One of the impor-
tant distinctions between statistical interpolation methods
like kriging and observational data assimilation methods
(discussed previously) is that kriging is based completely
on observations (Biau et al. 1999). Data assimilation is
dependent on observations, and model physics, resolution,
and domain size (e.g., Aberson 2008).

Temporal and spatial (both horizontal and vertical) vari-
ability of observations in various atmospheric phenomena
suggest a complex relationship between the autocorrela-
tion, observational density, observation method, and loca-
tion of the observations. Table 1 summarizes the findings
of studies that examined the temporal or spatial autocor-
relations for horizontal wind speed (|Vh|), T , water vapor,
precipitation, and w. It is important to note that most of the
studies presented in Table 1 did not analyze observations
from TCs, evaluated various physical parameters and ob-
servations, used different instrumentation, studied a range
of length scales, and used a range of critical correlation
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coefficients to determine autocorrelation scales. Never-
theless, they are included because of the lack of studies
that have examined autocorrelations in TCs and they pro-
vide some context to the autocorrelations observed from
the TCI dataset.

There are large variations in the autocorrelation hori-
zontal distances for the non-TC variables considered in
Table 1, with lengths ranging from 200 m (w; Lothon et al.
2006) to 1000 km (T ; Gunst 1995). The vertical autocor-
relation length scales for w and water vapor given in Ta-
ble 1 are comparable and less than 1 km (Lothon et al.
2006; Fisher et al. 2013). The 0.5-autocorrelation tempo-
ral scales for T and horizontal wind speed (Table 1) are
comparable, between 4–12 h, and are a function of alti-
tude (Brett and Tuller 1991; Raymond et al. 2003; Pérez
et al. 2004). Horizontal autocorrelation spatial scales for
T are greater than, or are comparable to, the horizon-
tal autocorrelation spatial scales for horizontal wind (Ta-
ble 1). Convection, and variables related to convection
(e.g., precipitation rate), should have smaller correlation
length scales horizontally due to higher small-scale vari-
ance (Fisher et al. 2013). Spatial autocorrelations in pre-
cipitation and rain rate drop below 0.5 from 1.5 to 10 km,
with convective precipitation primarily at 4 km and strat-
iform precipitation generally at larger distances (Table 1).
Lothon et al. (2006) examined the autocorrelation of w in
the daytime, convective, planetary boundary layer (PBL)
using Doppler Lidar data and found small, 0.5, autocorre-
lation distances between 200–300 m both horizontally and
vertically (Table 1).

Black et al. (1996) examined the spatial autocorrela-
tions of w in TCs from flight-level and Doppler radar data.
They found that w autocorrelations of approximately 0.2
were statistically significant, horizontal and vertical auto-
correlation distances were between 1–6 km, and updrafts
were more spatially correlated than downdrafts, especially
within the eyewall. The 0.2-autocorrelation threshold
noted in Black et al. (1996) indicates statistically signifi-
cant relationships, but does not indicate that the autocorre-
lation is strong. The use of a higher autocorrelation thresh-
old, like 0.5, would indicate a stronger relationship and
decrease the horizontal, and vertical, autocorrelation dis-
tances in Black et al. (1996) by approximately 50%.

The definition of convection, updrafts, and downdrafts
is also important in discerning the autocorrelation scales
within updrafts and downdrafts. Jorgensen et al. (1985)
defined convective vertical motions in TC flight-level data
as continuous positive or negative vertical velocities for at
least 500 m, with at least one data point achieving a mag-
nitude of 0.5 m s−1. Convective cores were defined as
continuous w magnitudes of at least 1 m s−1 for 500 m or
greater. These distances and values were determined iter-
atively and subjectively in LeMone and Zipser (1980) to
more easily differentiate turbulent motions from coherent
vertical velocities without needing a complex statistical

analysis. This definition was also adopted by studies such
as Black et al. (1994); however, the spatial correlations of
the w data were not presented. Black et al. (1996) defined
an updraft or downdraft as continuous, X-band radar, ver-
tical velocities exceeding |1.5 m s−1|with at least one data
point exceeding |3 m s−1|.

Eastin et al. (2002a,b, 2005) examined the spatiotem-
poral characteristics and statistics of instrument wetting
events (IWEs) in TCs, which are periods where flight-
level, probe-derived temperature measurements were sig-
nificantly (using the 3σ level; or ∆T =0.5◦C) colder than
radiometer-derived temperatures. These IWEs were pri-
marily correlated with the presence of updrafts and appre-
ciable cloud water. The results from Eastin et al. (2002a,b,
2005) are not included in Table 1, because they did not
directly report upon the autocorrelation of the data nor
present correlograms of the data. Eastin et al. (2002a)
showed that 90% of the IWEs were less than 10 km in
scale. Magnitudes of moisture, w, and ∆T decrease and,
therefore, decorrelate rapidly within 3–6 km of the peak
of the IWEs (Eastin et al. 2002a). Equivalent potential
temperature (θe) and moisture values decreased rapidly
(decorrelated) within 8 km radially outward of updraft
maxima (Eastin et al. 2002b). The mean IWE diame-
ters were also a function of altitude, where IWE diame-
ters were 7 km below the freezing level and 14 km above
(Eastin et al. 2002a).

In this study, an analysis is conducted to evaluate the
temporal and spatial autocorrelations of the XDDs used in
TCI with the kriging spatial interpolation framework. The
autocorrelation of data points in individual soundings, as
well as the spatial correlation between adjacent soundings,
are considered. In section 2, the data and methods used are
described. Section 3 shows the results of the temporal and
spatial autocorrelations. Conclusions are drawn in section
4 and a discussion of the results, and their implications for
future dropsonde studies, is provided.

2. Data and methods

Three of the primary goals of TCI were to: 1) document
the horizontal, and vertical, structure of the outflow layer
and the inner core of TCs; 2) understand the role of the
TC outflow layer on intensity change and how it couples
with convection; and, 3) examine the impact of assimi-
lating observations of the outflow layer and TC core on
track, and intensity, forecasts. A total of 140, 328, and
257 XDDs were launched into Marty (27–28 September),
Joaquin (2–5 October), and Patricia (20–23 October), with
most flights being transects over the TC centers or figure-
four patterns over a duration of 1–2 h. The minimum,
maximum, mean, and median sounding spacing for each
day are provided in Table 2. The temporal and spatial au-
tocorrelations were computed for w, |Vh|, T , and θe.
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TABLE 1. Summary of spatial (horizontal and vertical) and temporal autocorrelation scales referenced in the text based upon correlation
thresholds of either 0.5, 0.37, or 0.2 for horizontal wind (|Vh|), temperature (T ), water vapor, rainfall, rain rate, and vertical velocity (w). Correlation
length scales that were specifically for convective regions are denoted as “C” and non-convective regions are denoted as “NC”. Observation types
(obs. type) are listed and the locations of the observations are noted for each referenced study. Observation types include: surface (Sfc. stations),
boat (boat stations), radio acoustic sounding system (RASS), satellite, Lidar, S-band radar, or X-band radar.

Var. Corr. Vert. dist. Horz. dist. Time Obs. type Location Ref.
|Vh| 0.5 —— 0–100 km —— Sfc. stations Land Wylie et al. 1985
|Vh| 0.5 —— 400 km —— Boat stations Ocean Wylie et al. 1985
|Vh| 0.5 —— —— 4–6 h Sfc. stations Land Brett and Tuller

1991
|Vh| 0.37 —— —— 11 h (at 40 m) RASS Land Pérez et al. 2004
|Vh| 0.37 —— —— 5 h (at 300 m) RASS Land Pérez et al. 2004
T 0.5 —— 800–1000

km
—— Sfc. stations Land Gunst 1995

T 0.5 —— 200–600
km

—— Satellite Upper air Nichol and Wong
2008

T 0.37 —— —— 7 h (at 40 m) RASS Land Pérez et al. 2004
T 0.37 —— —— 8 h (at 140 m) RASS Land Pérez et al. 2004
T 0.5 —— —— 12 h Satellite Over ITCZ Raymond et al.

2003
Water vapor 0.37 0.45 km

(C)
—— —— Lidar Airborne Fisher et al. 2013

Water vapor 0.37 0.2–0.3 km
(NC)

—— —— Lidar Airborne Fisher et al. 2013

Rainfall 0.5 —— 4 km —— Rain gauge Land Habib et al. 2001
Rain rate 0.5 —— 10 km

(NC)
—— S-band radar Land Brigni et al. 2015

Rain rate 0.5 —— 4 km (C) —— S-band radar Land Brigni et al. 2015
Rainfall 0.5 —— 1.5–4 km —— Reports/radar Land Jameson 2017
w 0.5 0.2–0.3 km 0.2–0.3 km —— Lidar Land Lothon et al.

2006
w 0.2 4–7 km 4–6 km —— X-band radar TC eyewall Black et al. 1996
w 0.2 2–4 km 1–4 km —— X-band radar TC rainband Black et al. 1996

Adjacent data points in time and space with correlations
above 0.5 are considered highly correlated (Brooks and
Carruthers 1978). The statistical significance of the auto-
correlations is estimated by 95% confidence levels. Au-
tocorrelations above 0.5 are statistically significant well
above the 95% confidence level in both time and space

TABLE 2. List of the minimum, maximum, mean, and median drop-
sonde spacing for each day to the nearest km.

Day Name Minimum Maximum Mean Median
27 Sept Marty 6 44 18 17
28 Sept Marty 3 83 21 13
02 Oct Joaquin 7 150 39 41
03 Oct Joaquin 5 344 54 38
04 Oct Joaquin 8 120 37 27
05 Oct Joaquin 9 121 33 28
20 Oct Patricia 18 267 87 44
21 Oct Patricia 7 69 26 24
22 Oct Patricia 4 142 26 11
23 Oct Patricia 3 73 22 25

for all variables in the dataset (not shown) and, therefore,
indicate both strong and statistically significant autocorre-
lations.

Autocorrelation distances and times below the spatial
and temporal resolution of the dataset are interpolated esti-
mates limited by the spacing and number of observations.
In such a situation, it can be confidently stated that the
autocorrelation threshold is below the median resolution,
but the exact autocorrelation distance or time cannot be
verified or confidently stated. Further, any apparent vari-
ance in autocorrelation thresholds that are below the me-
dian sounding spacing from day-to-day or storm-to-storm
also cannot be verified or confidently stated. These dis-
tances and times are still valuable, however, to estimate
the temporal and spatial resolutions required to sample
TCs from transects of soundings. The spatial autocorre-
lation estimates in particular, are presented and discussed
in this study, with the understanding that the exact values
are estimated and may not be fully conclusive.

The vertical velocities, TC centers, and RMWs were ob-
tained following the methodology of Nelson et al. (2019).
The same data restriction methods used in Nelson et al.
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(2019) were employed in this study to ensure that autocor-
relations were computed for the same subset of the TCI
data. Data were restricted to only include data points for
dropsondes that terminated at an altitude below 500 m to
ensure that data was recorded in the low levels of the TCs,
comparable to Stern et al. (2016). Data points that oc-
curred outside of a radius of 10 times the RMW (10R∗;
Nelson et al. 2019) were also removed, which corresponds
to a range of radii from 112–768 km depending on the
date. The 10R∗ restriction was used to ensure that data
points outside of the TCs themselves (i.e., environmen-
tal soundings) were removed. The results of this study,
however, are not sensitive to the inclusion of data beyond
10R∗, with spatial autocorrelation scales differing by 1–
2 km at most when removing the 10R∗ radial restriction,
and temporal autocorrelation scales differing by less than
1 s. Data were also restricted to only use points below an
altitude of 17.5 km, as upon launching from an altitude
of 19 km, the dropsondes take time to adjust to the am-
bient air (approx. 0.5 to 1 km; Nelson et al. 2019). A
total of 437 dropsondes (276,659 data points) were used
in this study after the above data restrictions. The raw
‘Level-1’ sounding data was used in this study in lieu of
the quality-controlled TCI dropsonde dataset documented
by Bell et al. (2016) to ensure that the autocorrelation
scales observed were associated with the data itself and not
from filtering techniques. Similar to Nelson et al. (2019),
all data used in this study was at 1-Hz resolution, which
is coarser than the native 2- or 4-Hz data acquisition fre-
quency.

In order to compute the temporal and spatial autocor-
relation scales, the data within any sounding need to be
detrended (Janert 2011). If a trend or mean state is present
in the data, then correlograms show smoothed and high-
amplitude periodic curves or large, negative correlations at
long lags (see Supplementary Material). Rather than using
a linear detrend, median atmospheric profiles of w, T , |Vh|,
and θe were used to detrend the data. Six detrend meth-
ods were explored: 1) no detrend; 2) detrend using median
profiles from a specific date (date detrend); 3) detrend us-
ing median profiles from a specific TC (storm detrend);
4) detrend using median profiles from the entire dataset
(total detrend); 5) detrend using median profiles within
four radial sections from the entire dataset (radial detrend);
and, 6) detrend using median profiles within four radial
sections from a specific date (D+R detrend). The sixth
method (D+R detrend) was ultimately used in this study,
because it exhibited the largest autocorrelations among the
most parameters, while accounting for the variance in the
mean state radially, from date-to-date, and from storm-to-
storm. The four radial sections were: 1) ≤ 1.25R∗; 2)
1.25–3R∗; 3) 3–5R∗; and, 4) 5–10R∗. It should be noted
that by combining all soundings within 1.25R∗, data from
the high-gradient region near the eyewall are used and the
median state can be influenced by the soundings within the

eye itself. Further details about the six detrending meth-
ods, their results, and comparisons can be found in the
Supplementary Material.

The D+R detrend median profiles for each variable and
each date are provided in Figures 1–3 and the total number
of soundings in each radial section are provided in Table
3. The mean and median number of soundings in each ra-
dial section was 11–12, with a maximum of 24 (Joaquin
on 5 October) and a minimum of zero (Patricia on 20
October). Many of the median w profiles resemble pro-
files observed by Black et al. (1996) and primarily show
weak, near-zero vertical motions below the average freez-
ing level (5-–6 km) and stronger vertical velocities aloft
(Figs. 1a–d, 2a–d, 3a–d), but it is unknown if this increase
is real or due to errors aloft (Nelson et al. 2019). The me-
dian w profiles were especially noisy in Patricia on 20 and
23 October likely due to the small number of soundings
in the radial section (Table 3) or strong vertical motions in
the eyewall (Nelson et al. 2019). The |Vh| median profiles
differ from day-to-day and show the evolution of the TC
wind field, but also show that peak |Vh| strengths generally
occurred between 0.5 and 1 km (Figs. 1e–h, 2e–h, 3e–h).
The |Vh| median profile for Patricia on 23 October had a
noisy double jet structure, with strong median |Vh| from
5–7 km similar to the double jet structure in the eyewall of
Patricia shown by Rogers et al. (2017) (Fig. 3e). T and θe
varied slightly from day-to-day, and had smooth decreases
aloft for T and increases aloft for θe (Figs. 1i–l, 2i–l, 3i–l).

To calculate horizontal dropsonde-to-dropsonde auto-
correlations, median profiles similar to those in Figures 1–
3 were created using 0.25-km bins from 0 to 17 km height
to account for small altitudinal variations among the ob-
servations and differences in the number of data points in
each sounding. The bin size was chosen to match the al-
titudinal binning scheme by Nelson et al. (2019). Spatial
dropsonde-to-dropsonde autocorrelations and correspond-
ing distances were computed using the following equa-
tions:

TABLE 3. List of the number of dropsondes within each of the four
radial sections and in total on each day.

Day Name ≤1.25R∗ 1.25–3R∗ 3–5R∗ 5–10R∗ Total
27 Sept Marty 11 13 6 20 50
28 Sept Marty 13 16 15 14 58
02 Oct Joaquin 15 13 6 10 44
03 Oct Joaquin 11 11 7 14 43
04 Oct Joaquin 13 16 15 11 55
05 Oct Joaquin 9 13 7 24 53
20 Oct Patricia 5 5 2 0 12
21 Oct Patricia 13 18 13 7 51
22 Oct Patricia 5 13 12 13 43
23 Oct Patricia 5 6 9 8 28
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r̄t(k) =
∑

n
i=1(X

′
i −X ′i )(X

′
i+k−X ′i+k)√

∑
n
i=1(X

′
i −X ′i )2(x′i+k−X ′i+k)

2
(1)

d =
√

(xi− xi+k)2 +(yi− yi+k)2 (2)

where the autocorrelation (r̄t ) is calculated for the binned,
median, D+R detrended data (X

′
) at a distance d in the

x–y plane. The autocorrelation of each sounding is calcu-
lated from pairs of all soundings and not just those imme-
diately adjacent to a given sounding. n is the total number
of soundings for each date or TC, and k is an index that
runs from 0 to n− 1 that accounts for each sounding in
the calculation. If it is assumed that the D+R detrend pro-
cess accurately removed the mean state in each sounding,
then the mean of X

′
should be zero in all of the equations

presented here. The d used is the mean distance between
the two soundings. Given the uneven spacing of sound-
ings and the finer resolution of observations within the
core, the spatial autocorrelation distances presented here
may be biased towards lower values. In contrast, the use
of a median profile creates smoother soundings than what
was actually observed in TCI and may bias autocorrelation
distances toward larger values. These assumptions in the
methodology, however, do not severely impact the results
of the study, because statistically significant high autocor-
relations are not expected at large (> 100 km) distance
scales within a TC.

To calculate the autocorrelations within an individual
sounding, data were ordered with respect to time and the
“acf” function in the R software package was used for
each individual sounding, for each observation day, and
for each storm. The acf function computes autocorrelation
using the following equations:

rt =
ct

co
(3)

ct =
1
n

max(1,−t)

∑
min(n−t,n)

[X
′
s+t − X̄ ′ ][Xs− X̄ ′ ] (4)

co =
1
n ∑[X

′ − X̄ ′ ]2 (5)

where rt is the autocorrelation, ct is the autocovariance, co
is the variance of the series, n is the length of the series, s is
time, and t is some lag forward in time (Venables and Rip-
ley 2002). For the temporal autocorrelations within any
given sounding, the X

′
data were not binned like in the

dropsonde-to-dropsonde data. The soundings, therefore,
have differences in the total number of data points, which
is a function of the fall speed, horizontal wind speed, drop-
sonde fall behavior, and missing data. The autocorrela-
tions were computed assuming that no missing data were
present and the temporal resolution was 1 Hz. If there

were missing data in the sounding, the data were not re-
placed with an interpolated mean value or padded with
a fill value, because that would, potentially, increase the
autocorrelations artificially depending on the number of
missing data points. It is hypothesized that missing data
would affect the results by biasing the autocorrelations to
smaller temporal scales.

Due to the highly-accurate data telemetry, however,
large regions of missing data were rarely present in sound-
ings. The total percent of missing data points is negligibly
small for the soundings considered, post-altitude and ra-
dial restriction, at 5%. Most regions of missing data occur
over depths of less than 100 m. The autocorrelation scales
and correlograms presented in this study are interpolated
splines over all of the soundings for an individual date or
TC, which would decrease the impact of missing data in a
relatively small number of soundings within the dataset.

3. Results

The autocorrelations for each TC and in total were plot-
ted as correlograms. Individual correlograms for each of
the ten days in the dataset are not provided, but the results
from those figures are summarized in Tables 4 and 5, and
Figure 4. Correlograms for each TC are provided in Fig-
ures 5 and 6. The correlograms are smoothed splines fitted
to scatterplots of the correlograms for each sounding or al-
titude level. Table 4 documents the autocorrelation spatial
scales where correlation drops below 0.5 for adjacent data
points at a fixed altitude (dropsonde-to-dropsonde). Table
5 documents the autocorrelation time scales where corre-
lation drops below 0.5 for data within a given individual
sounding. The means, medians, and standard deviations
for the spatial and temporal autocorrelation scales com-
puted from all ten observation days are included in Tables
4 and 5.

a. Correlations from dropsonde-to-dropsonde

All of the calculated daily spatial autocorrelation length
scales were below the mean and median sounding spac-
ings, and were comparable to, or less than, the minimum
observed sounding spacings (Tables 2 and 4). The data
from Table 4 implies that the actual spatial autocorrelation
length scales were below the median spacing, but the exact
values cannot be verified with the observed dataset. The
values discussed below and presented in Table 4, there-
fore, are rough estimates.

Vertical velocity and θe had relatively small mean and
median spatial autocorrelation scale estimates at 4–6 km
(Table 4), with w generally being the smallest. All vari-
ables had comparable standard deviations in the estimated
spatial autocorrelation scales between 4–5 km, but |Vh| and
T had the smallest spreads (Table 4). Estimated mean and
median |Vh| and T spatial autocorrelation scales were 10–
11 km and 7–9 km, respectively (Table 4).
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27 Sept. 28 Sept.

(a)	 (b)	 (c)	 (d)	

(e)	 (f)	 (g)	 (h)	

(i)	 (j)	 (k)	 (l)	

(m)	 (n)	 (o)	 (p)	

FIG. 1. Median atmospheric profiles of (a, b, c, d) w (m s−1), (e, f, g, h) |Vh| (m s−1), (i, j, k, l) T (K), and (m, n, o, p) θe (K) during Marty for data
(a, e, i, m) within 1.25R∗, (b, f, j, n) 1.25–3R∗, (c, g, k, o) 3–5R∗, and (d, h, l, p) 5–10R∗.

The estimated spatial 0.5-autocorrelation scales for all
variables increased with increasing RMW (Fig. 4a). The
spatial scales for w and θe had the strongest positive corre-
lations with RMW size. While the correlations do not in-
dicate a robust, conclusive relationship between the RMW
and spatial 0.5-autocorrelation scales because of the rela-
tively small sample size and relatively large median sound-
ing spacing, it is plausible that the spatial autocorrelation
scales could be influenced by the storm-scale structure of
the TCs. |Vh| and T do show appreciably strong (> 0.5)
correlations with the RMW, but not as strong as the other
two variables. This result is interesting, because |Vh| and T
would be expected to have the strongest correlations with
the RMW based upon the well-recognized idea that gra-
dient or thermal wind balance dominates the storm-scale
structure of TCs (e.g., Willoughby 1990; Molinari et al.
1993). Rather, variables associated with convective fea-
tures (w and θe) are more correlated with the RMW. Figure
4a also illustrates that most of the estimated spatial scales
are smaller than the RMW by a factor of four to eight, with
|Vh| mostly on the low end and w on the high end of the
range. Despite the relationship between the RMW and au-

tocorrelation length scales, data are still grouped by each
TC to examine the differences in the temporal and spatial
autocorrelations present from storm-to-storm.

Figure 5 shows the spatial correlograms for all four vari-
ables in Marty, Joaquin, and Patricia. w and θe decorre-
late rapidly within 10–20 km, reaching zero at approxi-
mately 20 km (Fig. 5a, d). T and |Vh| decorrelate slower,
reaching zero between 40–60 km (Fig. 5b, c). All of
the variables have autocorrelations that fluctuate around
zero outside of 50 km (Fig. 5). The median sounding
spacing when data are grouped by each TC is, approxi-
mately, 11–14 km. The 0.5-autocorrelation length scales
were generally smaller than the median sounding spacing
by a factor of three to five for all variables in all three TCs.
All three TCs had horizontal autocorrelation length scale
estimates between 3–4 km, depending upon the variable
considered (Fig. 5). These spatial autocorrelation scales
differ from the daily autocorrelation scale estimates, and
are less than the mean and median estimated scales in Ta-
ble 4, because Figure 5 shows the spatial autocorrelation
composited from data in each of the three TCs. The spa-
tial autocorrelation scales were examined as a function of
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02 Oct. 03 Oct. 04 Oct. 05 Oct.

(a)	 (b)	 (c)	 (d)	

(e)	 (f)	 (g)	 (h)	

(i)	 (j)	 (k)	 (l)	

(m)	 (n)	 (o)	 (p)	

FIG. 2. Same as Fig. 1, but for Joaquin.

altitude, but the corresponding distances were often non-
linear or non-monotonic and no robust conclusions could
be made.

To put the estimated spatial autocorrelation scales into
context, the values are compared to the correlation length
scales in Table 1. The correlation distances observed in
non-TC studies, except for w, are considerably larger com-
pared to what was observed in the TCI data. For exam-
ple, the estimated spatial autocorrelation scales for T ob-
served on an individual day and in an individual TC are
much smaller than the horizontal autocorrelation distances
observed by Gunst (1995) and Nichol and Wong (2008).
This finding is robust, even when considering the median
sounding spacing. The estimated spatial autocorrelation
scales for w were primarily between 1 and 5 km from
day-to-day (excluding 20 October), and 2 and 4 km from
storm-to-storm (Table 4 and Fig. 5a). The w estimated
spatial autocorrelation scales are most comparable to the
rainfall and convective rain rate autocorrelation distances
over land with rain gauge, and radar, data in Habib et al.
(2001), Bringi et al. (2015), and Jameson (2017). The
estimated spatial autocorrelation scales are also slightly
smaller than the w 0.2-autocorrelation length scales adja-

cent to updrafts and downdrafts in TCs as shown by Black
et al. (1996), but are comparable if Black et al. (1996) used
a 0.5-autocorrelation threshold. The differences between
this study and Black et al. (1996) may not be robust, how-
ever, considering that the 0.5-autocorrelation spatial scales
are smaller than the median sounding spacing.

b. Correlations within a sounding

The temporal 0.5-autocorrelation scales were above 8 s
for all variables and for each observation day, with most
above 15 s (Table 5). Mean and median temporal auto-
correlation scales ranged from 20–31 s for all variables
(Table 5). The smallest mean and median temporal scales
were for w and T . The smaller temporal autocorrelation
thresholds in T and w could be due to smaller thermal per-
turbations away from the median profiles in each radial
section (e.g., Fig. 2) and weaker vertical motions dominat-
ing the vertical velocity distribution (Nelson et al. 2019).
The mean and median temporal autocorrelation scales for
θe were slightly larger than for w and T at 26.5 s. |Vh|
had the largest temporal autocorrelation scales within in-
dividual soundings at approximately 30 s. The estimated
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20 Oct. 21 Oct. 22 Oct. 23 Oct.

(a)	 (b)	 (c)	 (d)	

(e)	 (f)	 (g)	 (h)	

(i)	 (j)	 (k)	 (l)	

(m)	 (n)	 (o)	 (p)	

FIG. 3. Same as Fig. 1, but for Patricia.

still air dropsonde fall speed ranges from approximately
52 m s−1 at 17.5 km to 18 m s−1 at sea-level (Nelson et al.
2019). It is estimated from the typical fall speeds that ver-
tical autocorrelation length scales would likely range from
0–2 km.

Figure 4b shows that as the horizontal autocorrelation
length scale increases, the temporal autocorrelation scale
generally decreases for w, |Vh|, and T . The θe temporal
scales have a weak, negative correlation with the horizon-
tal autocorrelation length scales, but this is primarily due
to one outlier data point. If this data point was removed,
the correlation would be positive at 0.32. This single data
point outlier is not present in the other three variables, but
occurred in Patricia on 20 October, where few dropsondes
were launched (Table 3). The strongest correlation was for
the w temporal and spatial autocorrelation scales at−0.91.
The general negative correlation, especially for w, is not
surprising. As a hypothetical situation, if an XDD sampled
a coherent feature through the depth of the troposphere,
like an eyewall updraft, that sounding will likely not cor-
relate well with other dropsonde data launched outside of
the convective region of the eyewall, leading to smaller
spatial correlation scales. Conversely, if an XDD sam-

pled an area with weak radial gradients, and incoherent
vertical structure, then the dropsonde-to-dropsonde spatial
scale will be larger and the temporal scale will be smaller.
Similar to the relationship between the RMW and spatial
0.5-autocorrelation scale (Fig. 4a), these correlations do
not provide robust conclusions because of the relatively
small sample size, but they can be used to develop a hy-
pothesis as to the relationships between the two scales.

Figure 6 shows the temporal correlograms for all four
variables in Marty, Joaquin, and Patricia. All variables
decorrelate rapidly within 80 s, reaching zero at approxi-
mately 100–150 s (Fig. 6). Weak, negative autocorrelation
values were observed at longer time lags for all variables
(Fig. 6). w decorrelated the fastest, but the difference in
the rate of decorrelation is negligible.

Joaquin consistently had the largest 0.5-autocorrelation
temporal scales out of the three TCs for all variables,
but both Marty and Joaquin had the same temporal 0.5-
autocorrelation scales for θe (Fig. 6d). There was lit-
tle variation in the temporal 0.5-autocorrelation scales for
w from storm-to-storm, with temporal scales of 19–21.5
s (Fig. 6a). Marty and Patricia had comparable 0.5-
autocorrelation temporal scales for |Vh| (27–28.5 s). In
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comparison, the 0.5-autocorrelation temporal scales for
|Vh| in Joaquin were approximately 33 s. Patricia had
considerably smaller temporal autocorrelation scales for
T and θe than compared to Marty or Joaquin. The 0.5-
autocorrelations were also examined as a function of ra-
dius, but the corresponding temporal scales were often
non-linear or non-monotonic and no robust conclusions
could be made.

c. Correlations within updrafts and downdrafts

Given that the typical structure of a TC features strong
kinematic and thermal perturbations within the convec-
tive eyewall and rainbands, it is possible that the 0.5-
autocorrelation temporal scales differ in soundings that
observed updrafts or downdrafts from soundings in less

TABLE 4. List of dropsonde-to-dropsonde spatial 0.5-
autocorrelation thresholds, or estimated thresholds, (km) for
each day in the dataset for vertical velocity (w), horizontal wind speed
(|Vh|), temperature (T ), and equivalent potential temperature (θe). The
size of the RMW (km) and TC intensity (m s−1) are also noted.

Day Name w |Vh| T θe RMW Intensity
27 Sept Marty 5 10 7 7 37 26
28 Sept Marty 4 7 5 4 21 36
02 Oct Joaquin 4 7 5 5 31 57
03 Oct Joaquin 3 5 5 3 27 67
04 Oct Joaquin 5 19 15 8 38 44
05 Oct Joaquin 5 12 7 5 49 39
20 Oct Patricia 17 15 16 18 77 15
21 Oct Patricia 5 16 14 5 40 26
22 Oct Patricia 4 13 9 4 19 59
23 Oct Patricia 1 7 2 1 11 93

Mean —— 5 11 9 6 35 46
Median —— 4 11 7 5 34 41
St. Dev. —— 4 5 5 5 18 22

TABLE 5. Same as Table 4, but for the temporal 0.5-autocorrelation
thresholds (s) for each day in the dataset and any given individual sound-
ing. The size of the RMW (km) and TC intensity (m s−1) are also noted.

Day Name w |Vh| T θe RMW Intensity
27 Sept Marty 19 25 22 28 37 26
28 Sept Marty 23 31 24 31 21 36
02 Oct Joaquin 23 41 27 25 31 57
03 Oct Joaquin 25 38 35 34 27 67
04 Oct Joaquin 22 31 23 31 38 44
05 Oct Joaquin 20 31 21 30 49 39
20 Oct Patricia 8 21 15 19 77 15
21 Oct Patricia 22 32 13 22 40 26
22 Oct Patricia 21 27 17 25 19 59
23 Oct Patricia 20 33 17 20 11 93

Mean —— 20.3 31.0 21.4 26.5 35 46
Median —— 21.5 31.0 21.5 26.5 34 41
St. Dev. —— 4.4 5.5 6.1 5.1 18 22

convective areas. It is also possible that the temporal
scales in these updraft and downdraft soundings differ
from the findings in Figure 6 and Table 5, which include
all soundings in the dataset. Updrafts and downdrafts are
defined here following Nelson et al. (2019) as consecutive
w above ± 2 m s−1 with at least one data point above ±
4 m s−1. There was not a requirement for the minimum
depth for the updrafts or downdrafts. Updraft and down-
draft soundings are the subset of soundings with at least
one updraft or downdraft, respectively, in the sounding.
The number of updraft and downdraft soundings for each
day is provided in Table 6. In the situation where both an
updraft and a downdraft is observed in a given sounding,
it is classified as both an updraft and downdraft sounding.
Soundings that contain both an updraft and a downdraft
comprise of 3% of the entire dataset. Approximately 17%
of the updraft soundings contain at least one downdraft,
and approximately 35% of the downdraft soundings con-
tain at least one updraft. P-values of below 0.05 are used
to define statistically significant differences.

As an example, shown in Figures 7 and 8 are sounding
profiles from the eyewall of Patricia on 23 October. The
red lines denote the start and end of the updraft following
the definition of Nelson et al. (2019). The updraft occurred
in the midlevels, was approximately 7.5 km deep, and was
sampled for over 400 s (Figs. 7, 8). The updraft was also
collocated with the midlevel jet shown by Rogers et al.
(2017), a relatively warm θe bubble, and small variations
in the T profile. The perturbation profile of T , however,
shows strong, negative 5–10-K perturbations, and the per-
turbation profile of θe shows weak, near zero perturbations
in the middle of the updraft and strong, negative perturba-
tions at the base of the downdraft (Fig. 9c, d). These per-
turbation profiles are not consistent with what is expected
for an updraft sounding and may be due to the median pro-
files reflecting the relatively warmer low- and mid-level
eye. In contrast, the w and |Vh| perturbation profiles ex-
hibited strong, positive perturbations within the defined
updraft as expected for an eyewall updraft (Fig. 9a, b).
The temporal autocorrelations within this sounding were
significantly larger than for the entire date, with a p-value
of 0.009 (Fig. 10). The autocorrelations for the Patricia
eyewall sounding ranged from approximately 70 s (w) to
120 s (θe).

Temporal autocorrelations were computed for all 78 up-
draft and 37 downdraft soundings on each day and are
provided in Tables 7 and 8. The mean and median 0.5-
autocorrelation temporal scales in updraft soundings were
larger than, or comparable to, the temporal scales in all
soundings, but the differences were not significantly dif-
ferent by Student’s t-tests (Tables 5, 7). Similarly, mean
and median 0.5-autocorrelation temporal scales in down-
draft soundings were larger than, or comparable to, the
temporal scales in all soundings (Tables 5, 8). None of the
differences, however, were statistically significant.
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FIG. 4. Comparison of the (a) daily dropsonde-to-dropsonde spatial autocorrelation scales (km) to the RMWs (km), and (b) daily dropsonde-
to-dropsonde spatial autocorrelation scales to the daily temporal 0.5-autocorrelation length scales (s) for w, T , |Vh|, and θe (black, red, orange, and
blue, respectively). The 1:1 (or x = y) line (black) is shown in (a).

Figures 11 and 12 show the temporal autocorrelations
for individual soundings computed similarly to the single
sounding in Figure 10. The temporal scales for w, |Vh|, T ,
and θe in updraft soundings have positive correlations with
the maximum updraft depth in the soundings (Fig. 11).
The correlation for w was strong at 0.76, with a p-value
of 6x10−16 (Fig. 11a). Correlations were also statisti-
cally significant at a p-value below 0.05 for |Vh| (0.04) and
θe (0.008), but the correlations themselves are relatively
weak compared to w. The positive, statistically significant
correlations between w and θe to the mean updraft depth
agree well with parcel buoyancy arguments and correla-
tions between draft core diameters and mean w strength,
and thermal buoyancy, in Eastin et al. (2005). In con-
trast to the updraft soundings, the downdraft soundings
had near-zero or weakly negative correlations between the
maximum downdraft depth and temporal autocorrelation
scale, with no statistically significant relationships (Fig.
12). The positive correlations for updraft soundings indi-
cate that there are, potentially, statistically significant rela-
tionships between the temporal autocorrelation scales and
the depth of the updrafts, even though the mean and me-

dian temporal autocorrelation scales do not differ appre-
ciably from the total dataset.

TABLE 6. Number of updraft (U) and downdraft (D) soundings for each
day.

Day Name U N
27 Sept Marty 4 3
28 Sept Marty 9 5
02 Oct Joaquin 13 15
03 Oct Joaquin 15 4
04 Oct Joaquin 4 0
05 Oct Joaquin 5 0
20 Oct Patricia 8 1
21 Oct Patricia 5 1
22 Oct Patricia 3 2
23 Oct Patricia 12 6

Total —— 78 37
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FIG. 5. Spatial autocorrelations for XDDs launched into Marty (red), Joaquin (green), and Patricia (blue). The spatial autocorrelations for w,
|Vh|, T , and θe are provided in panels (a)–(d), respectively. Correlations of 0.5 and 0.0 are denoted with dashed red and black lines, respectively.
Each panel has an inset in the upper-right corner that shows the variations in the 0.5-autocorrelation crossings.

4. Discussion

From the large dataset of 437 XDDs in three TCs, it is
evident that mean temporal autocorrelations were approx-
imately 20–30 s for w, T , |Vh|, and θe, corresponding to
an approximate altitudinal depth of 0.3–1.5 km, given the
typical XDD fall speeds discussed in Nelson et al. (2019).
The temporal autocorrelation scales suggest that interpo-
lating sounding data to matching altitudes is, likely, justi-
fiable within small 0.5-km intervals. The binning scheme
used here and in Nelson et al. (2019) is finer than this es-
timate. These results also imply that the XDD sampling
frequency adeptly oversampled the TCs in TCI.

From dropsonde-to-dropsonde, one of the conclusions
that can be drawn is an estimate of the minimum spatial
distribution of dropsondes needed to accurately depict a
TC with transects of dropsondes from the observed at-
mospheric variables. Another way to phrase the previous

statement is: “How close together can the XDDs be in
TCs before adjacent data points become appreciably cor-
related?”. The estimated spatial autocorrelation scales for
all variables, except for w (Black et al. 1996; Lothon et al.
2006), are smaller than what was observed in previous
studies (Table 1). Specifically, the |Vh| and T estimated
spatial autocorrelation scales are smaller for all observa-
tion days in the dataset (Wylie et al. 1985; Gunst 1995;
Nichol and Wong 2008). This result is robust given that
the median sounding spacing was also smaller than the
autocorrelation scales shown by Wylie et al. (1985), Gunst
(1995), and Nichol and Wong (2008).

The relatively high resolution of the original dataset
could be why some of the autocorrelation length scales
for the TCI data are smaller relative to past studies (Table
1). It is also plausible that the features measured by the
non-TC studies were synoptic-scale features rather than
mesoscale features, like in the three TCs observed during



J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y 13

0 100 200 300 400 500

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θe [K]

Time [s]

C
or

re
la

tio
n 0 10 20 30 40

0.
3

0.
5

0.
7

Time [s]

C
or

re
la

tio
n

0 100 200 300 400 500

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T [K]

Time [s]

C
or

re
la

tio
n 0 10 20 30 40

0.
3

0.
5

0.
7

Time [s]

C
or

re
la

tio
n

(a)	 (b)	

(c)	 (d)	

0 100 200 300 400 500

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w [m/s]

Time [s]

C
or

re
la

tio
n 0 10 20 30 40

0.
3

0.
5

0.
7

Time [s]

C
or

re
la

tio
n

0 100 200 300 400 500

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|Vh| [m/s]

Time [s]

C
or

re
la

tio
n 0 10 20 30 40

0.
3

0.
5

0.
7

Time [s]

C
or

re
la

tio
n

FIG. 6. Same as Fig. 5, but for temporal autocorrelations in each sounding.

TCI, which would lead to smaller autocorrelation length
scales or estimated spatial autocorrelation scales (Table 1).
Regardless, the agreement between the spatial autocorre-
lations for w in this study and the spatial autocorrelations
for w from radar data adjacent to updrafts and downdrafts
in Black et al. (1996) is encouraging, and provides support
for the findings herein.

It is important to note that one cannot truly know the
spatial correlation limit without testing observations (like
the XDDs) at a much higher launch rate/finer horizon-
tal resolution. The autocorrelation spatial scales below
the median, and even the minimum, horizontal sounding
spacing (e.g., Patricia on 23 October; Tables 2 and 4)
are estimates that are limited by the spacing of the orig-
inal dataset. It can be confidently stated, however, that
the true 0.5-autocorrelation spatial scales from day-to-day
and storm-to-storm were smaler than the median sounding
spacing, which was an average of 27 km on an individual
date or 13 km for an individual TC. The relative agree-

ment between the mean and median estimated spatial au-
tocorrelation scales in Table 4 and Figure 5 increases the
confidence that these values are plausible and valid.

The medians for all of the individual days illustrate
that w and θe had small estimated spatial autocorrelation
scales between 4–6 km (Table 4). This agrees well with
the model grid spacing required to resolve TC eyewall
kinematics and physics (Gentry and Lackmann 2010).
The estimated spatial autocorrelation scales for w and θe
also agree well with the mean diameter of strong, buoy-
ant updrafts documented in flight-level observations (e.g.,
Black et al. 1996; Eastin et al. 2005), which indicate
that the spatial scales for these variables are governed at
the convective scale and not the storm-scale. |Vh| and T
had slightly larger estimated spatial autocorrelation scales,
with means/medians of approximately 7–11 km, which
agrees well with the model grid spacing required to resolve
features on the scale of the average RMW (approximately
55 km; Kimball and Mulekar 2004; Gentry and Lackmann
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FIG. 7. Vertical profiles of (a) w, (b) |Vh|, (c) T , and (d) θe from an updraft sounding (dropsonde 72CC) launched into the eyewall of Patricia
on 23 October. The red horizontal lines denote the depth of the updraft. The black long-dashed vertical line in panel (a) denotes w = 0 m s−1. The
black short-dashed vertical line in panel (a) denotes w = 2 m s−1, which is the minimum, continuous, w strength required for an updraft. At least
one data point within this region exceeds 4 m s−1, which classifies this sounding as an updraft sounding.
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FIG. 8. Same as Fig. 7, but with respect to time. The red vertical lines denote the time of the updraft. The black long-dashed horizontal line in
panel (a) denotes w = 0 m s−1. The black short-dashed horizontal line in panel (a) denotes w = 2 m s−1, which is the minimum w strength required
for an updraft.

2010). When data were combined for each TC, w or θe

always had the smallest estimated spatial autocorrelation
scale, with the mean and median below 3 km. |Vh| or
T always had the largest estimated spatial autocorrelation

scales for each TC between 3–6 km. The results, not sur-
prisingly, imply that the spatial resolution of dropsondes
needed to adequately depict the thermal or horizontal wind
fields in transects of TCs is larger than what is needed to
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FIG. 9. Same as Fig. 7, but for profiles of perturbation (a) w, (b) |Vh|, (c) T , and (d) θe. The black dashed vertical line denotes zero-perturbation.
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FIG. 10. Temporal autocorrelation correlograms of (a) w (black), (b) |Vh| (blue), (c) T (red), and (d) θe (dark red). Correlations of 0.5 and 0.0
are denoted with horizontal dashed red and black lines, respectively. Correlograms for the single updraft sounding in Figs. 7–9 are in solid color
lines, and correlograms for all soundings on 23 October are in dashed color lines.

adequately depict convection and convection-related vari-
ables by approximately a factor of two, assuming that the
spatial autocorrelation scale estimates are accurate.

The spatial requirements of the XDDs for each atmo-
spheric variable present an operational challenge for fu-
ture TC dropsonde campaigns. The results of this study

suggest that soundings should be, at a maximum, 10–20
km apart to accurately, and adequately, depict TC structure
in transects of dropsondes. Further, the estimated spatial
autocorrelation scales presented in this study suggest that
the finest spatial resolution (approximately 3–4 km) and
quickest launch frequency utilized in TCI was at the min-
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FIG. 11. 0.5-autocorrelation temporal thresholds for (a) w, (b) |Vh|, (c) T , and (d) θe within individual soundings that recorded an updraft as a
function of maximum updraft depth in the sounding. Correlations and linear fits (red lines) are also provided.
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FIG. 12. Same as Fig. 11, but for individual downdraft soundings and maximum downdraft depth in the sounding.

imum limit of the required horizontal sampling interval
needed to accurately, and adequately, depict TC structure
in transects of dropsondes. In situations where the hori-
zontal sampling interval was larger than 3–4 km, spatial

interpolation cannot be accurately conducted and does not
adequately depict the thermal or kinematic structure in the
transects of these three TCs. The same conclusion can be
made if dropsondes are launched at a resolution of 3–4 km,
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but one dropsonde fails. The latter situation suggests that
a finer minimum and median horizontal spatial resolution
of soundings than what was achieved during TCI should
be used in future dropsonde-based TC campaigns.

If it is assumed that the estimated spatial autocorrelation
scales in this study indicate the approximate scales of the
observable features in the three TCs, then the spacing of
observations required to accurately resolve those features
can be estimated from the “4∆x rule” (Grasso 2000). The
results imply that the launch rate needs to be increased by
approximately a factor of four to adequately resolve con-
vection and thermal perturbations in transects of TCs, ex-
cept for possible small-scale (smaller than 3 km) eyewall
vortices (Grasso 2000; Gentry and Lackmann 2010). This
assumes that the XDDs can adequately measure both weak
and strong convection, since the expected vertical velocity
errors are ±1–2 m s−1 (Nelson et al. 2019).

TABLE 7. Same as Table 5, but for soundings containing an updraft.
Also included are the p-values (p) for the Student‘s t-test comparisons
between the temporal scales in Table 5 and the temporal scales in up-
draft soundings for each variable.

Day Name w |Vh| T θe RMW Intensity
27 Sept Marty 24 28 34 29 37 26
28 Sept Marty 30 42 27 34 21 36
02 Oct Joaquin 30 39 29 17 31 57
03 Oct Joaquin 26 43 51 40 27 67
04 Oct Joaquin 34 38 50 63 38 44
05 Oct Joaquin 10 24 25 27 49 39
20 Oct Patricia 5 19 14 17 77 15
21 Oct Patricia 33 25 27 25 40 26
22 Oct Patricia 19 28 15 14 19 59
23 Oct Patricia 26 37 22 27 11 93

Mean —— 23.7 32.3 29.4 29.3 35 46
Median —— 26 32.5 27.0 27.0 34 41
St. Dev. —— 9.7 8.5 12.7 14.3 18 22

p —— 0.34 0.69 0.10 0.57

TABLE 8. Same as Table 7, but for soundings containing a downdraft.

Day Name w |Vh| T θe RMW Intensity
27 Sept Marty 8 21 10 32 37 26
28 Sept Marty 27 23 23 29 21 36
02 Oct Joaquin 26 41 28 21 31 57
03 Oct Joaquin 32 47 67 38 27 67
04 Oct Joaquin 0 0 0 0 38 44
05 Oct Joaquin 0 0 0 0 49 39
20 Oct Patricia 27 19 18 5 77 15
21 Oct Patricia 21 31 21 24 40 26
22 Oct Patricia 22 34 40 31 19 59
23 Oct Patricia 20 71 17 20 11 93

Mean —— 22.9 35.9 28.0 25.0 35 46
Median —— 24.0 32.5 22.0 26.5 34 41
St. Dev. —— 6.7 16.1 16.9 10.1 18 22

p —— 0.40 0.47 0.35 0.71

Understanding the temporal and spatial autocorrelations
of dropsondes launched into TCs also plays an important
role in modeling, and forecasting, TC track and intensity.
The results of this study do not answer where and when
to observe a TC, but the dropsonde spatial and tempo-
ral autocorrelations are important to modeling, and fore-
casting, studies examining the inclusion of targeted drop-
sonde observations, or dropsonde deniability (e.g., Lang-
land 2005; Mu et al. 2009; Torn and Hakim 2009; Wu
et al. 2009; Irvine et al. 2011; Romine et al. 2016). In tar-
geted dropsonde studies, understanding autocorrelations
with the XDDs allows scientists to know how many drop-
sondes would be needed to accurately resolve a targeted
area without including highly-correlated spatial data (e.g.,
Liu and Rabier 2003). For dropsonde deniability stud-
ies, removing a few dropsondes among a group of highly-
correlated dropsondes may not yield significant results.
The w, |Vh|, T and θe horizontal autocorrelation scales
found in the three TCs observed during TCI are consider-
ably smaller than the typical length scales of background
errors in models (Andersson et al. 1993; Irvine et al. 2011;
Rizvi et al. 2012; Wang et al. 2014), and the horizontal
autocorrelation scales are considerably smaller than the
mean or median sampling intervals during TCI (Table 2).
The results of this study, therefore, imply that this prob-
lem is unlikely to exist given the finest, mean, and median
sampling itervals during TCI and the current sampling in-
tervals of other research aircraft.

The results of this study also illustrate the complexity
and operational challenges involved in depicting the ther-
modynamic and kinematic characteristics of the TC inner
core. As a hypothetical situation, if a model with 2-km
grid spacing and a domain size of 1000 km (order of mag-
nitude of the diameter of the TCs observed in TCI) were
used and 50 XDDs were assimilated at one time (approx-
imate number of XDDs launched each day during TCI),
then the spacing of the XDDs would need to be 20 km
apart (Liu and Rabier 2002; Gentry and Lackmann 2010).
This assumes an equal spacing of dropsondes and an even
distribution of dropsondes inside of the core and outside
of the core. The hypothetical distance of 20 km is gen-
erally comparable to the median sounding spacings in the
dataset, but larger than the daily estimated spatial auto-
correlation scales for all variables examined by at least a
factor of two; however, the strong gradient regions of the
core likely require a finer spatial resolution than outside of
the core to accurately depict the thermodynamic and kine-
matic characteristics of the core.
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