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ABSTRACT

The earliest iterations of dropsondes in the 1960’s obtained vertical velocity by measur-

ing the geometric fall speed of the dropsonde and the true airspeed (TAS) of the dropsonde

from a pitot-static. The vertical velocity errors from this methodology were claimed to be

±1 m s−1. Subsequent dropsonde iterations used various forms of the drag force equation to

obtain vertical velocity. The accuracy of these drag force-based measurements, however, are

also quite large at ±1–2 m s−1. In this dissertation, an attempt is made to improve vertical

velocity errors by revisiting and revising the pitot-static-derived TAS methodology on the

eXpendable Digital Dropsondes (XDDs). The primary goals were to decrease errors to ±0.1

m s−1 and introduce a prototype for a highly accurate vertical velocity dropsonde for use in

tropical cyclone (TC) research.

Three variations of the traditional pitot-static (the modified pitot-static, pitot-venturi,

and venturi-static) were presented and evaluated. Computational fluid dynamics (CFD)

model runs suggested that the pitot-venturi would be the most optimal configuration, and

it would produce the smallest vertical velocity errors. A mean pitot-venturi calibration

coefficient was found from a subset of eight XDDs using a large rotating arm device. Three

fully calibrated pitot-venturi vertical velocity XDDs were launched operationally from a DC-

8 aircraft off of the coast of the Baja California Peninsula. The results indicate that vertical

velocity errors of 0.2–0.4 m s−1 are achievable using a pitot-venturi on the XDDs.

The vertical velocities using a modified version of the drag force method were also

analyzed from the 2015 Tropical Cyclone Intensity (TCI) experiment. TCI sampled Erika,

Marty, Joaquin, and Patricia with, an unprecedented, 784 XDDs. The results indicate
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that: 1) high-spatial resolution vertical velocity measurements can be used to examine and

document important convective features of TCs; 2) by improving the vertical velocity errors,

it is possible to slightly improve dropsonde-derived horizontal wind speeds in the upper-

levels of TCs; and, 3) the spatial resolution of XDDs should be less than 3 km in order to

adequately “resolve” TC convection within transects of soundings.
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PREFACE

This dissertation includes sections and chapters based upon research that was either

previously published in a peer-reviewed journal by the author, or is currently in revision or

preparation to a peer-reviewed journal, to adequately address the scientific concerns posed.

Chapters 2 and 3 contain large excerpts, or slight rewordings, of the introductions, methods,

data, results, figures, and some of the conclusions from Nelson et al. (2019a), Nelson and

Harrison (2019), and Nelson et al. (2019b) (sections 2.2–3.1, 3.2, and 3.3, respectively). Nel-

son et al. (2019a) was published in Monthly Weather Review, and Nelson et al. (2019b) and

Nelson and Harrison (2019) are in various stages of review or submission to the the Journal

of Atmospheric and Oceanic Technology. The results, appendix, and supplementary material

from Nelson et al. (2019a) are also used as motivation for this dissertation and is referenced

throughout this work. Permission to use Nelson et al. (2019a) as part of this dissertation is

granted by the American Meteorological Society and is copyrighted by the AMS, 2019 (see

Appendix A for their signed permission).
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CHAPTER 1

Introduction

1.1 Motivation and purpose

In addition to the basic state variables (pressure, temperature, relative humidity, and

horizontal wind), Global Positioning System (GPS) dropwindsondes (hereafter called “drop-

sondes”) can measure vertical velocity. Dropsonde-derived vertical velocities have been ob-

tained since the mid 1960’s (Bushnell et al., 1973) through a variety of techniques, but the

present state of the art for dropsonde-derived vertical velocity error is approximately ±1−2

m s−1 (Hock and Franklin, 1999; Stern et al., 2016; Nelson et al., 2019a). The vertical

velocity errors need to be below ±1 m s−1 to completely understand and defend the ob-

servations of both convection and weaker vertical motions in many atmospheric phenomena

such as tropical cyclones (TCs). In some circumstances, vertical velocity errors of ±1−2 m

s−1 could be the difference between diagnosing an updraft from a downdraft in the observed

data (e.g., TC updrafts in Nelson et al., 2019a).

Accurate dropsonde-derived vertical velocities are also important to obtain information

on atmospheric convection where Doppler radars do not perform well. Doppler radars have,

historically, provided accurate measurements of vertical velocity within 1 m s−1, but they

can only measure vertical velocity if there is enough precipitation or particles large enough

to be detected by the radar (e.g., Atlas et al., 1973; Jorgensen et al., 1985; Black et al.,

1996; Jorgensen et al., 1996; Matejka and Bartels, 1998; Heymsfield et al., 2010). Doppler

radars are also beam averaging, meaning that vertical velocity, or energy, is averaged over

1



the beam volume and is not a true point measurement (Heymsfield et al., 2010; Ryzhkov,

2007). Dropsonde-derived vertical velocities fill this gap and complement radar data where

there may not be precipitation or where point measurements are required. Dropsondes can

also record vertical velocity profiles from their launched altitude to the surface in nearly all

situations.

The need for more accurate dropsonde-derived vertical velocity measurements moti-

vates this dissertation and serves as the basis for future dropsonde developments. This

dissertation synthesizes 50–60 years of dropsonde-derived vertical velocity research and pro-

poses to readdress the quality and accuracy of vertical velocity measurements by revisiting

and revising older methods. Specifically, this work proposes to incorporate instrumentation

on the eXpendable Digital Dropsondes (XDDs) manufactured by Yankee Environmental

Systems to directly measure the true vertical air speed (TAS) from a differential pressure

sensor in a pitot-static system, similar to what was originally done in the 1960’s (e.g., sec-

tions 2.1 and 2.5; Bushnell et al., 1973). The goal of this research is to reduce the expected

dropsonde-derived vertical velocity errors to ±0.1 m s−1. The corollary objectives of this

dissertation are to: 1) provide a history of dropsondes and their developments (sections 1.2,

1.3); 2) document previous methods to obtain dropsonde-derived vertical velocities (chapter

2); 3) assess the strengths, weaknesses, and errors for the previous methods (section 2.4,

2.5); 4) analyze the vertical velocities from previous TC campaigns using the XDDs (chap-

ter 3); 5) draw conclusions about performance requirements for XDDs and their launch

spacing for future TC research missions (section 3.3); 6) compare design characteristics for

pitot-static measurements on the XDDs (chapter 4); and, 7) demonstrate the capabilities of

dropsonde-derived vertical velocities using a pitot-static system (chapters 5, 6).
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1.2 Brief history of dropsondes

While the earliest balloon-borne observations of the atmosphere date back to the late

1800’s and early 1900’s (e.g., Rykatcheff, 1990), dropsonde technology is relatively young.

Development of the National Center for Atmospheric Research (NCAR) dropsonde began in

the early 1960’s, with a principal goal of mapping the vertical velocity fields of deep convective

thunderstorms (Bushnell et al., 1973). The early NCAR dropsonde (hereafter referred to as

“ED”) recorded atmospheric temperature (T ), atmospheric pressure (p), dynamic pressure

(pd), and rate of change in pressure. The ED used a transponder method to calculate the

dropsonde position by measuring the time delay of the pulse to estimate the distance from

a set of two known fixed ground stations (Bushnell et al., 1973).

The initial NCAR ED design evolved into the Omega-based dropwindsonde (OD) in

the early 1970’s (Cole et al., 1973; Hock and Franklin, 1999; Wick et al., 2018). The OD

operated at a very-low-frequency, used pulses of electromagnetic waves to obtain information

on distance and location, and could be used in more remote locations than the ED (Cole

et al., 1973; Govind, 1973). The OD also recorded data on T , p, and relative humidity (RH)

(Govind, 1973). In 1987, the Office of Naval Research (ONR) conducted the Experiment

on Rapid Intensification of Cyclones over the Atlantic using the NCAR developed Light-

weight Long-Range (Loran) Digital Dropsonde (LDD; Hock and Franklin, 1999; Wick et al.,

2018). The LDD was similar to the OD in that it also used phase shifts to obtain location

information (Govind, 1973), but the LDD had improved horizontal wind measurements, was

lighter than the OD, and had exchanged older analog circuitry for relatively modern digital

circuitry (Hock and Franklin, 1999).

The modern NCAR GPS-based dropsonde began development in 1995 as part of the

Airborne Vertical Atmospheric Profiling System (AVAPS; Hock and Franklin, 1999; Wang
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et al., 2015). Wang et al. (2015) documented the major developments of AVAPS and the

NCAR/Vaisala RD-93 dropsondes, RD-94 dropsondes, and mini-sondes (called NRD94 in

Wick et al., 2018). The mini-sonde is the most advanced research dropsonde available from

NCAR at present, but future developments are expected regarding the T and RH sensors,

as well as the GPS chipset (Vömel et al., 2018). Specifications of the variables recorded,

accuracy, and data acquisition frequency of the NRD94 are provided in Table 1.1 (Wick

et al., 2018). AVAPS can currently support the telemetry of eight dropsondes in the air

simultaneously (Wang et al., 2015; Black et al., 2017; Wick et al., 2018).

1.3 Introduction of the XDDs

The XDD is a small, light-weight dropsonde used with the High-Definition Sounding

System (HDSS) manufactured by Yankee Environmental Systems (Fig. 1.1). A comparison

of the size of the XDD to the RD-94 and mini-sonde is shown in Figure 1.2. Specifications of

the variables recorded by the XDDs, accuracy, and data acquisition frequency are provided

in Table 1.2 (Black et al., 2017; Nelson et al., 2019a). The XDD was developed off of the

eXpendable Digital Radiosonde (XDR) used in the 2008 Arctic Mechanisms of Interaction

between the Surface and Atmosphere (AMISA) project (Black et al., 2017).

The XDD has a twisted, slotted foam body and a cardboard outer shell, with airflow

cutaway windows (Fig. 1.1). This allows the XDD to spin during descent, obtain a ballistic

trajectory, and promotes a stable fall mode. The XDD also features a quadrifilar antenna in

the aft of the foam body and a loop nose antenna for transmitting and receiving data (Fig.

1.1).

At present, the HDSS consists of two, 48-dropsonde magazines, which allows for a total

of 96 dropsondes to be used in a single flight. With two dispensers, the launch rate can be
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as quick as 5 s (Black et al., 2017). The HDSS can also uniquely identify and receive data

from up to 40 dropsondes in the air, simultaneously, though the inclusion of forward error

correction and time division multiplexing. The HDSS and the XDDs provide unprecedented

temporal and spatial resolution of dropsondes from high altitudes (> 18 km).

Various test flights using the HDSS and XDD were conducted from 2011–2014, in-

cluding drops into Hurricane Gonzalo (2014), and has been shown to compare well to the

NCAR/Vaisala RD-94 dropsonde. The XDDs have comparable wind and temperature mea-

surements and resolution to the Vaisala RD-94 dropsonde (Black et al., 2017). Black et al.

(2017) note that the largest discrepancies between collocated XDD and the RD-94 data are

for RH. The RH sensors on the XDDs have a coarser resolution and slower response rate,

which leads to soundings being approximately 5% drier. Nonetheless, the XDDs allow for

the collection of critical high-resolution observations of the thermodynamics, kinematics, and

convection.

In 2015, the ONR conducted the Tropical Cyclone Intensity (TCI) experiment and

launched an unprecedented 784 XDDs into four TCs: Erika (30 August), Marty (27–28

September), Joaquin (2–5 October), and Patricia (20–23 October) (Doyle et al., 2017). The

XDDs were launched from a National Aeronautics and Space Administration (NASA) WB-

57 aircraft at an altitude of approximately 19 km. The goal of TCI was to improve TC

intensity prediction, especially in cases of rapid intensification and rapid weakening, and

better understand TC structural change (Doyle et al., 2017). Specifically, TCI focused on

the role of the outflow layer on intensity change in TCs.
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Table 1.1: Variables recorded by the NRD94s and their range, resolution, repeatability, and
data acquisition frequency. Adapted from Wick et al. (2018).

Range Resolution Repeatability τ

Pressure 3–1080 hPa 0.1 hPa 0.4 hPa 2-Hz
Temperature −90◦C to 60◦C 0.2◦C 0.2◦C 2-Hz

Relative humidity 0–100% 1% 2% 2-Hz
Wind speed —— 0.1 m s−1 0.2 m s−1 4-Hz

Wind direction 0–360◦ —— —— 4-Hz
Fall speed —— —— —— 4-Hz

Table 1.2: Variables recorded by the XDDs and their range, resolution, accuracy, and data
acquisition frequency. Adapted from Black et al. (2017).

Range Resolution Accuracy τ

Pressure 150–1150 hPa 2.5 hPa 1.5 hPa at 25◦C 2-Hz
Temperature −90◦C to 60◦C 0.016◦C 0.14◦C 2-Hz

Relative humidity 0–100% 0.1% 1.8% at 25◦C 2-Hz
Wind speed —— 0.1 m s−1 0.2 m s−1 4-Hz

Wind direction 0–360◦ —— —— 4-Hz
Fall speed —— 0.1 m s−1 0.2 m s−1 4-Hz

Sea surface temp. 0◦C to 50◦C 0.016◦C 0.2◦C at 25◦C 2-Hz

Figure 1.1: An example of an XDD manufactured in 2017.
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Figure 1.2: Size comparison of an XDD, mini-sonde, and RD-94 dropsonde. The dropsondes
are approximately to scale.
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CHAPTER 2

Previous dropsonde-derived velocity methods

There are three primary methods to obtain or calculate dropsonde-derived vertical

velocities: 1) the pitot-static/differential pressure sensor method (e.g., Bushnell et al., 1973);

2) the drag force method (e.g., Hock and Franklin, 1999); and 3) the estimated drag force

method. The pitot-static method was introduced by P. Squires at NCAR and was used in

the original ED in the 1960’s and 1970’s (Bushnell et al., 1973). The pitot-static method

was ultimately abandoned in the later NCAR dropsonde iterations for unknown reasons (T.

Hock and P. Black, personal communication), but it is hypothesized that it was abandoned

after the passing of Squires in lieu of GPS-based or digital methods that did not require

multiple large, analog transducers. NCAR has since used the drag force method for all

dropsonde-derived vertical velocities. It is also possible to use a modified version of the drag

force method in situations where the required information for the drag force method are not

known a priori; this is the estimated drag force method. The three methods are described

in detail below and the typical errors, benefits, and limitations associated with each method

are also discussed.

2.1 Pitot-static methods

The use of a pitot-static to obtain the velocity of air, or the TAS of a moving object,

has been commonly done since the early 1700’s with the invention of the pitot tube by Henri

Pitot (Fig. 2.1; Pitot, 1732), eventually becoming the modern pitot-static design (Prandtl

tube). The design was further improved upon in the 1850’s by Henry Darcy (Darcy, 1858;
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Brown, 2003).

The modern pitot-static system (Fig. 2.2) measures TAS by measuring the difference in

pressure from the ambient air (static) and the total pressure or stagnation pressure (pitot).

The total pressure measured by the pitot is the sum of the dynamic pressure caused by

motion and the ambient pressure (Brousaides, 1983). Pitot-statics are routinely used to

obtain the horizontal airspeed of aircraft (e.g., Brousaides, 1983; Haering Jr., 1995; Federal

Aviation Administration, 2016) or determine the flow velocity in a wind tunnel (e.g., Beck

et al., 2010; Mitchell, 2013). The physics and methodology of a pitot-static is demonstrated

by a simplified form of the Bernoulli principle as shown in equations 2.1–2.3 (e.g., Brousaides,

1983; Federal Aviation Administration, 2016; Beck et al., 2010; Moum, 2015).

d

dz
[ρ
V 2

2
+ p+ ρgz] = 0 (2.1)

ρ
V 2

2
+ p+ ρgz = constant (2.2)

V2 =

√
2(p1 − p2)

ρ2
≈ V =

√
2(dP )

ρ
(2.3)

In order for equation 2.1 to be valid, then equation 2.2 must identically be true. If

variations in height (z) are small, then the hydrostatic component of equation 2.2 is negligible

and an equality between p, ρ, and velocity (V ) at some arbitrary point 1 and point 2 is

established. The left side of equation 2.3 solves for the velocity at point 2 and is simplified to

the generic form on the right side of equation 2.3. TAS can, therefore, be directly calculated

from the observed difference in pressure, if p1 is assumed to be the total pressure and p2
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is the static pressure. The difference between p1 and p2 is known as the dynamic pressure

(hereafter referred to as pd). The indicated airspeed (IAS) traditionally used in avionics

does not take into account the density of the ambient air (Federal Aviation Administration,

2016).

The ED, with a schematic of the pitot-static probe, is shown in Figure 2.3. The

pitot-static probe extended 5.5 inches below the dropsonde and had one pitot port (0.25 in

diameter tip) and six static ports (0.05 in diameter holes, 0.66 in from tip) large enough to

ensure that blockage did not occur due to water (Bushnell et al., 1973). The tip had rounded

edges and came to a ‘point’ at a 30◦ angle. The pitot-static tube was heated to 100◦C to

keep ice from building up on the probe (Bushnell et al., 1973).

Vertical velocity was obtained in two ways: 1) with a pd transducer attached to the

pitot port and a ∂p
∂t

transducer (also known as a p-dot transducer) attached to the static

ports; and, 2) with a pd transducer attached to the pitot port and a standard pressure

transducer attached to the static ports. The first method was filtered with a high-pass filter

to remove low frequencies and the second method was filtered with a low-pass filter to remove

high frequencies. The combination of both filtered signals yielded a final vertical velocity.

The equations used to obtain the final vertical velocity are summarized below:

w1 =

√
2pd
ρ
− 1

ρg

dP

dt
(2.4)

w2 =

√
2pd
ρ
− dzp

dt
(2.5)

w = HP (w1) + LP (w2) (2.6)
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ρ =
p

RdTv
, (2.7)

where w1 is the vertical velocity obtained with the pd and p-dot transducers, w2 is the vertical

velocity obtained with the pd and pressure transducers, zp is the hydrostatic height, t is time,

ρ is density obtained by the ideal gas law using virtual temperature (equation 2.7), HP is

a high-pass filter, and LP is a low-pass filter. Bushnell et al. (1973) used the combination

of the two vertical velocities (w1 and w2), because of the better expected errors of w1 for

high-frequency data and of w2 for low-frequency data. Modern sensors likely do not have as

severe high- or low-frequency biases and, therefore, do not require the combination of the

two vertical velocities. Equations 2.4 and 2.5 are used to calculate the difference between

the pitot-static-indicated TAS and the geometric fall speed. For example, if a dropsonde

was falling through the atmosphere and encountered an updraft strong enough to suspend

it in the air, the geometric fall speed would be zero, but the (fully calibrated) pitot-static-

indicated speed would be equal to the strength of the updraft.

2.2 Drag force methods

Since 1999, dropsonde-derived vertical velocities have been computed utilizing the drop-

sonde fall speed and the drag force equation, assuming that the drag coefficient is independent

of the Reynolds number (Hock and Franklin, 1999). The Reynolds number is the ratio of

the relative airspeed and length scale to the viscosity of air (equation 2.8):

Re =
UL

ν
. (2.8)

Reynolds numbers below 5x105 imply laminar flow plate object, and Reynolds numbers
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above 5x105 imply turbulent flows (e.g., Happel and Brenner, 1965; Incropera et al., 2007).

Dropsonde-derived vertical velocities are now routinely calculated in this manner (Wang

et al., 2015). In more recent research, dropsonde-derived vertical velocities, calculated from

the drag force method, have been used to examine the specifics of convection such as misovor-

ticies and extremely strong updrafts in TCs (e.g., Aberson et al., 2006; Stern and Aberson,

2006; Stern et al., 2016).

The most common equation set used to calculate vertical velocity is as follows from

Hock and Franklin (1999):

V =

(
2mg

CdAρ

) 1
2

=

√
m

CdA

√
2g

ρ
(2.9)

w = V − Vf , (2.10)

where w is the vertical velocity, V is a theoretical terminal fall speed, and Vf is the true

fall speed of the dropsonde (note: V and Vf are positive pointing downward). On the right-

hand side of equation 2.9, the
√

m
CdA

term is referred to as the ‘dropsonde parameter’ (Sp).

In equation 2.9, g is the gravitational acceleration (positive term), m is the mass of the

dropsonde, Cd is the drag coefficient, A is the drag-affected area, and ρ is density. The

area used for the RD-94 dropsondes is the open area of the parachute and it is presumed

to be representative for all dropsondes. The Cd value used is typically 0.61, and the area is

assumed to be fixed at 0.0676 m2 or 0.09 m2 (Wang et al., 2009; Stern et al., 2016).

Early studies, like Hock and Franklin (1999), used the GPS fall speed for Vf , but more

recent studies such as Wang et al. (2015) and Stern et al. (2016) used a calculated hydrostatic

differential pressure fall speed:
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Vf =
1

ρg

dP

dt
(2.11)

for Vf . A hydrostatic fall speed was used in these studies rather than the recorded GPS fall

speed, because large, unrealistic and noisy GPS fall speeds occasionally occur (e.g., Fig. 2.4)

and pressure is more accurate than GPS height (Stern et al., 2016). Figure 2.4 shows an

example of erratic GPS fall speeds from an XDD sounding in Marty (2015) during TCI. The

GPS fall speeds above 15 km and between 6–8 km have high variance and do not match the

hydrostatic fall speeds (Fig. 2.4). The relatively weak GPS fall speeds aloft are not likely to

be real, because they would indicate an unrealistically strong updraft of 15 m s−1 far away

from the core of the TC (318 km from the eye). This is also suspicious, because the GPS fall

speed decreases nearly linearly with decreasing altitude until 14 km, indicating a fall mode,

stability, or GPS issue (Fig. 2.4). The large variance in the GPS fall speed, especially at high

altitudes, is likely due to changing GPS constellations (L. Harrison, personal communication;

Berg, 2003). Large variances in the lowest few kilometers above the surface are occasionally

observed in both the XDD data (Fig. 2.4) and RD-94/NRD94 data (Vömel et al., 2018). If

GPS fall speeds are used to derive vertical velocity, the fall speeds should be heavily screened

based upon the calculated hydrostatic differential pressure fall speed or heavily filtered.

2.3 Estimated drag force methods

There are three variants of the estimated drag force method to use when the exact

values for Cd and m, or the variance in those values, are unknown. These methods are

proposed because the exact Cd of the XDDs used in TCI was not known a priori and the

variances in the m and A of the XDDs used were not known. If it is assumed that Sp for
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any given dropsonde is constant as it falls from some arbitrary altitude (Z) to the surface

(Zo), then equation 2.12 must be true:

V (Z) = V (Zo)

√
ρ(Zo)

ρ(Z)
. (2.12)

The V (Zo) and ρ(Zo) terms represent the estimated surface fall speed and density of a

dropsonde. The three methods to obtain V (Zo) and ρ(Zo) include: 1) an individualized last

data point fall speed and density (M1), 2) a mean or median last data point fall speed and

density from dropsondes launched outside of convective regions (M2), and 3) an estimated

V (Zo) from a mean (or median) Sp from dropsondes outside of convective regions and the

last data point density from dropsondes inside of convective regions (M3). The vertical

velocities from M1–M3 were analyzed using the XDD soundings launched during TCI. It is

assumed that the XDDs were launched outside of convective regions if the sounding profiles

were unsaturated and infrared (IR) cloud top temperatures were above −30◦C. The −30◦C

threshold was chosen, because it matches the warmest IR brightness temperatures for all

deep convective regions observed by Jiang and Tao (2014).

The benefit to using an individualized fall speed (M1) is that it is self-calibrating

and accounts for mass differences from dropsonde-to-dropsonde, including manufacturing

differences, and any icing or riming that does not melt off of dropsondes launched into

deep convection. The last data point fall speed, however, may not represent the still-air

fall speed for an individual dropsonde, because low-level updrafts or downdrafts could be

present or the dropsonde could be in a non-stable fall mode. This is still a problem even

if a threshold is used for the height of the last data point (Fig. 2.5). The use of a mean

or median last data point fall speed and ρ outside of convective regions (M2) is a non-self-
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calibrating estimation of V (Zo) and ρ(Zo) but is less prone to errors due to low-level updrafts

or downdrafts affecting the value of V (Zo) in convective areas. The third method is a hybrid

of the first two methods. Figure 2.6 shows that the variance in the estimated V (Zo) from

ρ(Zo) in convective regions and the median Sp from data outside of convective regions is

considerably smaller than the observed V (Zo) for the same dropsondes during TCI. The

difference in the variance was 1.74 m2 s−2. The median Sp was 4.22 kg
1
2 m

3
2 (Fig. 2.6). The

reduced variance using M3 compared to the others is a consequence of the high confidence

in the measurements of pressure, and subsequently density, for the XDDs. The standard

deviation of the last data point density was small at 0.02 kg m−3 (Fig. 2.6).

A comparison of the vertical velocities from TCI computed from the three methods,

using notched boxplots, is provided in Figure 2.7. Also included in Figure 2.7 is M3 using

the GPS fall speed for Vf rather than the hydrostatic fall speed (M3b). None of the notches

of the box plots overlap, which indicates that the medians of all the methods are statistically

different, but the differences are small enough to not be physically significant. M1 has the

largest variance, with a standard deviation of 2.26 m s−1. The relatively high variance is not

likely physical, because it occurs simply by using different values of ρ(Zo) and V (Zo) and an

individualized Sp. M2 and M3 have the lowest variance in vertical velocity from TCI, which

suggests that M2 and M3 are more robust than M1. It should also be noted that variance

of the vertical velocity is increased in the TCI dataset if the GPS fall speed was used (Fig.

2.7).

2.4 Benefits and limitations

Regardless of the method used to obtain vertical velocity, significant errors may still

exist. In this section, the benefits and limitations of the previously discussed dropsonde-

15



derived vertical velocity methods are detailed in depth. The typical errors associated with

each of the three methods are also discussed.

One benefit of a pitot-static system on a dropsonde is that the pitot-static-derived

TAS is a direct, physical measure of the dropsonde fall speed, relative to the air. The

vertical velocity calculations for the pitot-static outlined by Bushnell et al. (1973) are also

independent of m, Cd, and A, which are major sources of error in the two drag force methods.

The drag force methods either use hydrostatic fall speeds calculated over fairly large distances

(e.g., Stern et al., 2016) or GPS fall speeds that are prone to large amplitude noise (Fig.

2.4). The ED dropsonde directly recorded the hydrostatic height fall speed with a p-dot

transducer (Bushnell et al., 1973).

Bushnell et al. (1973) also note that the ED had a Reynolds number of approximately

5x105, where transition from laminar to turbulent flow occurs. Bushnell et al. (1973) state

that EDs falling at this ‘critical’ Reynolds number can lead to situations where Cd can

change rapidly and irregularly. However, it is not clear if the fluctuations in Cd were due

to parachute/drag device deformations. Regardless, it is plausible that Cd can vary for a

dropsonde parachute as it falls, which causes vertical velocity errors when using the drag

coefficient methods in convective regions.

High accuracy of IAS and, subsequently, TAS from a pitot-static on current operational

aircraft is crucial for safe flights to be conducted (Haering Jr., 1995; Federal Aviation Admin-

istration, 2016; Carlson, 2012), so errors in IAS from any pitot-static need to be small. The

accuracy of speed from pitot-static probes is usually between 0.5–2 m s−1 and are functions

of small errors in the pd (Bushnell, 1966; Bushnell et al., 1973; Brousaides, 1983; Pearson,

1983; SpaceAge Control, 1998; Barfield, 2013). The five primary sources for error are: 1)

port blockage (Federal Aviation Administration, 2016); 2) port placement error (Haering Jr.,
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1995; Carlson, 2012); 3) angle of attack (Pearson, 1983; Haering Jr., 1995; Beck et al., 2010);

4) normal instrumentation error (Carlson, 2012); and, 5) low speed errors (SpaceAge Control,

1998). Over the past 160 years, many studies have been conducted to improve the design of

the pitot-static system to decrease errors and offer more consistent calibration (e.g., Darcy,

1858; Salter et al., 1965; SpaceAge Control, 1998; Brown, 2003; Beck et al., 2010; Carlson,

2012; Reuder et al., 2013; Abdelrahman et al., 2015; Federal Aviation Administration, 2016).

Port blockage becomes a problem when water, ice, or other debris block the port

holes and prohibit the pitot-static from working effectively (Federal Aviation Administration,

2016). If the pitot tube is blocked and a leak port is present, then the air inside the tube

will eventually leak out and the pressure with match the static pressure, giving a zero-pd. If

the pitot tube is blocked and no leak port is present, or the leak port is also blocked, then

the pd will decrease with decreasing height to reflect the change in height. If the static port

becomes blocked and the pitot port is clear, the pd will be biased to positive values as the

object descends. If the pitot and static ports are both blocked, the pd will be zero.

Port placement errors, also known as position errors, occur as a result of the location

of the pitot and static ports relative to the object body (Haering Jr., 1995; Carlson, 2012).

Position errors primarily occur because any object within a stream of air disrupts the flow

and can cause local pressure perturbations that affect the pitot-static measurement (Bushnell

et al., 1973; Haering Jr., 1995). Compressibility and shock waves related to the disruption

of flow by the object can also affect the measurement, but this is primarily at speeds greater

than approximately 100 m s−1 or a Mach number of 0.3 (Haering Jr., 1995). Such high fall

speeds are not observed with any current dropsonde. Position errors are also a function of

the angle of attack.

The angle of attack of the pitot-static probe could have a significant effect on the
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indicated velocity (Pearson, 1983; Haering Jr., 1995; Beck et al., 2010; Carlson, 2012). The

design, shape, and angle of the probe tip dictate the severity of the angle of attack error and

the angles of attack that are suitable for the specific probe (Haering Jr., 1995). Beck et al.

(2010) documented the change in the pitot-static measurements for a specific probe as a

function of angle of incidence through wind tunnel tests (Fig. 2.8). The pressure coefficient

(Cp), which is the ratio of the calibrated pitot-static pd to the true wind tunnel pd, reaches a

minimum when the pitot-static probe is perpendicular to the incoming flow (Fig. 2.8). The

maximum errors in this extreme situation were 7–8 m s−1 at wind tunnel speeds of 35–42

m s−1. Given that modern dropsondes either fall with a parachute (e.g., RD-94s) or with a

ballistic trajectory (e.g., XDDs), such extreme angles of incidence and large errors are not

likely. At 35 m s−1, Cp values of 0.95 or 1.05 correspond to errors of approximately 1 m s−1

(Fig. 2.8).

There are also inherent, normal, instrumentation errors associated with the pd sensor

upon leaving manufacturing. Instrumentation companies can calibrate the sensors before

leaving and provide documentation on the expected error range of the sensor (e.g., All Sen-

sors, 2019), but the errors still affect the confidence in the measurement. Bushnell et al.

(1973) note that the typical instrumentation errors with the pd and static pressure transduc-

ers ranged from 1x10−4–0.8-hPa on the EDs.

At low air velocities, the ratio of the indicated air speed to the total error range

decreases and tends toward unity (SpaceAge Control, 1998). At these low ratios, the total

errors begin to saturate the signal and the percent errors become significant. This is an

inherent problem for measuring any meteorological variable that can decrease to zero or

below a detectable limit. SpaceAge Control (1998) note that at 12 m s−1, the velocity

errors for their wind tunnel pitot-statics were ±2.5% (0.3 m s−1). At higher velocities, error
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dropped below ±0.7%.

The dropsonde-derived vertical velocities using the pitot-static method on the ED

were compared to sailplane vertical velocity observations in quiescent conditions on two

different days in northeastern Colorado (Bushnell et al., 1973). Figures 2.9 and 2.10 show

the dropsonde-derived vertical velocities and the sailplane vertical velocities from 21 and

25 April 1972. The average true vertical velocity in each profile is assumed to be zero,

but the average sailplane vertical velocity was −0.2 m s−1 and 0 m s−1, respectively. The

typical vertical velocity error bounds associated with this methodology were estimated by

the difference between the average pitot-static indicated fall speed and geometric fall speed

(∆w). The differences were on the order of±1 m s−1 and the standard error of the dropsonde-

derived vertical velocities and the sailplane vertical velocities was 0.6 m s−1 (Bushnell et al.,

1973).

Recent advancements in unmanned aerial vehicles (UAVs) have allowed for meteoro-

logical wind measurements using more modern pitot-static probes (Reuder et al., 2009, 2013;

Niedzielski and Coauthors, 2017). Reuder et al. (2009) found that pitot-static UAV-derived

horizontal wind speeds and Vaisala RS92 radiosonde data agreed within 0–2 m s−1, with the

largest discrepancies due to sampling differences and not systematic errors in the measure-

ment or methods. Niedzielski and Coauthors (2017) also found that the differences between

UAV-derived horizontal wind speeds and nearby tower data were at least 1–2 m s−1. Verti-

cal velocity UAV measurements taken at 100-Hz had low standard deviations of 0.31 m s−1

(Reuder et al., 2013).

Dropsonde-derived vertical velocities using drag force methods are attractive, because

no additional specialized instrumentation is needed beyond what is currently on modern

dropsondes, the calculations are straightforward and based upon Newtonian physics, the er-
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rors are easily characterized and estimated, and they have been the common-place, standard

dropsonde-derived methods for almost 20 years. The potential errors associated with drag

force-based calculations like Hock and Franklin (1999), Wang et al. (2015), and Stern et al.

(2016) are: 1) added (subtracted) mass from icing (de-icing); 2) variations in the dropsonde

drag area; 3) variations in drag coefficient; and, 4) presence of low-level updrafts or down-

drafts. The first three affect the calculation of individual Sp values. While mass changes and

dropsonde-to-dropsonde mass differences are more easily understood, variations in Cd and A

are not. Li and Miller (2014a,b) assume that the drag coefficient and drag affected area of

a dropsonde is constant, regardless of the angle of incidence. One can adjust the variables

and parameters in equations 2.9 and 2.10 to estimate the sensitivity or potential errors in

dropsonde-derived vertical velocity using the drag force methods.

The potential errors/sensitivities associated with the vertical velocity measurements

using the Hock and Franklin (1999) methodology with RD-93 and RD-94 dropsondes and a

hydrostatically derived Vf are outlined in the appendix of Stern et al. (2016). The sensitivities

are shown in Figure 2.11, which was adapted from Stern et al. (2016). The true mass of

the dropsonde used in the example sounding was 389 g, Cd was assumed to be 0.61, and A

was assumed to be 0.09 m2 (dashed blue lines in Fig. 2.11). Peak vertical velocity varied

2–5 m s−1 by changing the variables within the ranges examined by Stern et al. (2016).

The author’s state, however, that overall bias at low levels associated with uncertainty in m

(60–80 g difference), A, and Cd is less than 1 m s−1.

A similar analysis was conducted for the XDDs using the M3 estimated drag force

method discussed previously. For the purposes of discussion, it is assumed that the mass

of the XDD is 0.058 kg, the diameter is 0.066 m (Black et al., 2017), and Cd is 0.95. A

drag coefficient of 0.95 was obtained by solving for Cd in equation 2.9, given the median
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Sp from XDDs launched outside of convective regions during TCI and the m and A. For

the four primary sources of error described previously, errors are largest aloft (Fig. 2.12).

This is due to a larger ratio of ρ(Zo) to ρ(Z) in equation 2.12. A ±1 g change in mass

(based upon weight measurements of eight XDDs) leads to errors of approximately ±1 m

s−1 aloft (Fig. 2.12a). If the diameter of the dropsonde varies by 0.0002 m (based upon

caliper measurements of three XDDs), errors in vertical velocity of ±0.14 m s−1 are possible

aloft (Fig. 2.12b). Variance in the drag coefficient of ±0.1 leads to errors of ±2 m s−1 aloft

(Fig. 2.12c). Lastly, the presence of low-level updrafts and downdrafts affecting the median

by ±0.5 m s−1 (close to standard deviation of the sea-level fall speed of 90 XDDs; Fig 2.6b)

leads to errors of ±1.36 m s−1 aloft (Fig. 2.12d).

The total standard deviation of the errors can be calculated by:

σt =
√
σ2
m + σ2

A + σ2
Cd

+ σ2
wL

(2.13)

The total standard deviation of the errors using the M3 methodology is approximately 0.86

m s−1 in the low-levels and 2.39 m s−1 in the upper-levels. The two major sources of error

are the uncertainty in the value of Cd for each dropsonde and the presence of appreciable

low-level vertical velocity. Even in completely quiescent or clear-air conditions where σwL
is

zero, the standard deviation of errors is approximately 0.76 m s−1 in the low-levels and 2.11

m s−1 in the upper-levels. If the conditions were quiescent and Cd was obtained for individual

dropsondes, which is operationally unrealistic, the standard deviation of the errors reduces

to 0.24 m s−1 in the low-levels and 0.67 m s−1 in the upper-levels.

These error estimates agree well with the findings of Stern et al. (2016). A 1 g variation

in the RD-94 calculation of vertical velocity leads to an error of approximately ±0.25 m s−1
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at 12 km, which is similar to the XDDs at 12 km (Figs. 2.11, 2.12). The RD-94s and XDDs

also have comparable errors in vertical velocity due to ±0.05 variations in Cd (Figs. 2.11,

2.12). Stern et al. (2016) allow the RD-94 drag area to vary in size more what was done

for the XDDs, but only small deviations in the XDDs are expected due to manufacturing

differences and ice build-up (Fig. 2.12c). The area used with the RD-94 calculations is the

area of the primary parachute, which can deform and change size during descent. Large

deformations and pendulum motions of the RD-94s require extensive filtering of vertical

velocity. Therefore, errors associated with A are expected to be smaller in the XDDs than

the RD-94s using these drag force-based methodologies.

An additional source of error, GPS fall speed error, only matters if the GPS fall speed

is used for Vf . The u-blox 6 GPS chip used on the XDDs during TCI is claimed to have a

velocity accuracy of 0.1 m s−1 at a circular error probability of 50% (U-blox, 2019). However,

GPS constellation errors, such as dropsondes switching to different GPS constellations, can

cause large, unphysical outliers in the GPS fall speed and dropsonde-derived vertical velocity

(e.g., Fig. 2.4). At the surface, the variances in GPS fall speed are small but not negligible

(Fig. 2.6b). Figure 2.6b shows that the standard deviation of the last data point fall speed

for dropsondes launched outside of convective regions during TCI was approximately 0.9 m

s−1. This agrees well with the standard deviation of the near-surface fall speed of XDDs

launched in test flights in Black et al. (2017). While the variance and standard deviation of

the last data point GPS fall speeds include errors and variances associated with atmospheric

variances in each sounding, such as the presence of weak low-level updrafts or downdrafts

and variations in dropsonde drag, it is the best estimation of the GPS fall speed variances

and errors in the XDDs used during TCI.

Regardless of the dropsonde used, the typical errors for the two drag force methods
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range from ±1–2 m s−1, which means that drag force-based methods do not work well for,

and are not accurate for, weak vertical velocities. This is a major problem for atmospheric

studies of weak convection such as orographic forcing (e.g., Wang et al., 2009) or analysis

of vertical velocities in TCs (e.g., Black et al., 1996). However, these methods are sufficient

in studies focusing on extremely strong convection, where the errors fall below 10% of the

desired signal (e.g., Stern et al., 2016). In such situations, the estimated drag force methods

like M3 are useful in that no knowledge of the drag coefficient, nor the mass, is required. The

only required information for the M3 estimated drag force method is an accurate measure of

surface fall speed outside of convective regions and profiles of p and T to altitudes relatively

near the surface.

2.5 Proposal and hypothesis

The Reynolds number for the XDDs can be approximated by using equation 2.8 and by

assuming that the length scale is the length of the dropsonde (7 in.; Black et al., 2017). This

was done for 90 XDDs launched into clear air during TCI (Fig. 2.13). The Reynolds number

is a function of fall speed, and thus a function of altitude, but maximizes at approximately

2.8x104 (Fig. 2.13). This implies laminar flow for the XDDs (Happel and Brenner, 1965;

Incropera et al., 2007). Because of the laminar flow and lack of a parachute, the Cd is

not expected to radically change during descent. This does not imply, however, that the

Cd is uniform from dropsonde-to-dropsonde or that the Cd is independent of icing. This

means that drag force-based methods to calculate vertical velocity for the XDDs are still

problematic given the errors described previously.

Given the significant technological and mechanical advancements in the past 50–60

years since the introduction of the pitot-static TAS in dropsondes, the capabilities and
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accuracy of a dropsonde-derived vertical velocity with a pitot-static TAS should also, hypo-

thetically, improve. It is proposed here to revisit and revise the older pitot-static dropsonde-

derived vertical velocity methods by Bushnell et al. (1973) on the XDDs. In this dissertation,

an attempt is made to decrease the error in vertical velocity measurements on the XDDs

from ±1–2 m s−1 using the M3 estimated drag coefficient method to an average of ±0.1 m

s−1 by using modern pitot-static methods in quiescent conditions. By directly measuring the

TAS and using the hydrostatic fall speed as the geometric fall speed, GPS location and fall

speed errors, such as in Figure 2.4, will not impact vertical velocity calculations. Further,

the vertical velocity calculations will be independent from errors associated with variances

in m, Cd, A, and low-level updrafts or downdrafts with the previous drag force methods.

Three variations of the classic pitot-static design were considered and tested: 1) a

modified pitot-static (Fig. 2.14a, b); 2) a venturi-static (Fig. 2.15a, b); and, 3) a pitot-

venturi (Fig. 2.16a, b). The three designs measure the pressure difference in three different

ways across the XDDs as they fall. The modified pitot-static is similar to the traditional

pitot-static in that it measures the total pressure through the leading-edge port near the

center of the nose, but the static pressure is measured from the side of the dropsonde and

is shielded from the ram air pressure caused by descent and updrafts or downdrafts (Fig.

2.14a, b). If the dropsonde is assumed to be a blunt cylinder with a length to diameter ratio

of approximately three (Black et al., 2017), a fairly expansive wake is expected to form for

flows with Re ≈ 1x104 (Fig. 2.17; Higuchi et al., 2006). In this situation, a low pressure is

expected to form within the wake. A venturi-static would measure the difference between the

static pressure at the side of the dropsonde and the low pressure in the aft of the dropsonde

(Fig. 2.15a, b). The pitot-venturi measures the difference between the total pressure at the

leading-edge of the dropsonde as it descends and the low pressure at the aft of the dropsonde
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(Fig. 2.16a, b). The venturi ports are through the antenna or to one side of the antenna

behind the foam body. The benefits and limitations of each design are summarized in Table

2.1. The optimum pd measurement, however, would likely be from a venturi-static system

(Fig. 2.15 a, b) as it would be the least likely to be affected by icing.

Because the typical fall speeds of the XDD range from 0–50 m s−1, with an estimated

sea-level fall speed of 18 m s−1, small biases and errors are critical. A 1−2% error, like

those described by SpaceAge Control (1998), would lead to vertical velocity errors of 0.2–0.4

m s−1 at the surface and 0.5–1 m s−1 at 17.5 km for the XDDs. If a specialized small-

range, low-differential pressure (low-pd) sensor, like the DLHR-L05D-E1BD, was used, then

relatively large errors associated with low fall speeds decrease (Fig. 2.18). The DLHR-L05D-

E1BD sensor is an I2C/Serial Peripheral Interface with digital output (bits) and an overall

accuracy of 0.2% (All Sensors, 2019). This would correspond to vertical velocity accuracies

of approximately 0.2 m s−1 at the surface and 0.5 m s−1 aloft. With error compensation and

improvement of techniques, it may be possible to further reduce these errors. The sensor is

rated for temperatures of −20◦C to 85◦C (All Sensors, 2019). A table of the specifications

for the sensor is provided in Table 2.2. It is expected that differential pressure measurements

using the modern DLHR-L05D-E1BD sensor will provide lower clear air dropsonde-derived

vertical velocity errors than the Bushnell et al. (1973) study.

The proposed error budget goal is partitioned into two components: 1) ±0.05 m s−1

instrumentation error; and, 2) ±0.05 m s−1 tube/port placement error. The first component

comprises of the overall accuracy of the sensor, temperature dependent biases, instrument

precision, and input voltage errors. The second component is the error associated with the

sensitivity of the pd measurement to the exact placement of the ports and tubes on the

XDDs. The error budget of ±0.1 m s−1 matches the velocity accuracy in the data sheet for
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the u-blox 6 GPS chip (U-blox, 2019). The proposed error budget does not take into account

errors associated with port blockage or icing and is assumed to be at sea-level in relatively

quiescent conditions. Vertical velocity errors in strong convection will likely exceed ±0.1 m

s−1.

Table 2.1: Analysis of the benefits and limitations of the three pd configurations.

dP method Benefits Limitations

Pitot-static 1)Likely reproducible from drop-to-drop 1) Vulnerable to icing errors;
2) Pitot port blockage;

3) Static needs to bypass circuit
board and penetrate side sleeve

Static-venturi 1) Least prone to icing errors 1) Venturi port may be hard to
reproduce from drop-to-drop;

2) Venturi port placement harder;
3) Static needs to bypass circuit
board and penetrate side sleeve

Pitot-venturi 1)No side port placement issues; 1) Vulnerable to icing errors;
2) No competing issues with 2) Venturi port may be hard to

dropsonde rotation/angle of attack; reproduce from drop-to-drop;
3) Pitot port blockage;

4) Venturi port placement harder

Table 2.2: Sensor specifications for the DLHR-L05D-E1BD, adapted from All Sensors (2019).
Full scale span (full range of the instrument) is abbreviated as FSS. FSS is the full range of
the sensor.

Specification Value (typical) Maximum

Operating range ±12.44 hPa —————
Proof pressure 497.7 hPa —————
Burst pressure 746.5 hPa —————
Nominal span ±0.4x224 counts —————

Common mode pressure ————— 689.5 hPa
Resolution 16 bit —————

Total Error Band 0.2% FSS 0.75% FSS
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Figure 2.1: Henry Pitots original pitot tube design. The two tubes (labeled A and B) were
lowered into the flow and the pressure was recorded as the difference in the water level
between the two tubes (Brown, 2003). This figure is adapted from Brown (2003).
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Figure 2.2: Modern pitot-static system and instruments for aircraft use. Figure adapted
from Federal Aviation Administration (2016).
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Figure 2.3: ED with a pitot-static probe. A schematic of the pitot-static probe is provided
in the inset. Figure adapted from Bushnell et al. (1973).
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Figure 2.4: Atypical GPS fall speed (red) and hydrostatic or differential pressure indicated
fall speed (blue) in m s−1 for one dropsonde (1-D-5F4E) launched in Marty on 27 September
2015. From Nelson et al. (2019a). c©American Meteorological Society. Used with permission.
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(a) (b)

Figure 2.5: Individual last data point fall speeds and altitudes from the data using M1.
Panel (a) is the last data point GPS fall speeds of the dropsondes. Panel (b) is the altitude
of the last data point in each sounding that reached at least 500 m. Also included are mean,
maximum, minimum, median, and standard deviation.
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Figure 2.6: Data points outside of convective regions used to derive the median Sp. Panel
(a) is the last data point altitude. Panel (b) is the last data point fall speed. Panel (c) is the
last data point density. Panel (d) is the Sp for each dropsonde launched outside of convective
regions. Also included are mean, maximum, minimum, median, and standard deviation.
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Figure 2.7: Box plot comparisons between M1, M2, M3, and M3b. The inset to the bottom
right shows that the notches of the box plots do not overlap, which indicates that the medians
are statistically different. From Nelson et al. (2019a). c©American Meteorological Society.
Used with permission.
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Figure 2.8: Polar plot of the pressure coefficient (Cp) at 10◦ angle of incidence intervals to
the flow, 100 mph (pink) and 80 mph (purple). Figure adapted from Beck et al. (2010).
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Figure 2.9: Vertical velocity soundings from sailplane and EDs with a pitot-static probe on
21 April 1972. Shown below each ED sounding is the mean difference in vertical velocity
from the sailplane observations. Figure adapted from Bushnell et al. (1973).
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Figure 2.10: Same as Fig. 2.9, but for 25 April 1972.
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(a) (b)

(c) (d)

Figure 2.11: Sensitivity of vertical velocity of RD-94s due to changes in mass (ms) (a, b),
area (As) (c), and drag coefficient (Cds) (d). Adapted from the appendix of Stern et al.
(2016).
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Figure 2.12: Errors in vertical velocity for XDDs given variations of mass (a), diameter/area
(b), drag coefficient (c), and low-level updrafts (d), adapted from Nelson et al. (2019a).
c©American Meteorological Society. Used with permission.

Figure 2.13: Reynolds number (Re) as a function of altitude for all 90 TCI XDDs launched
outside of convective regions. A smoothing spline (green) is used to illustrate the general
trend. The 17.5 km altitude cutoff is shown in red.
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Figure 2.14: Design for a pitot-static system. Panel (a) is a generic schematic, where the
pitot pressure (P1) is greater than the static pressure (P2), due to airflow (green arrows).
The pressure transducer/membrane is the red square. Panel (b) illustrates a generic layout
for a pitot-static system for the XDDs.
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Figure 2.15: Design for a venturi-static system. Panel (a) is a generic schematic, where the
static pressure (P1) is less than the venturi pressure (P2), due to airflow (green arrows). The
pressure transducer/membrane is the red square. Panel (b) illustrates a generic layout for a
venturi-static system for the XDDs.
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Figure 2.16: Design for a pitot-venturi system. Panel (a) is a generic schematic, where the
pitot pressure (P1) is greater than the venturi pressure (P2), due to airflow and the venturi
effect (green arrows). The pressure transducer constriction of airflow is the red squares.
Panel (b) illustrates a generic layout for a pitot-venturi system for the XDDs.
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Figure 2.17: Visualization of wake flow behind a cylinder in axial flow with a length to
diameter ratio of three. The x-axis and y-axis are normalized by the diameter of the cylinder.
Figure is adapted from Higuchi et al. (2006).

Figure 2.18: Schematic for the DLHR-L05D-E1BD sensor including output/input pins and
dimensions. Adapted from All Sensors (2019).
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CHAPTER 3

Results from TCI

Out of the 785 total XDDs used in the 2015 TCI experiment, 725 were launched into

Marty, Joaquin, and Patricia. This corresponds to 140, 328, and 257 XDDs for each TC,

respectively. Marty was sampled as a tropical storm (sustained winds of 26 m s−1) and a

Category 1 hurricane (36 m s−1) (Berg, 2016b). Joaquin was sampled as a Category 3 (57

m s−1), Category 4 (67 m s−1), Category 2 (47 m s−1), and Category 1 (39 m s−1) hurricane

(Berg, 2016a). Patricia, ultimately, reached a higher peak intensity but was sampled as a

tropical depression (15 m s−1), tropical storm (26 m s−1), Category 4 hurricane (59 m s−1),

and during rapid weakening from a Category 5 hurricane (92 m s−1) (Kimberlain et al.,

2016). Figure 3.1 shows the intensity for each of the three TCs from the National Hurricane

Center (NHC) Best Track dataset and the time periods that they were observed during TCI.

Because of the unprecedented sounding spacing, altitude, frequency and the relative

dearth of in-situ observations in TCs, this analysis is crucial to the future of dropsonde-

derived vertical velocity studies. This analysis also offers a unique opportunity to: 1) doc-

ument the convective structure of individual TCs from dropsondes alone; 2) study updrafts

and downdrafts in unprecedentedly strong TCs like Patricia; 3) evaluate locations where

dropsonde-derived vertical velocities and their errors have appreciable impact; 4) evaluate

the role of vertical velocity in the calculation of horizontal wind; and, 5) examine the impact

of dropsonde spacing on the interpretation of the thermodynamic and kinematic structure

and its impact on future dropsonde studies. Collectively, this chapter serves as documenta-

tion of the vertical velocities obtained using the M3 methodology discussed previously and

42



further illustrates the importance of accurate vertical velocity measurements from dropson-

des.

3.1 Summary of TCI XDD-derived vertical velocities

3.1.1 Introduction

Many studies concluded that deep, strong convection and updrafts are important in

the intensification of TCs (e.g., Steranka et al., 1986; Vigh and Schubert, 2009; Rogers

et al., 2016), but others argue that it is not (Jiang, 2012; Jiang and Ramirez, 2013). The

discrepancies between these studies demonstrate the need for high-quality vertical velocity

measurements and further study of TC convection, updrafts, and downdrafts. The examina-

tion of updrafts and downdrafts themselves, and their potential impacts on intensity change,

in TCs is important. For example, deep-layer shear, and the subsequent asymmetric con-

vection, can lead to short-term TC intensification with weakening thereafter (Kaplan and

DeMaria, 2003; DeMaria et al., 2012). If there is sufficient energy provided to the TC from

the ocean, the cyclone can resist the weakening effects of shear and maintain its strength

or intensify (e.g., Black et al., 2002). As strong updrafts are often located near the radius

of maximum wind (RMW; Black et al., 1994; Rogers et al., 2013; Stern et al., 2016) or just

inside the RMW (Jorgensen et al., 1985; Marks et al., 2008), they can also be associated

with intensification following RMW contraction (Stern et al., 2015).

Another unresolved TC intensification processes is the role of small-scale vorticity and

collocated updrafts in the vicinity of the eyewall. As described by Persing and Montgomery

(2003), TCs can reach intensities higher than their maximum potential intensity (MPI) by

mixing high-entropy air from the eye into the eyewall through vorticity maxima at the eye–

eyewall interface. This process has been dubbed “superintensity” and has been supported
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observationally by the analysis of Montgomery et al. (2006). Bryan and Rotunno (2009),

however, have shown that this process is inconsequential for a TC to reach its MPI. Re-

gardless, intensity changes below the MPI of a TC due to eye–eyewall mixing (“sub-MPI

intensity changes”; Eastin et al., 2005c) remain plausible and are supported by the findings

of Dolling and Barnes (2012).

Updrafts in excess of 10 m s−1 have been observed occasionally in TCs below a height

of 6 km (Jorgensen et al., 1985; Aberson et al., 2006; Stern and Aberson, 2006; Stern et al.,

2016). Stern et al. (2016) and Stern and Aberson (2006) found that extreme updrafts (≥

10 m s−1) observed below 3 km were often collocated with low-level, extreme horizontal

wind maxima (≥ 90 m s−1) in major hurricanes. Other low-altitude (< 6 km) studies found

that updraft strength increases with altitude (Jorgensen et al., 1985) and is strongest within

the eyewall (Stern and Aberson, 2006; Aberson et al., 2006). In many cases, the updrafts

are a part of the asymmetric component of eyewall convection on top of the symmetric

component (Eastin et al., 2005a,c). Jorgensen et al. (1985) found that, between 1–6 km,

the top 10% of eyewall updraft cores are larger and stronger than rainband updrafts. Stern

et al. (2016) and Stern and Aberson (2006) also found that updrafts maximized in strength

in the downshear-left quadrant in the core for soundings below 3 km.

Other high-altitude studies (0–16 km) using flight-level and Doppler radar data have

also occasionally documented updrafts in excess of 10 m s−1 in TCs (Black et al., 1994, 1996,

2002; Marks et al., 2008; Heymsfield et al., 2010). These extremely strong vertical motions

occur primarily in the upper-levels, above 10 km (Black et al., 1996; Guimond et al., 2010),

which is not surprising as vertical velocity tends to maximize aloft between 10 and 15 km

(Black et al., 2002; Heymsfield et al., 2010; Reasor et al., 2013; DeHart et al., 2014). Black

et al. (1994) found strong updrafts widely scattered in the mid- and lower-levels (2–6 km) of
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Hurricane Emily (1987), with small pockets of strong updrafts aloft (> 6 km). Black et al.

(1996) observed a relative minimum at 5–6 km in mean vertical velocity profiles. DeHart

et al. (2014) found that strong updrafts in the core tended to occur aloft and primarily in

the downshear-left quadrant. Downdrafts tended to occur aloft and in the midlevels in the

upshear-left quadrant.

The most accepted, and supported, theory for updraft azimuthal and altitudinal dis-

tributions is that updrafts tend to initiate at low levels in the downshear-right quadrant and

rise helically to their maximum intensity aloft in the downshear-left quadrant, with down-

drafts dominating the upshear quadrants, specifically the upshear-left quadrant (Franklin

et al., 1993; Black et al., 2002; DeHart et al., 2014). Black et al. (2002), Zipser (2003),

Guimond et al. (2010), Reasor et al. (2013), and DeHart et al. (2014) all show that updrafts

maximize in strength in the downshear quadrants of the TC, especially the downshear-left

quadrant in the core.

To date, radar, dropsonde, and flight-level data have found very few strong updrafts

or downdrafts outside of 100 km from the storm center (e.g., Black et al., 1996), despite

large amounts of lightning occurring in this region (Corbosiero and Molinari, 2002, 2003).

This apparent discrepancy may be a result of limited samples at large radii, research and

reconnaissance flights avoiding strong convection for safety, or relatively large radar volumes

that cannot detect small scale convective features. While the eyewall embodies the primary

ascending branch of the secondary circulation (Shapiro and Willoughby, 1982), convection

outside of the eyewall can be excited by vortex Rossby waves (Black et al., 2002; Corbosiero

et al., 2006) or consist of convective clouds stretched and deformed into intense banded

structures (Moon and Nolan, 2015).

The most recent work on dropsonde-observed updrafts in TCs, Stern et al. (2016), had
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information for the radial, azimuthal, and altitudinal variances of updrafts in the lowest 2–3

km and examined updrafts that exceeded 10 m s−1. The azimuthal, radial, and altitudinal

XDD-derived vertical velocity distributions below 17.5 km from TCI flights into hurricanes

Marty, Joaquin, and Patricia using the HDSS and XDDs (Doyle et al., 2017) were examined

through the use of median vertical velocity profiles and contoured frequency diagrams. Boot-

strap median significance tests were also conducted to examine statistical differences in the

medians of positive and negative vertical velocities within specific sections of the TCs and

are included in Appendix B. Basic characteristics of the observed updrafts and downdrafts

from TCI were also examined.

3.1.2 Methods

The dropsonde-derived vertical velocities were calculated using the M3 methodology

(equations 2.9, 2.10, 2.12), with the hydrostatic, or differential pressure, fall speed (equation

2.11) as Vf . The differential pressure fall speed was used in lieu of the GPS fall speed due to

large, unrealistic discrepancies between the two fall speeds in the midlevels and aloft (e.g.,

Fig. 2.4) and because the accuracy of the pressure is better than GPS height derived fall

speeds (Stern et al., 2016). This also matches the methodologies of Wang et al. (2015) and

Stern et al. (2016). The differential pressure indicated fall speed was computed with a 15-

point centered difference, after removing missing data, rather than from the Atmospheric

Sounding Processing Environment (ASPEN) software (Bell et al., 2016), corresponding to a

vertical depth of 750 m at 17.5 km and 270 m near sea-level, assuming there were no missing

data points.

Dropsondes that were assumed to be launched outside of convective regions (see section

2.3) were removed from the dataset. An example of IR brightness temperatures on 23
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October in Patricia, with dropsondes launched outside of convection indicated by red circles,

is provided in Figure 3.2. Soundings were also removed from the dataset if their last observed

data point was at a GPS altitude greater than 500 m. The rationale for such a restriction

was to ensure that the dropsondes recorded data in the low levels of TCs, comparable to

Stern et al. (2016). The data were also restricted to only include data points below an

altitude of 17.5 km. While the WB-57 was flown at an altitude of approximately 19 km,

most dropsondes launched outside of convective regions take approximately 25 s to reach a

stable fall speed after launch, a distance of 0.5 km to 1 km. The altitude restriction of 17.5

km was chosen to prevent erroneous data and provide an approximate 500 m buffer. Data

were also restricted to within an RMW normalized radius, R∗, of 10 to eliminate data points

that were well removed from the TC. The distances that correspond to 10R∗ for each day

are provided in Table 3.1.

The XDD-derived vertical velocities were then filtered using a nine-point binomial

smoother. This corresponds to altitudinal depths of 162–450 m assuming no missing data.

Spurious data points outside of two standard deviations of the local mean in the nine-point

filter were removed after smoothing was completed. The total dataset was reduced to 276,515

data points and 437 soundings after all of the data restriction and removal were conducted.

Individual data points are used to create and analyze the vertical velocity frequency

distributions, but were not considered to be independent updrafts or downdrafts. Black et al.

(1996) defined updrafts and downdrafts using Doppler radar data as consecutive, continuous

vertical velocities exceeding |1.5 m s−1| with at least one data point exceeding |3 m s−1|.

The |1.5 m s−1| threshold was chosen as it was outside the limits of uncertainty in the

vertical incidence Doppler velocity and the |3 m s−1| threshold was chosen as it was one

standard deviation of hydrometeor fall speed above the limit of uncertainty (Black et al.,
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1996). Updrafts and downdrafts were similarly defined as consecutive, continuous vertical

velocities exceeding |2 m s−1| (limit of uncertainty, see section 2.4) with at least one data

point exceeding |4 m s−1| (one standard deviation of the vertical velocity above the limit of

uncertainty).

3.1.2.1 Calculation of storm center and RMW

The storm center was calculated using an iterative method similar to the methodologies

of Creasey and Elsberry (2017) and Willoughby and Chemlow (1982) to find an estimated

XDD-derived zero-wind center (ZWC). The dropsonde horizontal winds were put into a

storm-relative framework by subtracting the u and v components of TC motion from the

horizontal wind components. The TC motion was calculated by taking six-hour centered

differences about the closest (in time) Automated Tropical Cyclone Forecast (AFTC) Best

Track center from NHC.

A single ZWC was found by constructing orthogonal lines to the storm-motion-relative

horizontal wind vectors at all altitudes. Weighted means of the intersecting independent (x,

y) coordinates from pairs of observations yield a single ZWC estimate and corresponding

time for the depth of the troposphere. The weighting function was:

W =
Vt

(r2)
, (3.1)

where W is the weight for a given intersection, Vt is the mean storm-motion-relative horizon-

tal wind speed for any observation pair, and r is the mean radial distance of the observation

pairs to the previous TC center estimate at the time of the observations. The initial ZWC

estimate was taken to be the NHC Best Track center, linearly interpolated to the minute.

As a consequence of the weighting-function dependence on the ZWC estimate, equation 3.1
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must be iterated to convergence. Iteration was done until the ZWC latitude and longitude

converged on a single ZWC solution within 0.001◦ (approximately 100 m). All solutions

converged within 18 iterations. The final ZWC is a single ZWC representative of the time

of the observation with the highest weight. The final ZWC was also linearly interpolated to

each minute of the observation period.

Rather than the traditional flight-level RMW, an estimated radius of maximum hori-

zontal wind speed below an altitude of 2 km was calculated from the XDD horizontal wind

data. The XDD-derived RMW was obtained by examining the strongest 99.98% of hori-

zontal winds below 2 km and within a 100 km radius of the TC center. The RMW was

approximated to be the mean radial distance of these relatively fast wind data points, rather

than a single data point maximum. This averaging was done because a single data point

may be unrepresentative of the true horizontal wind field of the TC, may be artificially

strong due to turbulence or noise, or may not be appreciably different than other horizontal

wind measurements at other radii. The 99.98% percentile was chosen iteratively to exclude

secondary wind maxima within 100 km of the centers of the three TCs. The number of data

points used to derive the RMW ranged from one to eight for each observation day, with most

days having greater than five data points, corresponding to one to three soundings for each

observation day with most days having only one RMW sounding.

An RMW was also calculated from overpasses of the Hurricane Imaging Radiometer

(HIRAD; Cecil et al., 2016) as the radius with the strongest observed wind speed. For the

HIRAD RMWs, the TC center was taken to be the ZWC linearly interpolated to match the

approximate center crossing, except for Joaquin. The ZWCs for Joaquin in this section, and

in Creasey and Elsberry (2017), differ from the HIRAD estimated center by approximately 5–

7 km, potentially due to tilt of the TC. To alleviate this issue, the estimated HIRAD centers
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noted in Creasey and Elsberry (2017) were used to derive the HIRAD RMWs for Joaquin.

Throughout the rest of this chapter, the RMWs used are the closest RMWs (derived from

both the XDD data and the HIRAD data) to the Best Track dataset.

The well-documented, high-resolution, flight-level RMWs and Hurricane Research Di-

vision (HRD) centers were not used, because the flight-level data were rarely coincident with

the TCI missions and HRD centers were not available for three of the ten observation days.

Comparisons of the flight-level RMWs and HRD centers to the RMWs and ZWCs used in

this chapter is provided in Appendix C, but the centers agree within a mean of approximately

17 km, the RMWs agree within a mean of 8–9 km, and the use of the flight-level RMWs and

HRD centers do not produce statistically different results for the seven days of coverage.

3.1.2.2 Vertical wind shear

The 1800 UTC environmental shear was obtained from the Statistical Hurricane In-

tensity Prediction Scheme (SHIPS) dataset (DeMaria and Kaplan, 1994), as all flights were

conducted near 1800 UTC. Data points were then analyzed in a shear-relative framework.

Here, shear is defined conventionally (e.g., DeMaria and Kaplan, 1994) as the 850–200-hPa

magnitude and direction with the vortex removed, and averaged from 0–500 km relative to

the 850-hPa vortex center.

3.1.3 Results

Summarized in Table 3.1 is the number of viable dropsondes for each day in the full

dataset. Also given are storm diagnostics including shear and intensity from the Best Track

dataset. As can be seen in Table 3.1, the dataset contained a strongly-sheared case (Marty),

a moderately-sheared case (Joaquin), and a weakly-sheared case (Patricia). Joaquin was an

50



Atlantic hurricane, while Marty and Patricia were in the eastern North Pacific. Most of the

observation periods had a component of westerly shear and only Patricia on 21 October had

easterly shear. It is also evident that the number of dropsondes after data exclusion was

distributed evenly from day-to-day, except for 20 and 23 October.

Figure 3.3 shows the individual vertical velocity data points in a shear-relative frame-

work within 10R∗ and 3R∗. The downshear-right (DR) quadrant had the fewest observations:

only 20% of the total vertical velocity data points. The upshear-right (UR) and upshear-left

(UL) quadrants contained almost half of the data with 26% and 24% of the vertical velocity

data points, respectively. The downshear-left (DL) contained 30%. Even though the ma-

jority of observations were outside of the RMW (approximately 80%), the area of the TC

within the RMW had the highest number of data points per unit area, approximately 50

times more data points per unit area than outer radii (outside of 3R∗). The area within 3R∗

is defined as the core following Rogers et al. (2013). Approximately 49% of the data was

inside of the core.

3.1.3.1 Vertical profiles of vertical velocity

The mean vertical velocity values for the cores and outside of the cores of the three TCs

agree well with the mean Doppler-derived vertical velocities for the eyewall and stratiform

regions examined by Black et al. (1996) (Table 3.2). Mean, median, and standard deviation

profiles of vertical velocity for all of the data, within the core, and outside of the core are

provided in Figure 3.4. The mean profiles in vertical velocity for data inside and outside of

the core also agree well with the Doppler vertical velocity profiles observed for the eyewall

and stratiform regions in Black et al. (1996).

The median vertical velocity profiles were weaker than the mean vertical velocity pro-
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files, but similar structures exist (Fig. 3.4a, b). The strongest vertical velocities were found

aloft and within the core in both profiles (Fig. 3.4a, b), in agreement with the Doppler pro-

files observed by Black et al. (1996) despite XDD-derived vertical velocity errors increasing

with altitude (section 2.4). Vertical velocities were positive for much of the depth of the

troposphere, but some negative vertical velocities were found below 5 km in the mean profile

for data outside of the core (Fig. 3.4a), below 10 km in the median profile for data outside

of the core (Fig. 3.4b), and below 5 km in the median profile for data within the core (Fig.

3.4b).

There was a notable peak in mean vertical velocity strength and standard deviation

within the core just above the approximate freezing level at 5–6 km (Fig. 3.4a, c). It is not

known if this spike is physically significant (e.g., Black et al., 1996; Heymsfield et al., 2010)

or instrumentation errors due to icing. Regardless, the standard deviation of the vertical

velocity was largest within the core, but fairly constant for data outside the core below 10

km (Fig. 3.4c).

Figures 3.5–3.8 show median vertical velocity profiles both inside (red) and outside

(blue) of the core and within each shear-relative quadrant for Marty, Joaquin, Patricia, and

for the total dataset. The approximate number of soundings within the core and outside of

the core in each quadrant are also provided. These numbers are approximate because some

soundings crossed quadrant boundaries. In those situations, the sounding was classified

in the quadrant where it had the most data points. Statistical differences or statistical

significances of the vertical velocity strength cannot be inferred directly from the median

profiles, but they do agree well with bootstrap analysis and significance tests of the median

vertical velocities (see Appendix B). Mean profiles (not shown) show similar results as the

median profiles.
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Marty had large amplitude and noisy median vertical velocity profiles within the core

in the DL quadrant and outside of the core in the DR quadrant (Fig. 3.5). This is likely a

result of vertical variations in the vertical velocity data and a lack of samples (nine soundings

and one sounding, respectively). The upshear profiles within the core and outside of the core

are consistent and similar to each other, with the weakest median vertical velocity profiles

in the UL quadrant (Fig. 3.5). Joaquin had stronger and more positive median vertical

velocity profiles in the DL and UR quadrants within the core above 6 km, and strong low-

level positive vertical velocities in the left-of-shear quadrants within the core, especially the

UL quadrant (Fig. 3.6). Patricia had strong upper-level positive vertical velocities in the

DR quadrant, while the median vertical velocity profiles in the UR and DL quadrants were

primarily weak and negative (Fig. 3.7). Similar to Marty, Patricia had a noisy vertical

velocity profile within the core in the UL quadrant (Fig. 3.7), caused by three soundings

near the eye that had strong variations in vertical velocity about zero. The combined dataset

features positive upper-level vertical velocities above 7.5 km in the DL quadrant and negative

vertical velocities below; positive vertical velocities below 13 km within the core in the DR

quadrant; negative vertical velocities below 13 km outside of the core in the DR quadrant;

and, generally, weaker median vertical velocity profiles in the upshear quadrants (Fig. 3.8).

3.1.3.2 Contoured frequency diagrams

Contoured frequency diagrams with respect to radius (CFRD), shear-relative (SR)

azimuth (CFAzD), and altitude (CFAD) are used to examine the XDD-derived vertical

velocity distributions from TCI (Figs. 3.9–3.11). The contoured frequency plots were created

for each TC as well as for the total dataset, with an altitudinal bin size of 250 m, a radial

bin size of 0.5R∗, and an azimuthal bin size of 10◦. The bin sizes were chosen iteratively and
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subjectively. The vertical velocities were binned every 1 m s−1. Due to the shear-relative and

radial biases in sampling, the contoured frequency plots are displayed as contoured percent

diagrams, with a logarithmic scale. All percentages within any given bin (radial, azimuth,

or altitudinal) sum to 100%. For reference, black horizontal lines in the contoured frequency

diagrams denote the vertical velocity thresholds used to define updrafts and downdrafts (|2

m s−1| and |4 m s−1|).

The peak vertical velocity strength generally decreased with increasing radius, and

the radial distribution shows that positive vertical velocities more frequently exceeded the

updraft thresholds than negative vertical velocities for the downdraft thresholds (Fig. 3.9d).

The decrease in vertical velocity strength with increasing radius was not as prominent in

Marty (Fig. 3.9a) as it was in Joaquin and Patricia (Fig. 3.9b, c). It should be noted,

however, that negative vertical velocity magnitudes were much weaker than positive vertical

velocity magnitudes, especially in Patricia (Fig. 3.9c) and exhibited less of a decrease in

strength with increasing radius. Joaquin and Patricia had similar vertical velocity frequency

distributions radially, especially for positive vertical velocities (Fig. 3.9b, c). Both TCs also

had vertical velocity data points that exceeded 10 m s−1, which occurred at the RMW in

Patricia and at approximately 3.5R∗ in Joaquin (not shown in the CFRDs).

For all storms and all radii (Fig. 3.10d), there was little azimuthal variation in the

observed vertical velocity distribution, but the strongest vertical velocities were primarily

observed in the right-of-shear quadrants. The lack of azimuthal variation in the vertical

velocity distribution could be attributed to the relatively small sample size of three TCs

or the asymmetric sampling during TCI (Fig. 3.3). The CFAzD for Marty (Fig. 3.10a)

shows little azimuthal variation in the strongest negative vertical velocities, with most of the

variation in the distribution occurring within the vertical velocity uncertainty bounds. The
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strongest positive vertical velocities in the distribution, however, were observed in the left-of-

shear quadrants, especially the DL quadrant (Fig. 3.10a). The vertical velocity distributions

of Joaquin and Patricia also show little systematic azimuthal variation (Fig. 3.10b, c), with

sporadic peaks in frequency at different vertical velocity values. There was a decrease in

the vertical velocity strength, and frequency of vertical velocities above the updraft, and

downdraft, thresholds in the upshear quadrants of Patricia (Fig. 3.10c).

The CFADs for all radii for each TC and the combined dataset are shown in Figure

3.11. Vertical velocity in the combined dataset was a weak function of altitude, with Figure

3.11d showing that the vertical velocity distribution broadens slightly aloft and becomes

skewed towards larger, more positive values. There was little altitudinal variation in the

CFAD for Marty, but the distribution was skewed towards positive vertical velocities, and

there were higher frequencies of negative vertical velocity below 5 km (Fig. 3.11a). The

altitudinal vertical velocity distribution in Joaquin was more centered around zero than in

Marty, but high percentages of negative values of approximately −1.5 m s−1 were present

in Joaquin (Fig. 3.11b). Positive vertical velocities in Joaquin weakly increased in strength

aloft and negative vertical velocities were fairly uniform with altitude (Fig. 3.11b). Patricia

had a different altitudinal vertical velocity distribution than Marty or Joaquin (Fig. 3.11c).

The CFAD for Patricia shows that vertical velocity was skewed towards negative values,

especially within the uncertainty bounds, but there was more spread in the positive values

and little altitudinal signal (Fig. 3.11c).

CFRDs, CFAzDs, and CFADs for data within the core and outside of the core are

provided in Appendix D, but the results are summarized here. The CFAzDs and CFADs

for data within the core are not appreciably different from the total CFAzDs and CFADs.

The similarities between the contoured frequency diagrams for all radii and the contoured

55



frequency diagrams from the core reflect that the cores of the TCs have the most variation

and spread in the strength of the observed vertical velocities. The azimuthal distributions for

all three TCs outside of the core have higher frequencies of lower vertical velocity strength,

but little azimuthal variability exists in vertical velocity strength. There were very few data

points outside of the core in the DR or UR quadrants in Marty and in the DR quadrant in

Joaquin due to sampling biases, which makes the distribution outside of the cores in Marty

and Joaquin not robust. The CFADs for data outside of the core generally showed narrower

vertical velocity distributions and more negative vertical velocities than the total CFADs,

with differing altitudes of peak vertical velocity strength.

3.1.3.3 Updrafts and downdrafts

Table 3.3 shows the number of updrafts and downdrafts (defined using the |2 m s−1|

and |4 m s−1| thresholds; section 3.1.2) observed in the subset of TCI soundings, as well as

the means and medians of the maximum and minimum updraft and downdraft speeds. Given

the small sample size of updrafts and downdrafts, robust conclusions about the convective

asymmetries in the three TCs cannot be made, but the examination of the updrafts and

downdrafts observed is useful in understanding the TCI vertical velocity dataset. Patricia

had the strongest observed mean and median updraft speeds, the strongest peak updraft

strength at 23.89 m s−1, and was the only TC to have a low-level updraft (below 2 km) with

a maximum value exceeding 10 m s−1. Downdraft speeds were more comparable between

the three TCs, with the strongest downdraft in Joaquin at −8.7 m s−1. Most updrafts and

downdrafts observed during TCI had mean and median strengths of approximately |3–4 m

s−1|, and maximum strengths of approximately |4–5 m s−1|. Updraft and downdraft depths

were primarily less than 4 km with 50% of the updrafts and downdrafts smaller than 1.2–1.4
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km.

Shown in Figures 3.12–3.14 are select “cross sections” of vertical velocity with updrafts

and downdrafts contoured. It is important to note that the cross sections presented here are

not true cross sections, because the dropsondes drift around the TC in a cyclonic trajectory.

Each data point corresponds to a unique altitude and distance from the center to account

for radial drift of the dropsondes during descent. The horizontal and radial winds reported

in Figures 3.12–3.14 are storm-motion-relative.

The strongest vertical velocities and updrafts in Marty on 27 September were aloft,

above 12 km in the eyewall (inner 30–40 km; Fig. 3.12). There were weaker bands of positive

and negative vertical velocities outside of the eyewall to the northwest of the TC center (Fig.

3.12). Joaquin on 2 October was at a stronger intensity than Marty on 27 September and

had considerably stronger and deeper eyewall updrafts than Marty at approximately 8 m s−1

(Fig. 3.13). Joaquin on 2 October also exhibited an asymmetric distribution in the eyewall

convection (e.g., Fig. 3.13). The strongest eyewall convection was towards the southeast of

the TC center, which is on the downshear side of the storm (Fig. 3.13).

The vertical velocity cross section on 23 October in Patricia shows deep, strong low-

level and mid-level eyewall updrafts greater than 10 m s−1 (Fig. 3.14a, b). Patricia also

had a low-level updraft that exceeded 10 m s−1 collocated with a localized azimuthal wind

maximum (Fig. 3.14b) and apparent radial overturning circulation (Fig. 3.14c) in the

vicinity of a secondary eyewall observed in HIRAD data (Fig. 3.15), which supports the

numerical simulations by Hazelton et al. (2017). The low-level radial overturning circulation

was sampled by six soundings spaced 5–11 km apart with small radial (approximately 18–

300 m) and azimuthal (approximately 1–2 km) drifting below 2 km. The spacing of the

last data points of the soundings also did not deviate drastically from their spacing at 2
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km. The relatively small radial and azimuthal motions, and small spacing deviations of

the soundings below 2 km, do not severely impact the interpretation of the low-level cross

section in Figure 3.14c and indicates that the radial overturning circulation is real and not a

manifestation of sounding issues. It cannot be concluded with absolute certainty, however,

that the low-level radial circulation and the strong low-level updraft were directly associated

with the secondary eyewall. The radial overturning circulation and low-level updraft were

also collocated if the high-resolution HRD center was used instead of the XDD-derived ZWC,

which had a mean difference of 6 km on 23 October. This suggests that the presence of the

radial overturning circulation in Figure 3.14 is robust despite the differences between the

two tracks.

Patricia also had a ±2 m s−1 amplitude wave-like feature in the vertical velocity on 23

October near 17 km with a wavelength of approximately 20–30 km. This apparent wave-like

feature is in the same approximate location to where Duran and Molinari (2018) found a

potential gravity wave at a comparable wavelength (Fig. 3.14d, e). The potential gravity

wave is visible in both pressure (Fig. 3.14d) and potential temperature (Fig. 3.14e) at a

wavelength of 20–30 km. The agreement between both studies, and the agreement between

the wave-like feature in the vertical velocity, pressure, and potential temperature, further

supports that the XDDs sampled a gravity wave in Patricia on 23 October.

3.1.4 Discussion

Examining the altitudinal, azimuthal, and radial frequency distributions of vertical

velocity, as well as the strength of the vertical velocity, serves a critical role in understanding

the kinematic and convective environments of the TCs observed during TCI. The results

presented here are a preliminary step at evaluating dropsonde-derived vertical velocities
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from the XDDs in TCs. The unprecedented high temporal and spatial resolution of these

dropsondes during TCI allowed for analysis of the vertical velocities in Marty, Joaquin,

and Patricia. These results serve as documentation of the strength and location of vertical

velocities observed during TCI.

From the large datasets of RD-93 and RD-94 data, it has been shown that low-level (< 3

km) updrafts greater than 10 m s−1 occur exclusively in major hurricanes (Stern et al., 2016).

Out of the 437 dropsondes (276,515 data points) considered, only 719 vertical data points

had vertical velocities greater than 10 m s−1 (0.3% of the data), only 12 unique updrafts

had maximum vertical velocities greater than 10 m s−1, and only two of the positive vertical

velocity data points below 3 km reached 10 m s−1. The two data points were within a low-

level updraft with collocated horizontal winds of 42 m s−1 and an overturning circulation in

Patricia on 23 October as a major hurricane, but during rapid weakening (Figs. 3.14 and

3.15). At the same time, a potential upper-level gravity wave was observed in the vertical

velocity, pressure, and potential temperature fields (Figs. 3.14). The strongest downdrafts,

however, were not observed in Patricia, but in Joaquin.

The results show that vertical velocity strength, updraft strength, and downdraft

strength are all strongest within the core (Figs. 3.4–3.9), which is also supported by compar-

isons of CFADs and CFAzDs for data within the core and outside of the core (see Appendix

D). Evidence of stronger, positive mean and median vertical velocities were also found aloft

for the entire dataset and within most shear quadrants in all three TCs (Figs. 3.4–3.8),

which agrees with the findings of Black et al. (1996), Black et al. (2002), Heymsfield et al.

(2010), Reasor et al. (2013), and DeHart et al. (2014) that utilized flight-level or Doppler-

radar data for altitudes up to approximately 12–16 km. The CFADs either do not illustrate

this characteristic or do not illustrate it as strongly as the CFADs in Black et al. (1996). For
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example, the 0.0625–8% frequency contours for positive vertical velocity in Joaquin broaden

with height to varying degrees (Fig. 3.11b), but not as strongly as observed in Black et al.

(1996).

The TCI XDD-derived vertical velocity CFADs and the CFADs shown by Black et al.

(1996) may differ because: 1) vertical velocity errors are largest aloft (section 2.4); 2) drop-

sonde fall stability is likely a larger issue aloft; 3) there are three TCs in this dataset and

seven TCs in Black et al. (1996); 4) the use of a differential pressure fall speed rather than

the GPS fall speed produces weaker vertical velocities aloft (see Appendix E); 5) TC in-

tensity, rate of intensity change, and time relative to peak intensity or rapid intensification

can cause differences in CFADs (McFarquhar et al., 2012); 6) CFAD profiles can vary from

storm-to-storm (Nguyen et al., 2017); 7) lack of radar data aloft and the use of a minimum

reflectivity threshold drastically changes TC CFADs in the upper levels (McFarquhar et al.,

2012; Nguyen et al., 2017); and, 8) if the true geometric center of an updraft or downdraft

is not sampled, then vertical velocity may be underestimated for the updraft or downdraft

(Jorgensen et al., 1985). The TCI XDD CFADs more resemble the rainband and stratiform

CFADs from Black et al. (1996) than the eyewall CFAD (Fig. 3.11). The CFADs do resem-

ble the CFAD from simulations of Dennis (2005) near rapid intensification, but without a

minimum reflectivity threshold (McFarquhar et al., 2012). Further, the similarities between

the mean and median values (Table 3.2), profiles (Figs. 3.4–3.8), and the results in Black

et al. (1996) provide support and increase confidence in the quality of the XDD-derived TCI

vertical velocity dataset.

The azimuthal vertical velocity distributions (Fig. 3.10) do not show robust patterns

and do not agree well with the canonical wavenumber-one convective asymmetry within the

core (e.g., Black et al., 2002; Corbosiero and Molinari, 2002, 2003; Stern and Aberson, 2006;
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Guimond et al., 2010; Reasor et al., 2013; DeHart et al., 2014), which could be due to the

relatively small sample size. Further, it is possible that the convection was organized by

vortex tilt rather than the 850–200-hPa shear (e.g., Stevenson et al., 2014). It is important

to note that the 850–200-hPa shear direction is a simple vector difference between two levels

and assumes that the shear changes uniformly between the levels, whereas the tilt structure

is a function of altitude through multiple layers and potentially exhibits more variability in

space and time (e.g., Creasey and Elsberry, 2017). It is also plausible that the shear strength

or direction changes non-linearly between the 850 and 200-hPa levels, which could account

for these differences.

This discrepancy and lack of data, especially at outer radii, also suggests that more

observations with an even distribution of samples in each shear-relative quadrant are likely re-

quired to analyze dropsonde-derived convective asymmetries in individual TCs using CFAzDs.

Bootstrap analysis provided in Appendix B, however, suggests that Marty had the strongest

median XDD-derived vertical velocities in the DL quadrant within the core, but the lack

of data in each shear-relative quadrant make the finding unrobust. It is also important to

remember that the CFAzDs are used to look at the azimuths with the highest frequency of

vertical velocity, which can lead to discrepancies. For example, it is possible that a quadrant

could have a relatively higher frequency of vertical velocities at an appreciable strength, but

the mean or median strength within the quadrant may be considerably weaker.

In order to better understand dropsonde-derived vertical velocities, the errors associ-

ated with the calculation of vertical velocity need to be addressed. If GPS fall speeds are

used in the calculation of vertical velocity, strict screening of the data must be conducted to

remove large, unrealistic errors in the fall speed like in Figure 2.4. If a maximum difference

of 1 m s−1 between the GPS fall speed and the hydrostatic differential pressure fall speed
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is allowed, then 40,168 data points from the subset TCI soundings used would need to be

removed or quality controlled. Stern et al. (2016) note, however, that using the differen-

tial pressure fall speed alone may introduce errors when examining extreme non-hydrostatic

updrafts. This serves as justification for the improvement of the measurement of drop-

sonde fall speed and the decrease in dropsonde fall speed errors. As shown in section 2.4,

the dropsonde-derived vertical velocity errors from the XDDs are approximately ±1–2 m

s−1. Optimistically, dropsonde-derived vertical velocity errors an order of magnitude smaller

would improve the confidence of the vertical velocities between ±2 m s−1, which accounts

for a large portion of the vertical velocity distributions in TCs (e.g., Black et al. (1996) and

Figs. 3.9–3.11). Vertical velocity errors within the 1–2 m s−1 range also impact the ability

to observe gravity wave features aloft in TCs like in Patricia on 23 October (Fig. 3.14).

3.2 Wind finding equations

3.2.1 Introduction

While this dissertation is focused on addressing dropsonde-derived vertical velocity

methods, accuracies, and errors, accurate horizontal wind speeds are also important in de-

picting and documenting TC structure. While it is unlikely that dropsondes sample the

most extreme horizontal wind speeds (e.g., Stern and Bryan, 2018), as they are difficult to

use to identify the RMW (section 3.1; Cecil and Biswas, 2017), dropsondes are useful for

depicting the general horizontal wind fields within the hurricane boundary layer (Franklin

et al., 2003). These horizontal wind observations are also important in analyzing features

associated with deep, strong convection within TCs (Aberson et al., 2006; Stern et al., 2016;

Stern and Bryan, 2018), documenting TC outflow and the strength of the warm core (e.g.,

Komaromi and Doyle, 2017), analyzing turbulence (Li and Miller, 2014a,b), and creating
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composite radial and azimuthal wind profiles (Giammanco et al., 2013). For example, Fig-

ure 3.14 depicts a strong updraft that was associated with the radial overturning circulation

of a secondary eyewall that occurred in Patricia on 23 October.

As GPS chip sets improve, so do the reported horizontal position and velocity accu-

racies. Past dropsonde studies using the RD-93s, RD-94s, or XDDs have noted horizontal

wind accuracies or error estimates between 0.1 m s−1 and 0.5 m s−1 (Hock and Franklin,

1999; Wang et al., 2015; Black et al., 2017). The u-blox 6 GPS chip used on the XDDs

during TCI is claimed to have a velocity accuracy of 0.1 m s−1 at a circular error probability

of 50% (U-blox, 2019). Accuracies of 0.05 m s−1, however, may be possible if the GPS chip

was upgraded to the new u-blox 8 (U-blox, 2019).

Despite the increased position and velocity accuracies in dropsonde GPS chip sets, in-

accuracies exist in the methods used to calculate the horizontal wind speed. One of the most

rudimentary methods for calculating the horizontal wind is to assume that the horizontal

wind components (u, v) are equal to the horizontal motion components (ẋ, ẏ) of the drop-

sonde (Hock and Franklin, 1999; Houchi et al., 2015). This incorrectly assumes that: 1) the

dropsonde can be considered as a spherical point; 2) the dropsonde acclimates immediately

to the horizontal wind; 3) the dropsonde acclimates immediately to the local wind shear;

and, 4) there are no appreciable vertical or horizontal accelerations of the dropsonde motion

speed. This method will, hereafter, be referred to as the xy-methodology.

Hock and Franklin (1999), referred to as HF99 in this chapter, derived a set of equa-

tions, commonly referred to as the ‘wind-finding equations’ (WFEs), to calculate the hori-

zontal wind components from the position information of a falling object in the presence of

wind shear. In their calculations, they assume that: 1) the dropsonde can be considered as

a spherical point; 2) the dropsonde acclimates immediately to the wind shear; 3) the magni-
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tude of the difference between the true horizontal wind and the dropsonde motion is small

compared to the difference between the true vertical wind and the dropsonde fall speed; 4)

the vertical velocity is negligible; 5) the Coriolis parameter can be neglected; and, 6) the

vertical acceleration of the dropsonde motion is small compared to the gravitational force.

The HF99 methodology is an improvement upon the rudimentary xy-methodology, because

it accounts for the dropsonde fall speed and the ratio of the horizontal accelerations to the

downward gravitational acceleration.

Li and Miller (2014a), referred to as LM14a in this chapter, note that vertical velocity

cannot be ignored or cancelled when dropsondes are launched operationally into convection.

In some cases, the dropsonde may stall or ascend and the horizontal motion of the dropsonde

more closely matches the true horizontal wind (LM14a). LM14a still assumes, however, that

the magnitude of the difference between the true horizontal wind and the dropsonde motion

is small compared to the difference between the true vertical wind and the dropsonde fall

speed. This assumption may not hold in the situations they cite, where the dropsonde fall

speed is approximately equal to the vertical wind speed. In that case the magnitude of the

difference between the true horizontal wind and the dropsonde motion may be comparable to

the difference between the true vertical wind and the dropsonde fall speed. LM14a use their

version of the WFEs to find analytical solutions to depict dropsonde-observed turbulence.

The HF99 and LM14a WFE methodologies were derived, analyzed, and optimized for

simple calculations of u and v for the RD-93 and RD-94 dropsondes, which have parachutes.

Unlike these dropsondes, the XDDs do not have parachutes and fall at much faster rates

(Black et al., 2017). Because of their fast, ballistic fall trajectories, the standard xy-

methodology is likely not the optimum or most accurate method to compute horizontal

winds for the XDDs. The HF99 and LM14a methodologies both contain major assumptions
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that do not hold in convective environments, like the inner core of a TC, and, therefore, may

not be true for the XDDs. The xy-, HF99, and LM14a methodologies were used to compute

horizontal winds using data from the TCI dataset. An alternative method to compute the

horizontal wind using a more complete equation set was also analyzed.

3.2.2 Methods

3.2.2.1 Governing equations

From the governing equations for a falling object, derived below, there are four meth-

ods for calculating the horizontal winds using dropsondes: 1) the xy-method (equations

3.18, 3.19); 2) the HF99 WFEs (equations 3.16, 3.17); 3) the LM14a WFEs (equations 2.9,

3.14, 3.15); and, 4) the full WFEs (equations 2.9, 3.12, 3.13). This section summarizes the

derivation of the four equation sets starting from Newton’s second law:

~F = m~a (3.2)

~F = m~axî+m~ay ĵ +m~azk̂ (3.3)

~a = ~g +
CdρA~V |~V |

2m
(3.4)

ax =
CdρAVx|~V |

2m
(3.5)

ay =
CdρAVy|~V |

2m
(3.6)
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az = g +
CdρAVz|~V |

2m
(3.7)

where ~V is the three-dimensional motion-relative wind vector. It should be noted that the

true Cd for any dropsonde is not likely to be uniform. The dropsonde horizontal Cd may be

larger than the vertical (nose into the flow) Cd. Computational fluid dynamics simulations

of the XDDs in axial and radial flow using the simFlow software (see chapter 4) suggest

that Cd varies from 0.93 (axial) to 1.28 (radial), respectively. The relative uniformity of Cd

for the XDDs with respect to angle of incidence to the flow is due to the similar ratios of

drag force to area in the model. The assumption of a uniform Cd, however, would lead to

weaker horizontal accelerations of the XDDs than what is observed in reality (equations 3.5,

3.6). Given that the XDDs do not have a parachute and fall faster than other dropsondes,

the horizontal accelerations are not likely to be appreciably large, except for in areas of

strong gradients in wind speed (e.g., the core of Patricia; Fig. 3.14). This implies that the

uniform Cd assumption is not likely to introduce large errors when using the XDDs outside

of the eyewall or other high-gradient regions in the wind speed. For simplicity, it is hereafter

assumed that the XDDs have a uniform Cd to derive the WFEs.

If equations 3.5, 3.6, and 3.7, are expanded, the following equations are obtained:

mẍ = 0.5ρCdA(u− ẋ)
√

(u− ẋ)2 + (v − ẏ)2 + (w − ż)2 (3.8)

mÿ = 0.5ρCdA(v − ẏ)
√

(u− ẋ)2 + (v − ẏ)2 + (w − ż)2 (3.9)
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mz̈ = mg + 0.5ρCdA(w − ż)
√

(u− ẋ)2 + (v − ẏ)2 + (w − ż)2 (3.10)

where ẍ, ÿ, and z̈ are the dropsonde acceleration components. Equation 3.10 can be re-

arranged as:

0.5ρCdA

m
=

(z̈ − g)

(w − ż)
√

(u− ẋ)2 + (v − ẏ)2 + (w − ż)2
(3.11)

If equation 3.11 is plugged into equations 3.8 and 3.9, and re-arranged to solve for u

and v, an equation set is obtained to compute the horizontal wind components.

u =
ẍ(w − ż)

(z̈ − g)
+ ẋ (3.12)

v =
ÿ(w − ż)

(z̈ − g)
+ ẏ (3.13)

Using the assumptions of LM14a, equations 3.12 and 3.13 can be simplified to be:

u =

∣∣∣∣wg ẍ− ẋ

g
z̈

∣∣∣∣+ ẋ (3.14)

v =

∣∣∣∣wg ÿ − ż

g
ẍ

∣∣∣∣+ ẏ (3.15)

If it is assumed that ẍ and w are zero, however, the equations reduce to the HF99

WFEs.

u = − ż
g
ẍ+ ẋ (3.16)
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v = − ż
g
ÿ + ẏ (3.17)

A form of the HF99 WFEs is commonly used in the Atmospheric Sounding Processing

Environment (ASPEN) software for quality controlling dropsonde data (Bell et al., 2016).

If it is further assumed that there are no horizontal accelerations of the dropsonde,

equations 3.16 and 3.17 reduce to the xy-method equations.

u = ẋ (3.18)

v = ẏ (3.19)

Equations 3.12 and 3.13 indicate that by increasing the accuracy of the dropsonde

GPS position and dropsonde horizontal velocity, the accuracy of u and v should increase.

Another consequence of equations 3.12 and 3.13 is that by increasing the accuracy of vertical

velocity and dropsonde fall speed, the accuracy of u and v should increase, which further

motivates this dissertation. It also supports further analysis of dropsonde-derived vertical

velocity errors and the addressing ways to improve the measurements.

HF99 calculated vertical velocity using equations 2.9 and 2.10. If it is assumed that

w is zero and the dropsonde is falling at terminal speed (z̈ equals zero), then the u and v

wind components equal the horizontal motion of the dropsonde. In this situation, equation

3.11 is reduced to equation 2.9 (chapter 2). HF99 note that the differences between the full

WFE horizontal winds and their WFE horizontal winds are small and on the order of 0.5

m s−1. It is unknown if these small differences are comparable for the XDDs or if they are
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larger/smaller in the convective environments of a TC.

3.2.2.2 Data

A total of 725 XDDs were launched into Marty, Joaquin, and Patricia, but the hori-

zontal wind was calculated using the four equation sets for only 631 XDD of the soundings

from the TCI experiment, because they terminated below an altitude of 500 m. This 500 m

restriction was used to ensure that soundings contained data within the low levels of the TCs

comparable to Stern et al. (2016). Note that the R∗ restriction used in section 3.1 was not

used in this section in order to compare the four WFE methods both within the TCs and

within the environments outside of the TCs. Data were also restricted to be below 17.5 km

due to dropsonde kinematic adjustments upon launching from the aircraft at 19 km. The

TC centers and RMWs were the same as in section 3.1 and vertical velocity was computed

from using the M3 methodology.

The latitude, longitude, altitude, vertical velocity, dropsonde velocity, and dropsonde

acceleration were smoothed using a nine-point binomial smoother, and anomalous data points

outside of two standard deviations of the local mean in the nine-point filter were removed.

After all data removal and data restriction, a total of 376,717 horizontal wind data points

were compared. In an effort to estimate the utility of using any version of the higher-order

WFEs, the HF99, LM14a, and full WFE methodology horizontal winds are compared to

the xy-method horizontal winds. In addition, the full WFE methodology horizontal winds

are compared to the others to demonstrate the utility of using the full,“un-approximated,”

equation sets to obtain the horizontal wind. For the sake of brevity, the xy-, HF99, LM14a,

and full WFE methods are abbreviated as V1–V4, respectively, in all plots.
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3.2.3 Results

Figure 3.16 shows two sample soundings of horizontal wind from a non-convective (NC)

region of Marty on 28 September and a highly convective region (C) of Patricia during rapid

decay on 23 October. The designation of NC versus C is qualitative, but is supported by the

strength of vertical velocity in the profile (Fig. 3.17), the infrared brightness temperatures

(Fig. 3.18), and the distance from the eye. The sounding from Marty on 28 September had

a mean R∗ of approximately nine and a mean distance of approximately 340 km from the

eye, which is well outside of convection of the TC core. The sounding from Patricia on 23

October had a mean R∗ of approximately one and a mean distance of approximately 11 km

from the eye, which is well within eyewall convection.

The horizontal winds from the four equation sets agree well in both the NC and C

soundings and show the same qualitative structure, with only slight differences between them

(Fig. 3.16a, b). Figures 3.16c and 3.16d show the differences between the horizontal winds

from the three higher-order WFE methods (HF99, LM14a, and full WFE methodologies)

and the xy-method. Both the NC and C soundings show that the largest differences are

aloft, and the smallest differences occur in the low-levels. The C sounding, however, has the

largest absolute differences (Fig. 3.16d). The direction of the difference (positive or negative)

depends upon the method used, but the methods agree more within the NC sounding than

the C sounding (Fig. 3.16c, d). This could be due to, in part, by the high amplitude noise

in the differences in the C sounding (Fig. 3.16d).

Figure 3.19 shows notched box plots of the horizontal winds from each of the four

methods. The edges of the notches denote the 95% confidence interval of the median. If

the notches of any box plots overlap, then the medians are statistically similar (Chambers

et al., 1983). The horizontal winds from the xy- and HF99 methods have medians that are
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statistically similar (Fig. 3.19). Only the full WFE and LM14a horizontal winds have sta-

tistically different medians (Fig. 3.19), but the differences in the medians are not physically

large for any of the methods. Mean and median profiles of the horizontal wind speed at

all radii illustrate that the largest variance between the four methods is above 12 km (Fig.

3.20). This agrees with the sample soundings in Figure 3.16. All four methods agree that

the wind speed maximizes at 22 m s−1 at an altitude of 0.88 km.

3.2.3.1 Comparing to the xy-method

The mean, median, and standard deviation of the absolute difference between the

three higher-order WFE horizontal winds and the xy-method horizontal winds is provided

in Table 3.4. All three higher-order WFE methods have similar mean, median, and standard

deviation absolute differences in the horizontal winds of approximately 0.6, 0.3, and 0.9 m

s−1, respectively. Student’s t-tests show that the HF99, LM14a, full WFE methods have

statistically different horizontal winds compared to the xy-method at the 95% level. Only

the horizontal winds from the LM14a and full WFE methods are statistically different at the

99% level using Student’s t-tests. The results from Table 3.4 suggest that any of the higher-

order WFE methods offer statistically significant changes to the horizontal wind compared

to the xy-method.

Figure 3.21 shows histograms for the horizontal wind differences for all of the data.

While all three higher-order WFEs have similar absolute horizontal wind differences and

percent of difference to the xy-method horizontal wind, the HF99 method had a slightly

negative skew, and the full and LM14a methods had similar weak negative skews (Fig. 3.21a,

b). All three methods have similar interquartile ranges (IQRs), with spans of approximately

0.65 m s−1. Figure 3.21c indicates that using any of the three higher-order WFE equation
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sets produces approximately 4–8% change in the horizontal wind over the xy-method, which

corresponds to approximately 0.5–1 m s−1 (Fig. 3.21d).

The horizontal wind differences between the full WFE methodology and the xy-method

horizontal winds are largest aloft and near the surface (Fig. 3.22a), which agrees well with the

C sounding from Patricia (Fig. 3.16d). The differences also generally decrease in magnitude

with increasing radius away from the TC cores. This indicates that the horizontal wind from

soundings within the environments of the TCs are not as strongly affected by the method

used as within the TC itself (Fig. 3.22b, c). It is also evident that the strength of the

vertical velocity impacts the strength of the difference, which is not surprising considering

that vertical velocity is used in the full WFE method to obtain the horizontal wind (Fig.

3.22d). In areas where vertical velocity is weak or negative, larger differences between the

xy-methodology and the full WFE methodology horizontal winds exist (Fig. 3.22d).

Figure 3.23 shows profiles of mean and median differences between the three higher-

order methods and the xy-method, as well as the standard deviations in the differences.

Negative values indicate that the xy-method horizontal winds are weaker. The largest impact

of the choice of method, and the overall variance in the wind speed differences, is largest

aloft (Fig. 3.23). The differences are only statistically significant, however, above 12 km

(Fig. 3.23a, b), which agrees with the findings in Figure 3.22a.

The general locations and conditions where the two methods differ (Figs. 3.22, 3.23)

suggests that using the full WFE method may impact the horizontal wind in key areas of the

TCs and impact the interpretation of the strength of the horizontal wind physically. To test

this hypothesis, the horizontal winds from the xy-methodology and the full WFE methodol-

ogy were compared directly for transects of soundings across the TC centers. Figures 3.24a,

b, 3.25a, b and 3.26a, b show the horizontal wind using the xy-method for select cross sec-
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tions in Marty (27 September), Joaquin (2 October), and Patricia (23 October). These are

the same cross sections analyzed in section 3.1 (Figs. 3.12–3.14). The cross sections also

show the change (Figs. 3.24b, 3.25b, 3.26b) or absolute change (Figs. 3.24a, 3.25a, 3.26a)

in the horizontal wind by using the full WFE methodology in lieu of the xy-methodology.

The strongest location for absolute change in Marty occurs in sporadic pockets above

13 km (Fig. 3.24a). The largest absolute difference was approximately 6 m s−1 at 315

km from the eye and an altitude of 16.4 km (Fig. 3.24a), which is adjacent to a region of

weak, positive vertical velocity (Fig. 3.12). The low-level (< 2 km) eyewall horizontal wind

maximum is relatively unaffected by the use of the full WFE methodology (Fig. 3.24a, b).

Most of the upper-level horizontal winds of Marty on 27 September were strengthened by

2–4 m s−1 by using the full WFE method, but there are areas aloft where the horizontal

wind is weakened by −2 m s−1 (Fig. 3.24b).

Like in Marty, the largest absolute differences between the horizontal winds using the

xy-methodology and the full WFE methodology were aloft (Fig. 3.25a). However, absolute

differences greater than 2–4 m s−1 were observed at lower altitudes than in Marty, above 10

km (Fig. 3.25a). The largest absolute differences in Joaquin on 2 October were above 15 km

in the downshear (southeast) side of the eyewall (Fig. 3.25a) above a strong updraft that was

stronger than 10 m s−1 (Fig. 3.13). The horizontal winds using the full WFE methodology

were generally faster aloft by 2–5 m s−1, but one area aloft and adjacent to a weak updraft

to the southeast (downshear) at 200 km was approximately 5 m s−1 slower using the full

WFE methodology (Fig. 3.25b).

The location for the strongest absolute change occurs within the uppermost section of

Patricia from 15–17.5 km (Fig. 3.26a). In some locations, the differences are large at 6 m

s−1 (Fig. 3.26a). Weaker, but notable 0.5–2 m s−1 changes occur within the eyewall (inner
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20–40 km) and below the freezing level outside of the eyewall (below 6 km) (Fig. 3.26a).

The midlevel, 5–6 km, horizontal wind speed maxima to the southeast side of the eye is

strengthened by approximately 3 m s−1 and broadened by using the full WFE methodology

(Fig. 3.26a, b). Using the full WFEs increases the speed of the horizontal wind at the base of

the TC outflow layer and increases the speed of the horizontal wind within the eyewall (Fig.

3.26b). Sporadic increases and decreases exist within the eye, and outside of the eyewall

(Fig. 3.26b).

3.2.3.2 Comparing to the full WFEs

As all three higher-order methods produce statistically different horizontal winds to

the xy-method, the full WFE method horizontal winds are compared directly to the HF99

and LM14a horizontal wind speeds to examine the impact of using it over any of the other

methods. The mean, median, and standard deviation of the absolute difference between

the horizontal winds from the three other methods and the full WFE method is provided

in Table 3.5. The LM14a method and the xy-method have similar mean, median, and

standard deviation absolute differences in horizontal wind to the full WFE method, but the

HF99 methodology has larger mean, median, and standard deviation absolute differences by

approximately a factor of two (Table 3.5). Student’s t-tests at the 99% level also indicate

that the full WFE method produces statistically different horizontal wind speeds compared

to any of the other methods.

The results in Table 3.5 are also supported by the histograms in Figure 3.27. The HF99

methodology had the largest spread in wind speed difference (Fig. 3.27a), largest absolute

difference (Fig. 3.27b), largest percent difference (Fig. 3.27c), and smallest percentiles of

absolute differences (Fig. 3.27d). The results in Figure 3.27 indicate that by using the full
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WFEs for the XDDs in TCI rather than the HF99 methodology, a 5–10% change or 1–3 m s−1

difference in the horizontal wind can be achieved. The IQRs for the differences between the

full WFE methodology and the xy-methodology or LM14a methodology horizontal winds

are similar with spans of 0.5–0.6 m s−1, but the IQR for the differences between the full

WFE methodology and the HF99 methodology horizontal winds was statistically significantly

larger at approximately 1.3 m s−1.

Figure 3.28 shows profiles of mean and median horizontal wind speed differences be-

tween the full WFE method and the other methods. Negative values indicate that the

full WFE methodology produces weaker horizontal wind speeds. Like in Figure 3.23, the

largest, statistically significant differences are above 12 km (Fig. 3.28). The HF99 and

xy-methodologies have similar horizontal wind speed difference profiles (Fig. 3.28a, b), but

the standard deviation in the horizontal wind speed differences between the HF99 and full

WFE methodologies are considerably larger than for the xy- and LM14a methodologies (Fig.

3.28c). The LM14a methodology has a median difference of zero to the full WFE methodol-

ogy horizontal winds below 13 km (Fig. 3.28a). The LM14a methodology also overestimates

the horizontal wind speed aloft compared to the full WFE methodology (e.g., Fig. 3.28b).

Transect figures similar to Figures 3.24a, b, 3.25a, b, and 3.26a, b were produced

comparing the HF99 methodology horizontal wind to the full WFE methodology horizontal

wind (Figs. 3.24c, d, 3.25c, d, and 3.26c, d). Similar qualitative results can be obtained

when comparing the two methodologies. One of the ubiquitous findings is that the absolute

differences between the HF99 methodology and the full WFE methodology horizontal winds

are larger than the absolute differences between the xy-method and the full WFE method-

ology horizontal winds, especially in the upper levels of all three cross sections (Figs. 3.24c,

3.25c, and 3.26c). This is similar to the findings in Table 3.5, implying that incorporating
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dropsonde accelerations without taking into account vertical velocity in the WFEs likely in-

creases the dropsonde-derived horizontal wind errors. In many cases, the absolute differences

exceed 5 m s−1, with pockets of greater than 6 m s−1 differences (e.g., Fig 3.26c). Given

that the horizontal winds using the HF99 method are approximately 10 m s−1 in these areas

aloft, percent differences can approach approximately 50%, which is both statistically and

physically significant.

The largest differences occur: 1) in the upper levels of Marty (15–17.5 km), with radial

bands below (Fig. 3.24c); 2) above 10 km on the downshear (southeast) side of Joaquin

(Fig. 3.25c); 3) above 10 km and outside of the inner 200 km on the upshear (northwest)

side of Joaquin (Fig. 3.25c); 4) in the upper levels of Patricia (15–17.5 km; Fig. 3.26c); 5) in

the eyewall of Patricia, especially the upper and middle portions of the eyewall (Fig. 3.26c);

and, 6) areas below the freezing level outside of the eyewall in Joaquin and Patricia (Figs.

3.25c, 3.26c).

This means that the upper levels of all three TCs, especially for Patricia on 23 October,

and the upper eyewalls, have horizontal winds that are stronger using the full WFEs rather

than the HF99 methodology (Figs. 3.24d, 3.25d, 3.26d). The full WFE method does produce

weaker horizontal winds in some locations of the core, near the eye (e.g., Patricia; Fig. 3.26d),

and upper levels at outer radii (e.g., Joaquin at 180 km southeast of the eye; Fig. 3.25d),

but the overall impact of using the full WFEs is an increase of the horizontal wind in the

upper levels of the cross sections by a mean of 0.75 m s−1 and a median of 0.5 m s−1.

3.2.4 Conclusions

The use of one of the three higher-order WFE sets (HF99, LM14a, or full) does change

the horizontal wind in the TCI dataset using the XDDs. The difference is on the order of
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approximately 5% of the xy-methodology winds, or approximately 0.5–1 m s−1, over the

entire dataset (Fig. 3.21). This is close to the 0.5 m s−1 estimate by HF99, but specific areas

of the TCs have larger changes of > 5 m s−1 (e.g., Fig. 3.25a).

The HF99, LM14a, and full WFE methodologies produced horizontal winds that were

statistically different from the simplistic xy-methodology. Student’s t-tests show that all

methods were statistically different from one-another, despite the medians being statistically

similar for the xy- and HF99 methodology horizontal wind speeds (Fig. 3.19). The largest

mean or median absolute difference in horizontal wind speeds, however, was between the

HF99 methodology and the full WFE methodology (e.g., Tables 3.4, 3.5). The full WFE

methodology is also the only methodology to include information on XDD accelerations and

the vertical velocity. This suggests that the full WFE methodology is the most robust,

physically correct, and complete methodology for the XDDs.

The full WFE method produces a 5–10% difference in horizontal wind, or approxi-

mately a 1–3 m s−1 difference compared to the HF99 methodology (Fig. 3.27). There are

differences, however, of more than 5 m s−1 in key areas of the TCs such as the bottom of the

outflow layer, the eyewall, and, potentially, the rainband regions (Figs. 3.24, 3.25, 3.26). The

HF99 method also underestimated the horizontal wind speed aloft to the full WFE method

the most, with a mean and median of approximately −0.75 and −0.54 m s−1, respectively.

The HF99 method horizontal winds also have the most spread and largest IQR for

the differences from the full WFE method horizontal winds, whereas the LM14a method

horizontal winds have the least spread and smallest IQR. Interestingly, the horizontal wind

speed differences between the xy-method and the full WFE method horizontal wind speed

are similar to the differences between the LM14a method and the full WFE method (Fig.

3.27). This collectively suggests that incorporating dropsonde fall speed and horizontal
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acceleration without accounting for vertical velocity or vertical acceleration like in the HF99

method erroneously increases the variance in the horizontal wind speed.

The largest impact of using the full WFEs is within the TCs themselves, rather than

the environment, where weaker horizontal winds occur, and in areas of weak or negative

vertical velocity (Fig. 3.22). This is a result of equations 3.12 and 3.13, where only when

w equals z does the horizontal wind equal the same as the xy-method. If w ≤0, substantial

differences in the horizontal winds speeds occur. This agrees well with the finding that the

largest impacts occur within the upper levels of Marty and Patricia and below the freezing

level outside of the eyewall region in Patricia. These situations, however, are in contrast to

the large differences in the eyewall, especially in the upper portions, where w can be strongly

positive and compete with ż, which would cause the horizontal winds from the full WFE

method and the xy-method to be comparable. The large differences in the upper levels,

especially the upper levels of the eyewall, likely occur due to the deceleration of the XDDs

as they encounter strong updrafts. Strong deceleration would cause the denominators of

equations 3.12 and 3.13 to be small, resulting in a larger difference.

The large, ±3–5 m s−1 differences aloft are not likely to be completely caused by the

expected 2 m s−1 vertical velocity errors described in section 2.4. By perturbing the observed

vertical velocity by ±2 m s−1, horizontal wind errors associated with vertical velocity errors

can be estimated. The horizontal wind errors caused by potential vertical velocity errors

have an absolute mean and median between 0.25–0.57 m s−1 for the entire dataset. The

absolute mean and median errors increase to approximately 0.57–1.54 m s−1 for data above

15 km, which does not fully account for the ±3–5 m s−1 differences aloft between the HF99

and full WFE methodologies.

The relatively small impact of the vertical velocity errors is because (z̈ − g) >> (ẋ) or
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(ẏ) in equations 3.12 and 3.13 for most of the XDDs launched into TCI. For example, the

median horizontal errors aloft due to potential vertical velocity errors is only ±0.1 m s−1

in Patricia on 23 October, because the vertical deceleration of the XDDs as they encounter

the convective eyewall and statically stable upper levels is exceedingly stronger than the

horizontal acceleration of the dropsondes.

It is not shown here that the use of the full WFE method produces more accurate

horizontal winds. There were no independent, collocated horizontal wind data in time and

space to the TCI soundings to validate upon. Other flights either did not coincide with TCI

soundings or they sampled other regions of the TCs. The results do show, however, that the

use of a more complete, less approximated equation set yields statistically different horizontal

winds, with a mean absolute change of at most 0.5–2 m s−1 over the entire dataset. This

difference may be small and physically insignificant, but larger differences (> 5 m s−1) were

possible aloft are physically significant and warrant further examination of the equations

used to derive horizontal wind from dropsondes.

3.3 Temporal and spatial autocorrelations: Implications for future

dropsonde-based missions

3.3.1 Introduction

Due to the high sampling rate of the XDDs, it is possible that successive data points

in a sounding, or data points from adjacent soundings, were appreciably correlated (i.e.,

correlation values greater than 0.5; Brooks and Carruthers, 1978), and likely represented

the same atmospheric phenomena, such as an updraft or small-scale vorticity maximum.

At present, no study has considered the temporal and spatial autocorrelations (Brett and
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Tuller, 1991; Griffith, 2003; Khalili et al., 2007) of dropsondes in TCs. Only one study,

Black et al. (1996), has directly examined the spatial autocorrelations of radar data in TCs.

Analysis of the temporal and spatial autocorrelations of the TCI soundings are important to:

1) aid targeted dropsonde or dropsonde deniability studies (studies examining the impact of

removing observational data to be assimilated into a model; Mu et al., 2009; Torn and Hakim,

2009; Wu et al., 2009; Romine et al., 2016); 2) evaluate what coherent features are resolvable

by the dropsondes; 3) perform accurate spatial interpolation of any recorded variable; and,

4) provide guidance as to what horizontal spacing is required to resolve various aspects of

TC structure within transects of soundings. This dissertation only focuses on the latter

three points. In this section, an analysis is conducted to evaluate the temporal and spatial

autocorrelations of the XDDs used in TCI with the kriging spatial interpolation framework.

The autocorrelation of data points in individual soundings as well as the spatial correlation

between adjacent soundings are considered. The variables considered were vertical velocity,

relative humidity, horizontal wind speed, temperature, and equivalent potential temperature

(abbreviated as w, RH, |Vh|, T , and θe in this section).

Knowledge of the temporal and spatial autocorrelations of dropsondes is also required

in order to accurately depict TC structure from transects of dropsondes or aircraft. Some

studies indicate that to resolve features on the scale of the RMW, grid spacing of approx-

imately 14 km or less is required (Gentry and Lackmann, 2010). The results of Gentry

and Lackmann (2010), however, show that increased model resolution down to 2-km grid

spacing or less is required to understand TC eyewall kinematics and physics. These results

suggest that observations should also be taken at high resolutions. The likelihood of highly

correlated data points increases, however, with the increase in horizontal or vertical resolu-

tion and should approach unity (Brett and Tuller, 1991; Khalili et al., 2007). Conversely,
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if dropsondes are launched too far apart then the thermodynamic and kinematic structure

of a TC will not be well resolved or represented. Similarly, if data in a single sounding is

recorded at low frequency, the thermodynamic and kinematic structure of a TC will not be

well resolved or represented.

Examination of the temporal and spatial autocorrelations in the XDDs is critical to

accurately perform any objective spatial interpolation. One interpolation scheme, called

kriging, is a geostatistical interpolation method that uses covariance information to inter-

polate data fields (e.g., Biau et al., 1999). If adjacent data points in space or time are

appreciably correlated, well modeled, or vary slowly in time and space, interpolation can

easily be conducted between the data points (Gorman, 2009). If adjacent data points are

not appreciably correlated, however, then interpolation cannot be as easily conducted and

could create unrealistic and uncharacteristic TCs by smoothing or smearing small-scale phe-

nomena or sharp gradients in time and space (Privé and Errico, 2016). One of the important

distinctions between statistical interpolation methods like kriging and observational data as-

similation methods (discussed previously) is that kriging is based completely on observations

(Biau et al., 1999). Data assimilation is based upon observations, model physics, resolution,

and domain size (e.g., Aberson, 2008).

Temporal and spatial (both horizontal and vertical) variability of observations in var-

ious atmospheric phenomena suggest a complex relationship between the autocorrelation,

observational density, observation method, and location of the observations. Tables 3.6 and

3.7 summarize the findings of studies that examined the temporal or spatial autocorrela-

tions for |Vh|, T , water vapor, precipitation, and w. It is important to note that most of

the studies presented in Tables 3.6 and 3.7 did not analyze observations from TCs, evalu-

ated various physical parameters and observations, used different instrumentation, studied
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a range of length scales, and used a range of critical correlation coefficients to determine

autocorrelation scales. Nevertheless, they are included because of the lack of studies that

have examined autocorrelations in dropsonde data in TCs and they provide some context to

the autocorrelations observed from the TCI dataset.

There are large variations in the autocorrelation horizontal distances for the non-TC

variables considered in Tables 3.6 and 3.7, with lengths ranging from 200 m (w; Lothon et al.,

2006) to 1000 km (T ; Gunst, 1995). The vertical autocorrelation length scales for w and

water vapor given in Tables 3.6 and 3.7 are comparable and less than 1 km (Fisher et al.,

2013; Lothon et al., 2006). The 0.5-autocorrelation temporal scales for T and horizontal

wind speed (Tables 3.6 and 3.7) are comparable, between 4–12 h, and are a function of

altitude (Brett and Tuller, 1991; Raymond et al., 2003; Pérez et al., 2004). Horizontal

autocorrelation spatial scales for T are greater than, or are comparable to, the horizontal

autocorrelation spatial scales for horizontal wind (Tables 3.6 and 3.7). Convection, and

variables related to convection (e.g., precipitation rates), should have smaller correlation

length scales horizontally due to higher small-scale variance (Fisher et al., 2013). Spatial

autocorrelations in precipitation and rain rate drop below 0.5, from 1.5 to 10 km, with

convective precipitation primarily at 4 km and stratiform precipitation primarily at larger

distances (Tables 3.6 and 3.7). Lothon et al. (2006) examined the autocorrelation of w in the

daytime, convective, planetary boundary layer (PBL) using Doppler Lidar data and found

small, 0.5, autocorrelation distances between 200–300 m both horizontally and vertically

(Tables 3.6 and 3.7).

Black et al. (1996) examined the spatial autocorrelations of w in TCs from flight-level

and Doppler radar data. Black et al. (1996) found that w autocorrelations of approximately

0.2 were statistically significant, horizontal and vertical autocorrelation distances were be-
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tween 1–6 km, and updrafts were more spatially correlated than downdrafts, especially within

the eyewall. The 0.2-autocorrelation threshold noted in Black et al. (1996) indicates statisti-

cally significant relationships, but does not indicate that the autocorrelation is strong. The

use of a higher autocorrelation threshold, like 0.5, would indicate a stronger relationship

and decrease the horizontal, and vertical, autocorrelation distances in Black et al. (1996) by

approximately 50%.

The definition of convection, updrafts, and downdrafts is also important in discerning

the autocorrelation scales within those updrafts and downdrafts. Jorgensen et al. (1985)

defined convective vertical motions in TC flight-level data as continuous positive or negative

vertical velocities for at least 500 m, with at least one data point achieving a magnitude of

0.5 m s−1. Convective cores were defined as continuous w magnitudes of at least 1 m s−1 for

500 m or greater. These distances and values were determined iteratively and subjectively

in LeMone and Zipser (1980) to more easily differentiate turbulent motions from coherent

vertical velocities without needing a complex statistical analysis. This definition was also

adopted by studies such as Black et al. (1994); however, the spatial correlations of the w

data were not presented. Black et al. (1996) defined an updraft or downdraft as continuous,

X-band radar, vertical velocities exceeding |1.5 m s−1| with at least one data point exceeding

|3 m s−1|.

Eastin et al. (2002a,b, 2005b) examined the spatiotemporal characteristics and statis-

tics of instrument wetting events (IWEs) in TCs, which are periods where flight-level, probe-

derived T measurements were significantly (using the 3σ level; or ∆T =0.5◦C) colder than

radiometer-derived temperatures. These IWEs were primarily correlated with the presence

of updrafts and appreciable cloud water. The results from Eastin et al. (2002a,b, 2005b)

were not included in Tables 3.6 and 3.7, because they did not directly report upon the au-
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tocorrelation of the data nor present correlograms of the data. Eastin et al. (2002a) showed

that 90% of the IWEs were less than 10 km in scale. Magnitudes of moisture, w, and ∆T

decrease and, therefore, decorrelate rapidly within 3–6 km of the peak of the IWEs (Eastin

et al., 2002a). θe and moisture values decreased rapidly (decorrelated) within 8 km radially

outward of updraft maxima (Eastin et al., 2002b). The mean IWE diameters were also a

function of altitude, where IWE diameters were 7 km below the freezing level and 14 km

above (Eastin et al., 2002a).

3.3.2 Data and methods

In order to compute the temporal and spatial autocorrelation scales, the data within

any sounding need to be detrended (Janert, 2011). If a trend or mean state is present in

the data, then correlograms show smoothed and high-amplitude periodic curves or large,

negative correlations at long lags (see Appendix F). Rather than using a linear detrend,

median atmospheric profiles of w, T , |Vh|, RH, and θe were used to detrend the data.

Six detrend methods were explored: 1) no detrend; 2) detrend using median profiles from

a specific date (date detrend); 3) detrend using median profiles from a specific TC (storm

detrend); 4) detrend using median profiles from the entire dataset (total detrend); 5) detrend

using median profiles within four radial sections from the entire dataset (radial detrend);

and, 6) detrend using median profiles within four radial sections from a specific date (D+R

detrend). The sixth method (D+R detrend) was ultimately used, because it exhibited the

largest autocorrelations among the most parameters, while accounting for the variance in the

mean state radially, from date-to-date, and from storm-to-storm. The four radial sections

were: 1) ≤ 1.25R∗; 2) 1.25–3R∗; 3) 3–5R∗; and, 4) 5–10R∗. It should be noted that by

combining all soundings within 1.25R∗, data from the high-gradient region near the eyewall
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are used and the median state can be influenced by the soundings within the eye itself.

Further details about the six detrending methods, their results, and comparisons can be

found in Appendix F.

The D+R detrend median profiles for each variable and each date are provided in

Figures 3.29–3.31 and the total number of soundings in each radial section are provided in

Table 3.9. The mean and median number of soundings in each radial section was 11–12, with

a maximum of 24 (Joaquin on 5 October) and a minimum of zero (Patricia on 20 October).

Many of the median w profiles resemble profiles observed by Black et al. (1996) and primarily

show weak, near zero vertical motions below the average freezing level (5−6 km) and stronger

vertical velocities aloft (Figs. 3.29a–d, 3.30a–d, 3.31a–d), but it is unknown if this increase

is real or due to errors aloft (section 3.1). The median w profiles were especially noisy in

Patricia on 20 and 23 October likely due to the low number of soundings in the radial section

(Table 3.9) or strong vertical motions in the eyewall (e.g, Fig. 3.14). The |Vh| median profiles

differ from day-to-day and show the evolution of the TC wind fields, but also show that peak

|Vh| strengths generally occurred between 0.5 and 1 km (Figs. 3.29e–h, 3.30e–h, 3.31e–h).

The |Vh| median profile for Patricia on 23 October had a noisy double jet structure, with

strong median |Vh| from 5–7 km similar to the double jet structure in the eyewall of Patricia

shown by Rogers et al. (2017) (Fig. 3.31e). Median RH profiles show that the lowest 6 km

were fairly moist and varied slightly from day-to-day, but the upper levels were dry (Figs.

3.29i–l, 3.30i–l, 3.31i–l). The zero percent RH values above 12.5 km are a manifestation of

the sensor performance below −40◦C (e.g., Bell et al., 2016). RH values at temperatures

below −40◦C are telemetered as “NaN”, because the sensor is not rated for extremely cold

temperatures. Further, no “thermodynamic” smoothing or adjustments are made to the

measurements. T and θe varied slightly from day-to-day, and had smooth decreases aloft for
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T and increases aloft for θe (Figs. 3.29m–t, 3.30m–t, 3.31m–t).

To calculate horizontal dropsonde-to-dropsonde autocorrelations, median profiles simi-

lar to those in Figures 3.29–3.31 were created using 0.25 km bins from 0 to 17 km to account

for small altitudinal variations among the observations and differences in the number of data

points in each sounding. The bin size was chosen to match the altitudinal binning scheme

in section 3.1.

Spatial dropsonde-to-dropsonde autocorrelations and corresponding distances were com-

puted using the following equations:

r̄t(k) =

∑n
i=1(X

′
i −X

′
i)(X

′

i+k −X
′
i+k)√∑n

i=1(X
′
i −X

′
i)

2(x
′
i+k −X

′
i+k)2

(3.20)

d =
√

(xi − xi+k)2 + (yi − yi+k)2 (3.21)

where the autocorrelation (r̄t) is calculated for the binned median D+R detrended data (X
′
)

at a distance d in the x-y plane. The autocorrelation of each sounding is calculated from

pairs of all soundings and not just those immediately adjacent to a given sounding. n is the

total number of soundings for each date or TC, and k is an index that runs from 0 to n− 1

that accounts for each sounding in the calculation. If it is assumed that the D+R detrend

process accurately removed the mean state in each sounding, then the mean of X
′

should be

zero in all of the equations presented here. The d used is the mean distance between the two

soundings. Given the uneven spacing of soundings and the finer resolution of observations

within the core, the spatial autocorrelation distances presented here may be biased towards

lower values. In contrast, the use of a median profile creates smoother soundings than what

was actually observed in TCI and may bias autocorrelation distances toward larger values.
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These assumptions in the methodology, however, do not severely impact the results, because

it is not expected to have statistically significant high autocorrelations at large (> 100 km)

distance scales within a TC, even in areas outside of the core.

To calculate the autocorrelations within an individual sounding, data were ordered

with respect to time and the “acf” function in the R software package was used for each

individual sounding. This was done for each observation day and for each storm. The acf

function computes autocorrelation using the following equations:

rt =
ct
co

(3.22)

ct =
1

n

max(1,−t)∑
min(n−t,n)

[X
′

s+t − X̄
′ ][Xs − X̄ ′ ] (3.23)

co =
1

n

∑
[X

′ − X̄ ′ ]2 (3.24)

where rt is the autocorrelation, ct is the autocovariance, co is the variance of the series, n is

the length of the series, s is time, and t is some lag forward in time (Venables and Ripley,

2002). For the temporal autocorrelations within any given sounding, the X
′

data were not

binned like in the dropsonde-to-dropsonde data. The soundings, therefore, have differences

in the total number of data points, which is a function of the fall speed, horizontal wind

speed, dropsonde fall behavior, icing, and missing data. The autocorrelations were computed

assuming that no missing data was present and the temporal resolution was 1 Hz. If there

was missing data in the sounding, the data were not replaced with an interpolated mean value

or padded with a fill value, because that would, potentially, increase the autocorrelations
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artificially depending on how many missing data points were present. It is hypothesized that

missing data would affect the results by biasing the autocorrelations to smaller temporal

scales. Due to the highly-accurate data telemetry and data screening process used, however,

large regions of missing data are rarely present in soundings. The autocorrelation scales

and correlograms presented here are interpolated splines over all of the soundings for an

individual date or TC, which would decrease the impact of missing data in a relatively small

number of soundings within the dataset.

3.3.3 Results

The autocorrelations for each TC and in total were plotted as correlograms. Individual

correlograms for each of the ten days in the dataset are not provided, but the results from

those figures are summarized in Tables 3.10 and 3.11, and Figure 3.32. Correlograms for each

TC are provided in Figures 3.33 and 3.34. The correlograms are smoothed splines fitted to

scatter plots of the correlograms for each sounding or altitude level. Table 3.10 documents

the autocorrelation spatial scales where correlation drops below 0.5 for adjacent data points

at a fixed altitude (dropsonde-to-dropsonde). Table 3.11 documents the autocorrelation time

scales where correlation drops below 0.5 for data within a given individual sounding. The

means, medians, and standard deviations for the spatial and temporal autocorrelation scales

computed from all ten observation days are included in Tables 3.10 and 3.11.

3.3.3.1 Correlations from dropsonde-to-dropsonde

w, RH, and θe had the smallest mean and median spatial autocorrelation length scales

at 4–6 km (Table 3.10). w, however, generally had the smallest spatial autocorrelation

length scales. All variables had comparable standard deviations in the 0.5-autocorrelation
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length scales between 4–5 km, but |Vh| and T had the smallest spreads in 0.5-autocorrelation

distances (Table 3.10). Mean and median |Vh| and T spatial autocorrelation length scales

were 10–11 km and 7–9 km, respectively (Table 3.10). Most of the autocorrelation length

scales were comparable in magnitude or less than the minimum sounding spacing on each

day (Table 3.8).

The autocorrelation length scales for all variables increased with increasing RMW

(Fig. 3.32a). The length scales for w, RH, and θe had the strongest positive correlations

with RMW size. While the correlations do not indicate a robust, conclusive relationship

between the RMW size and the spatial 0.5-autocorrelation scales because of the relatively

small sample size, it is plausible that the spatial autocorrelation scales could be influenced

by the storm-scale structure of the TCs. |Vh| and T do show appreciably strong (> 0.5)

correlations with the RMW, but not as strong as the other three variables. This result is

interesting, because |Vh| and T would be expected to have the strongest correlations with the

RMW based upon the well-recognized idea that gradient or thermal wind balance dominates

the storm-scale structure of TCs (e.g., Willoughby, 1990; Molinari et al., 1993). Rather,

variables more associated with convective features (w, RH, and θe) are more correlated with

the RMW. Figure 3.32a also illustrates that most of the autocorrelation length scales are

smaller than the RMW by a factor of 4–8, with |Vh| mostly on the low-end and w on the

high-end of the range. Despite the relationship between the RMW and the autocorrelation

length scales, data are still grouped by each TC to examine the differences in the temporal

and spatial autocorrelations present from storm-to-storm.

Figure 3.33 shows the spatial correlograms for all five variables in Marty, Joaquin, and

Patricia. w, RH, and θe decorrelate rapidly within 10–20 km, reaching zero at approximately

20 km (Fig. 3.33a, c, e). T and |Vh| decorrelate slower, reaching zero between 40–60 km
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(Fig. 3.33b, d). All of the variables have autocorrelations that fluctuate around zero outside

of 50 km (Fig. 3.33).

Marty had the largest 0.5-autocorrelation length scales out of the three TCs for w, RH,

T , and θe at 3.2–4.2 km, likely attributed to the weaker convection and temperature gradients

in Marty. Joaquin and Patricia had comparable 0.5-autocorrelation length scales for w, RH,

and θe at 2.8 km. The 0.5-autocorrelation length scales for T in Joaquin and Patricia were

also comparable, but larger at 3.6 km. Patricia had the largest 0.5-autocorrelation length

scale for |Vh|, which is not surprising as the horizontal wind field associated with the primary

TC circulation was strong and expansive in Patricia (e.g., Fig. 3.14). The 0.5-autocorrelation

length scales for |Vh| in Marty and Joaquin were comparable at approximately 4.2 km. The

0.5-autocorrelations were examined as a function of altitude, but the corresponding distances

were often non-linear or non-monotonic and no robust conclusions could be made.

To put the autocorrelation length scales into context, the values are compared to the

correlation length scales in Tables 3.6 and 3.7. The correlation distances observed in non-TC

studies, except for w, are considerably larger compared to what was observed in the TCI

data. For example, the 0.5-autocorrelation lengths for T observed on an individual day and

in an individual TC are much smaller than the horizontal autocorrelation distances observed

by Gunst (1995) and Nichol and Wong (2008). The autocorrelation length scales for w were

primarily between 1 and 5 km from day-to-day (excluding 20 October), and 2 and 4 km from

storm-to-storm (Table 3.10 and Fig. 3.33a). The w length scales are most comparable to

the rainfall and convective rain rate autocorrelation distances over land with rain gauge, and

radar, data in Habib et al. (2001), Bringi et al. (2015), and Jameson (2017). The values are

also slightly smaller than the w 0.2-autocorrelation length scales adjacent to updrafts and

downdrafts in TCs as shown by Black et al. (1996), but are comparable if Black et al. (1996)
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used a 0.5-autocorrelation threshold. Most of the w autocorrelation length scales observed

in the TCI data are a factor of ten larger than the 0.5-autocorrelation horizontal length scale

observed with Lidar data over land by Lothon et al. (2006).

3.3.3.2 Correlations within a sounding

The temporal 0.5-autocorrelation scales were above 8 s for all variables and for each

observation day, with most above 15 s (Table 3.11). Mean and median temporal autocor-

relation scales ranged from 20–31 s for all variables (Table 3.11). The smallest mean and

median temporal scales were for w and T . The smaller temporal autocorrelation thresholds

in T and w could be due to smaller thermal perturbations away from the median profiles

in each radial section (e.g., Fig. 3.30) and weaker vertical motions dominating the vertical

velocity distribution (Fig. 3.11). The mean and median temporal autocorrelation scales for

θe were slightly larger than for w and T at 26.5 s. |Vh| and RH had the largest temporal

autocorrelation scales within individual soundings at approximately 30 s. The estimated

still air dropsonde fall speed ranges from approximately 52 m s−1 at 17.5 km to 18 m s−1

at sea-level. It is estimated from the typical fall speeds that vertical autocorrelation length

scales would likely range from 0.1–2 km.

Figure 3.32b shows that as the horizontal autocorrelation length scale increases, the

temporal autocorrelation scale generally decreases for all variables, except RH and θe. The

RH temporal scales have a weak, positive correlation with the horizontal autocorrelation

length scales (Fig. 3.32b). The θe temporal scales have a weak, negative correlation with

the horizontal autocorrelation length scales, but this is primarily due to one outlier data

point. If this data point was removed, the correlation would be positive at 0.32. This single

data point outlier is not present in the other four variables, but did occur in Patricia on 20
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October, where few dropsondes were launched (Table 3.9). The strongest correlation was for

the w temporal and spatial autocorrelation scales at −0.91. The general negative correlation,

especially for w, is not surprising. As a hypothetical situation, if an XDD sampled a coherent

tropospheric depth feature, like an eyewall updraft, that sounding will likely not correlate

well with other dropsonde data launched outside of the convective region of the eyewall,

leading to smaller spatial correlation scales. Conversely, if an XDD sampled an area with

weak radial gradients, but incoherent vertical structure, then the dropsonde-to-dropsonde

spatial scale will be larger and the temporal scale will be smaller. Similar to the relationship

between the RMW and spatial 0.5-autocorrelation scale (Fig. 3.32a), these correlations do

not provide robust conclusions because of the relatively small sample size, but they can be

used to develop a hypothesis as to the relationships between the two scales.

Figure 3.34 shows the temporal correlograms for all five variables in Marty, Joaquin,

and Patricia. All variables decorrelate rapidly within 80 s, reaching zero at approximately

100–150 s (Fig. 3.34). Weak, negative autocorrelation values were observed at longer time

lags for all variables (Fig. 3.34). w decorrelated the fastest, but the difference in the rate of

decorrelation is negligible.

Joaquin consistently had the largest 0.5-autocorrelation temporal scales out of the three

TCs for all variables, but both Marty and Joaquin had the same temporal 0.5-autocorrelation

scales for θe (Fig. 3.34e). There was little variation in the temporal 0.5-autocorrelation scales

for w from storm-to-storm, with temporal scales of 19–21.5 s (Fig. 3.34a). Marty and Patricia

had comparable 0.5-autocorrelation temporal scales for |Vh| (27–28.5 s) and RH (26–27.5

s). In comparison, the 0.5-autocorrelation temporal scales for |Vh| and RH in Joaquin were

approximately 33 s. Patricia had considerably smaller temporal autocorrelation scales for T

and θe than compared to Marty or Joaquin. The 0.5-autocorrelations were also examined
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as a function of radius, but the corresponding temporal scales were often non-linear or non-

monotonic and no robust conclusions could be made.

3.3.3.3 Correlations within updrafts and downdrafts

Given that the typical structure of a TC features strong kinematic and thermal pertur-

bations within the convective eyewall and rainbands, it is possible that the 0.5-autocorrelation

temporal scales differ in soundings that observed updrafts or downdrafts from soundings in

less convective areas. It is also possible that the temporal scales in these updraft and down-

draft soundings differ from the findings in Figure 3.34 and Table 3.11, which include all

soundings in the dataset. Updrafts and downdrafts are defined here, following section 3.1, as

consecutive w above ±2 m s−1 with at least one data point above ±4 m s−1. There was not a

requirement for the minimum depth for the updrafts or downdrafts. Updraft and downdraft

soundings are the subset of soundings with at least one updraft or downdraft, respectively,

in the sounding. In the rare situation where both an updraft and a downdraft is observed

in a given sounding, it is classified as both an updraft and downdraft sounding. P-values of

below 0.05 are used to define statistically significant differences.

As an example, shown in Figures 3.35 and 3.36 are sounding profiles from the eyewall of

Patricia on 23 October. The red lines denote the start and end of the updraft. The updraft

occurred in the midlevels, was 7.45 km deep, and was sampled for over 400 s (Figs. 3.35,

3.36). The updraft was also collocated with the midlevel jet shown by Rogers et al. (2017),

high-RH values, a relatively warm θe bubble, and small variations in the T profile. The

perturbation profile of T , however, shows strong, negative 5–10-K perturbations, and the

perturbation profile of θe shows weak, near zero perturbations in the middle of the updraft

and strong, negative perturbations at the base of the downdraft (Fig. 3.37d, e). These
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perturbation profiles are not congruent with what is expected for an updraft sounding and

may be due to the median profiles reflecting the relatively warmer low- and mid-level eye. In

contrast, the w, |Vh|, and RH perturbation profiles exhibited strong, positive perturbations

within the defined updraft as expected for an eyewall updraft (Fig. 3.37a, b, c). The

temporal autocorrelations within this sounding were significantly larger than for the entire

date, with a p-value of 0.009 (Fig. 3.38). The autocorrelations for the Patricia eyewall

sounding ranged from 43 s (RH) to 113 s (θe).

Temporal autocorrelations were computed for all 78 updraft and 37 downdraft sound-

ings on each day and are provided in Tables 3.13 and 3.14. The number of updraft and

downdraft soundings for each day is provided in Table 3.12. The mean and median 0.5-

autocorrelation temporal scales in updraft soundings were larger than, or comparable to, the

temporal scales in all soundings, except for RH, which was statistically significantly smaller

by a Student’s t-test (Tables 3.11, 3.13). Similarly, mean and median 0.5-autocorrelation

temporal scales in downdraft soundings were larger than, or comparable to, the temporal

scales in all soundings, except for RH (Tables 3.11, 3.14). None of the differences, however,

were statistically significant.

Figures 3.39 and 3.40 show the temporal autocorrelations for individual soundings

computed similarly to the single sounding in Figure 3.38. The temporal scales for w, |Vh|,

T , and θe in updraft soundings have positive correlations with the maximum updraft depth

in the soundings (Fig. 3.39). The correlation for w was strong at 0.76, with a p-value of

6x10−16 (Fig. 3.39a). Correlations were also statistically significant at a p-value below 0.05

for |Vh| (0.04) and θe (0.008), but the correlations themselves are relatively weak compared to

w. The positive, statistically significant correlations between w and θe to the mean updraft

depth agrees well with the parcel buoyancy arguments and correlations between draft core
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diameters and mean w strength, and thermal buoyancy, in Eastin et al. (2005b). RH was

uncorrelated with draft depth in updraft soundings (Fig. 3.39c). In contrast to the updraft

soundings, the downdraft soundings had near-zero or weakly negative correlations between

the maximum downdraft depth and temporal autocorrelation scale, with no statistically sig-

nificant relationships (Fig. 3.40). The positive correlations for updraft soundings indicate

that there are, potentially, statistically significant relationships between the temporal auto-

correlation scales and the depth of the updrafts, even though the mean and median temporal

autocorrelation scales do not differ appreciably from the total dataset.

3.3.4 Discussion

From the large dataset of 437 XDDs in three TCs, it was evident that mean temporal

autocorrelations were approximately 20–30 s for w, T , |Vh|, RH and θe in the entire dataset.

This corresponds to an approximate altitudinal depth of 0.3–1.5 km, given the typical XDD

fall speeds. The temporal autocorrelation scales suggest that interpolating sounding data

to matching altitudes is justifiable within small 0.5-km intervals. The binning scheme used

here is finer than this estimate. These results also imply that the XDD sampling frequency

adeptly oversampled the TCs in TCI.

From dropsonde-to-dropsonde, one of the conclusions that can be drawn is the mini-

mum spatial distribution of dropsondes needed to accurately depict a TC with transects of

dropsondes from the observed atmospheric variables. Another way to phrase the previous

statement is: “How close together can the XDDs be in TCs before adjacent data points be-

come appreciably correlated?”. The horizontal autocorrelation length scales for all variables,

except for w (Black et al., 1996; Lothon et al., 2006), are smaller than what was observed

in previous studies (Tables 3.6, 3.7). Specifically, |Vh| (Wylie et al., 1985) and T (Gunst,
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1995; Nichol and Wong, 2008) autocorrelation length scales are smaller for all observation

days in the dataset. It is important to note that one cannot truly know the spatial correla-

tion limit without testing observations (like the XDDs) at a much higher launch rate/finer

horizontal resolution. The autocorrelations below the minimum horizontal sounding spacing

(e.g., Patricia on 23 October; Tables 3.8, 3.10) are estimates that are limited by the spacing

of the original dataset. The relatively high resolution of the original dataset could be why

some of the autocorrelation length scales for the TCI data are smaller relative to past studies

(Tables 3.6, 3.7). It is also plausible that the features measured by the non-TC studies were

synoptic-scale features rather than mesoscale features, like in the three TCs observed during

TCI, which would lead to smaller autocorrelation length scales (Tables 3.6, 3.7). Regardless,

the agreement between the spatial autocorrelations for w in this section and the spatial au-

tocorrelations for w radar data adjacent to updrafts and downdrafts in Black et al. (1996)

is encouraging, and provides support for the findings herein.

The medians for all of the individual days illustrate that w, RH, and θe all had low

spatial autocorrelations between 4–6 km (Table 3.10). This agrees well with the model grid

spacing required to resolve TC eyewall kinematics and physics (Gentry and Lackmann, 2010).

The spatial autocorrelation scales for w, RH, and θe also agree well with the mean diameter

of strong, buoyant updrafts documented in flight-level observations (e.g., Black et al., 1996;

Eastin et al., 2005b), which indicate that the spatial scales for these variables are governed

at the convective scale and not the storm-scale. |Vh| and T had slightly larger dropsonde-

to-dropsonde spatial autocorrelation scales, with means/medians of approximately 7–11 km,

which agrees well with the model grid spacing required to resolve features on the scale of the

average RMW (approximately 55 km; Kimball and Mulekar, 2004; Gentry and Lackmann,

2010). When data were combined for each TC, w or θe always had the smallest autocor-
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relation length scale, with the mean and median below 2.9 km. RH had comparable, but

slightly larger autocorrelation spatial scales in the combined three TCs. |Vh| or T always

had the largest autocorrelation length scales for each TC between 3–6 km. The results, not

surprisingly, imply that the spatial resolution of dropsondes needed to adequately depict

the thermal or horizontal wind fields in transects of TCs is larger than what is needed to

adequately depict convection and convection-related variables by approximately a factor of

two.

The spatial requirements of the XDDs for each atmospheric variable present an op-

erational challenge for future TC dropsonde campaigns. The spatial autocorrelations pre-

sented suggest that the finest spatial resolution (approximately 3–4 km) and quickest launch

frequency was at the limit of the required spatial resolution needed to accurately, and ad-

equately, depict TC structure in transects of dropsondes. In situations where the spatial

resolution was larger than 3–4 km, spatial interpolation cannot be accurately conducted

and does not completely depict the thermal or kinematic structure in the transects of these

three TCs. The same conclusion can be made if dropsondes are launched at a resolution

of 3–4 km, but one dropsonde fails. The latter situation suggests that a finer horizontal

spatial resolution of soundings than what was achieved during TCI should be used in future

dropsonde-based TC campaigns. If it is assumed that the 0.5-autocorrelation spatial dis-

tances observed in the TCI data indicate the approximate scales of the observable features in

the three TCs, then the spacing of observations required to accurately resolve those features

can be estimated from the “4∆x rule” (Grasso, 2000). The results imply that the launch

rate needs to be increased by approximately a factor of four to adequately resolve convection

and thermal perturbations in transects of TCs, except for possible small-scale (smaller than

3 km) eyewall vortices (Grasso, 2000; Gentry and Lackmann, 2010). This assumes that the
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XDDs can adequately measure both weak and strong convection, since the expected vertical

velocity errors are ±1–2 m s−1 (section 2.4).
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Table 3.1: Number of dropsondes from each day in the dataset (Nt). S is the deep-layer
shear (850–200 hPa) in m s−1 and SD is the shear direction in degrees clockwise from the
north (◦). Intensity is the maximum tangential wind speed in m s−1 at 1800 UTC from the
SHIPS dataset. The 10R∗ distances in km for each day is also provided. From Nelson et al.
(2019a). c©American Meteorological Society. Used with permission.

.

Day Name Nt Intensity S SD 10R∗

27 Sept Marty 50 26 11.21 98 370
28 Sept Marty 58 36 11.00 89 210
02 Oct Joaquin 44 57 4.90 151 310
03 Oct Joaquin 43 67 13.20 127 270
04 Oct Joaquin 55 44 4.90 66 380
05 Oct Joaquin 53 39 3.90 39 490
20 Oct Patricia 12 15 5.25 42 770
21 Oct Patricia 51 26 2.93 195 400
22 Oct Patricia 43 59 0.62 146 190
23 Oct Patricia 28 93 4.58 21 110

TOTAL —— 437 46 (avg) 6.25 (avg) —— 350 (avg)

Table 3.2: Mean, median, and standard deviation of vertical velocity in m s−1 for all radii,
within the core, and outside of the core. From Nelson et al. (2019a). c©American Meteoro-
logical Society. Used with permission.

Section Mean Median St. Dev.

0–10R∗ 0.20 0.00 1.43
0–3R∗ 0.30 0.06 1.74
3–10R∗ 0.09 −0.04 0.98

Table 3.3: Number of updrafts and downdrafts from each TC (N) and the mean, median, and
maximum/minimum of the peak updraft and downdraft strengths in m s−1. From Nelson
et al. (2019a). c©American Meteorological Society. Used with permission.

Updrafts

Name N Mean Median Maximum

Marty 17 5.11 4.90 7.23
Joaquin 48 5.91 5.11 18.33
Patricia 38 8.72 6.77 23.89
TOTAL 103 6.58 (avg) 5.59 (avg) 16.48 (avg)

Downdrafts

Name N Mean Median Minimum

Marty 9 −5.15 −5.16 −5.90
Joaquin 24 −5.40 −4.81 −8.70
Patricia 10 −4.54 −4.29 −5.95
TOTAL 43 −5.03 (avg) −4.75 (avg) −6.85 (avg)
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(a) (b)

(c)

Figure 3.1: Observed NHC Best Track intensity (m s−1) for Marty (a), Joaquin (b), and
Patricia (c) over time (month, day, hour). Periods when TCI observed the TCs are shaded in
red. From Nelson et al. (2019a). c©American Meteorological Society. Used with permission.
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Figure 3.2: IR satellite image of Patricia at 2045 UTC 23 October 2015. Brightness temper-
atures (◦C) are shaded. Launch locations for soundings outside of convection (red), sound-
ings removed from the dataset by quality control or radial restriction (black diamonds), and
soundings analyzed (blue) are also included. IR image courtesy of David Vollaro. From
Nelson et al. (2019a). c©American Meteorological Society. Used with permission.
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Figure 3.3: Distribution of data points in the total dataset in a shear-rotated framework.
Azimuth is in degrees and radius is the radius divided by the RMW (R∗). The RMW is
the green ring. Panels (a, c) are plotted out to 10R∗ and panels (b, d) are plotted out to
3R∗. Continuous positive vertical velocities within updrafts are in red in panels (a, b) and
continuous negative vertical velocities within downdrafts are in blue in panels (c, d). From
Nelson et al. (2019a). c©American Meteorological Society. Used with permission.
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Figure 3.4: Mean (a), median (b), and standard deviation (c) profiles of vertical velocity
for the full dataset (black), data within the core (red), and data outside of the core (blue).
The dashed black line designates w = 0 m s−1. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure 3.5: Median vertical velocity profiles for data within the core (red) and outside of the
core (blue) and within the DL (a), DR (b), UL (c), and UR (d) quadrants in Marty. The
dashed black line designates w = 0 m s−1. The approximate number of soundings in each
quadrant is provided for within the core (red) and outside of the core (blue). From Nelson
et al. (2019a). c©American Meteorological Society. Used with permission.
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Figure 3.6: Same as Fig. 3.5, but for Joaquin. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure 3.7: Same as Fig. 3.5, but for Patricia. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure 3.8: Same as Fig. 3.5, but for the total dataset. From Nelson et al. (2019a).
c©American Meteorological Society. Used with permission.
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Figure 3.9: CFRD percentages of vertical velocities (m s−1). Panel (a) is for Marty, panel
(b) is for Joaquin, panel (c) is for Patricia, and panel (d) is for the entire dataset. Colored
contours are percentages on a logarithmic scale. Black lined contours are percentages above
20% in intervals of 5%. The horizontal solid black lines denote the vertical velocity thresholds.
The dashed white line designates w = 0 m s−1. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure 3.10: CFAzD percentages of vertical velocities (m s−1). Panel (a) is for Marty, panel
(b) is for Joaquin, panel (c) is for Patricia, and panel (d) is for the entire dataset. Colored
contours are percentages on a logarithmic scale. Black lined contours are percentages above
20% in intervals of 5%. The horizontal solid black lines denote the vertical velocity thresholds.
The dashed white line designates w = 0 m s−1. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure 3.11: CFAD percentages of vertical velocities (m s−1). Panel (a) is for Marty, panel
(b) is for Joaquin, panel (c) is for Patricia, and panel (d) is for the entire dataset. Colored
contours are percentages on a logarithmic scale. Black lined contours are percentages above
20% in intervals of 5%. The horizontal solid black lines denote the vertical velocity thresholds.
The dashed white line designates w = 0 m s−1. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure 3.12: Transect cross section for Marty on 27 September. Panel (a) is a cross section
of vertical velocity (m s−1, shaded) with vertical velocities greater than |2 m s−1| contoured.
Panel (b) is a cross section of vertical velocity (m s−1, shaded) and horizontal wind speed
(m s−1, contoured). The TC center is denoted with a solid vertical black line. From Nelson
et al. (2019a). c©American Meteorological Society. Used with permission.
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Figure 3.13: Same as Fig. 3.12, but for Joaquin on 02 October. From Nelson et al. (2019a).
c©American Meteorological Society. Used with permission.
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Figure 3.14: Transect cross section for Patricia on 23 October. Panel (a) is a cross section of
vertical velocity (m s−1, shaded), with vertical velocities greater than |2 m s−1| contoured.
Panel (b) is a cross section of vertical velocity (m s−1, shaded) and horizontal wind speed
(m s−1, contoured). Panel (c) is a low-level zoom-in of panel (a) showing vertical velocity
(m s−1, shaded) and radial velocity (m s−1, contoured), where inflow is negative and outflow
is positive. An upper-level zoom-in of panel (a) for vertical velocity (m s−1, contoured)
and pressure (hPa, contoured) is shown in panel (d). An upper-level zoom-in of panel (a)
for vertical velocity (m s−1, contoured) and potential temperature (K, contoured) is shown
in panel (e). From Nelson et al. (2019a). c©American Meteorological Society. Used with
permission.
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Figure 3.15: HIRAD-derived horizontal wind speeds for a transect over the center of Patricia
on 23 October. Sounding trajectories are plotted in black and data points that sampled the
low-level radial circulation are plotted in red. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Table 3.4: Mean, median, and standard deviation of the absolute differences between the
HF99 methodology and xy-methodology horizontal winds in m s−1 (|V 2− V 1|), LM12a
methodology and xy-methodology horizontal winds (|V 3− V 1|), and full WFE methodology
and xy-methodology horizontal winds (|V 4− V 1|). Also included are the p-values from
Student’s t-test between the methods compared. From Nelson and Harrison (2019).

|V 2− V 1| |V 3− V 1| |V 4− V 1|
Mean 0.57 0.59 0.58

Median 0.32 0.33 0.32
St. dev. 0.87 0.93 0.90
P-value 0.02 < 0.01 < 0.01

Table 3.5: Mean, median, and standard deviation of the absolute differences between the
HF99 methodology and full WFE methodology horizontal winds in m s−1 (|V 2− V 4|),
LM12a methodology and full WFE methodology horizontal winds (|V 3− V 4|), and xy-
methodology and full WFE methodology horizontal winds (|V 1− V 4|). Also included are
the p-values from Student’s t-test between the methods compared. From Nelson and Harri-
son (2019).

|V 2− V 4| |V 3− V 4| |V 1− V 4|
Mean 1.10 0.61 0.58

Median 0.64 0.26 0.32
St. dev. 1.55 1.08 0.90
P-value < 0.01 < 0.01 < 0.01
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Figure 3.16: Sample NC sounding from Marty on 27 September (a), and C sounding from
Patricia on 23 October (b). The xy-methodology, HF99 methodology, LM12a methodology,
and full WFE methodology horizontal winds in panels (a) and (b) are in black, red, blue,
and green, respectively. The horizontal wind differences between methodologies for Marty (c)
and for Patricia (d). The difference between the HF99 methodology and the xy-methodology
horizontal winds is in red, the LM12a methodology and the xy-methodology horizontal winds
is in blue, and the full WFE methodology and the xy-methodology horizontal winds is in
green in panels (c) and (d). From Nelson and Harrison (2019).
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Figure 3.17: Vertical velocity (m s−1) from the Marty NC sounding on 27 September (blue)
and the Patricia C sounding (red). From Nelson and Harrison (2019).
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(a) (b)

Figure 3.18: IR satellite image of Marty at 2045 UTC 27 September (a) and Patricia at 2045
UTC 23 October (b). Brightness temperatures (◦C) are shaded. Sounding launch locations
are shown as black diamonds. The sample soundings locations in Figures 3.16 and 3.17 are
shown in white. IR image courtesy of David Vollaro. From Nelson and Harrison (2019).
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Figure 3.19: Notched box plot comparisons between the horizontal wind speeds from V1,
V2, V3, and V4. The inset to the bottom right shows that only the notches of the box plots
for V1 and V2 overlap. From Nelson and Harrison (2019).
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Figure 3.20: Median (a), mean (b), and standard deviation (c) profiles of V1, V2, V3, and
V4 (black, red, blue, and green, respectively). From Nelson and Harrison (2019).
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Figure 3.21: Comparison of the horizontal wind differences between the HF99 (blue), LM12a
(red), and full WFE methods (green) to the xy-method. Panel (a) is a histogram of the wind
speed differences. Panel (b) is a histogram of the absolute wind speed differences. Panel (c)
is the percent difference histogram relative to the xy-method. Panel (d) is the percentiles of
the absolute wind speed differences. The black solid lines in panel (d) denote the percentile
for the 0.5 m s−1 absolute wind speed difference for the HF99 method difference. From
Nelson and Harrison (2019).
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(a) (b) 

(c) (d) 

Figure 3.22: Wind speed differences between the xy-methodology and the full WFE method-
ology with respect to altitude (a), distance from the TC center (b), R∗ (c), and vertical
velocity (d). From Nelson and Harrison (2019).
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Figure 3.23: Median (a), mean (a), and standard deviation (c) profiles of wind speed dif-
ferences for |V 2− V 1| (blue), |V 3− V 1| (red), |V 4− V 1| (green). Differences that are
statistically different at the 95% level using Student’s t-test are denoted with dots. From
Nelson and Harrison (2019).
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Figure 3.24: Cross section of horizontal wind from Marty on 27 September. Shown in
solid black contours are the horizontal winds using the xy-methodology (a, b) or the HF99
methodology (c, d). Absolute differences to the full WFE methodology horizontal winds are
shown in panels (a) and (c) and differences to the full WFE methodology horizontal winds
are shown in panels (b) and (d). The TC center is denoted with a thick solid black line.
From Nelson and Harrison (2019).
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Figure 3.25: Same as Fig. 3.24, but for Joaquin on 2 October. From Nelson and Harrison
(2019).
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Figure 3.26: Same as Fig. 3.24, but for Patricia on 23 October. From Nelson and Harrison
(2019).
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Figure 3.27: Same as Fig. 3.20, but for wind differences between the HF99 (blue), LM12a
(red), and xy-methods (green) to the full WFE method. From Nelson and Harrison (2019).
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Figure 3.28: Same as Fig. 3.23, but for wind speed differences for |V 1− V 4| (green),
|V 2− V 4| (blue), |V 3− V 4| (red). From Nelson and Harrison (2019).
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Table 3.6: Summary of spatial (horizontal and vertical) and temporal autocorrelation scales
referenced in the text based upon correlation thresholds of either 0.5, 0.37, or 0.2 for hor-
izontal wind (|Vh|), temperature (T ), water vapor, rainfall, rain rate, and vertical velocity
(w). Correlation length scales that were specifically for convective regions are denoted as
“C” and non-convective regions are denoted as “NC”. Observation types (obs. type) are
listed and the locations of the observations are noted for each referenced study. Observation
types include: surface (Sfc. stations), boat (boat stations), radio acoustic sounding system
(RASS), satellite, Lidar, S-band radar, or X-band radar. From Nelson et al. (2019b).

Var. Corr. Vert.
dist.

Horz.
dist.

Time Obs.
type

Location Ref.

|Vh| 0.5 —— 0–100
km

—— Sfc. sta-
tions

Land Wylie et
al. 1985

|Vh| 0.5 —— 400 km —— Boat sta-
tions

Ocean Wylie et
al. 1985

|Vh| 0.5 —— —— 4–6 h Sfc. sta-
tions

Land Brett and
Tuller
1991

|Vh| 0.37 —— —— 11 h (at
40 m)

RASS Land Pérez et al.
2004

|Vh| 0.37 —— —— 5 h (at
300 m)

RASS Land Pérez et al.
2004

T 0.5 —— 800–
1000
km

—— Sfc. sta-
tions

Land Gunst
1995

T 0.5 —— 200–
600
km

—— Satellite Upper
air

Nichol and
Wong 2008

T 0.37 —— —— 7 h (at
40 m)

RASS Land Pérez et al.
2004

T 0.37 —— —— 8 h (at
140 m)

RASS Land Pérez et al.
2004

T 0.5 —— —— 12 h Satellite Over
ITCZ

Raymond
et al. 2003
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Table 3.7: Table 3.6 continued. From Nelson et al. (2019b).

Var. Corr. Vert.
dist.

Horz.
dist.

Time Obs.
type

Location Ref.

Water
vapor

0.37 0.45
km (C)

—— —— Lidar Airborne Fisher et
al. 2013

Water
vapor

0.37 0.2–0.3
km
(NC)

—— —— Lidar Airborne Fisher et
al. 2013

Rainfall 0.5 —— 4 km —— Rain
gauge

Land Habib et
al. 2001

Rain
rate

0.5 —— 10 km
(NC)

—— S-band
radar

Land Brigni et
al. 2015

Rain
rate

0.5 —— 4 km
(C)

—— S-band
radar

Land Brigni et
al. 2015

Rainfall 0.5 —— 1.5–4
km

—— Reports/radarLand Jameson
2017

w 0.5 0.2–0.3
km

0.2–0.3
km

—— Lidar Land Lothon et
al. 2006

w 0.2 4–7 km 4–6 km —— X-band
radar

TC eye-
wall

Black et al.
1996

w 0.2 2–4 km 1–4 km —— X-band
radar

TC rain-
band

Black et al.
1996

Table 3.8: List of the minimum, maximum, mean, and median dropsonde spacing for each
day to the nearest km. From Nelson et al. (2019b).

Day Name Minimum Maximum Mean Median

27 Sept Marty 6 44 18 17
28 Sept Marty 3 83 21 13
02 Oct Joaquin 7 150 39 41
03 Oct Joaquin 5 344 54 38
04 Oct Joaquin 8 120 37 27
05 Oct Joaquin 9 121 33 28
20 Oct Patricia 18 267 87 44
21 Oct Patricia 7 69 26 24
22 Oct Patricia 4 142 26 11
23 Oct Patricia 3 73 22 25
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Table 3.9: List of the number of dropsondes within each of the four radial sections and in
total on each day. From Nelson et al. (2019b).

Day Name ≤1.25R∗ 1.25–3R∗ 3–5R∗ 5–10R∗ Total

27 Sept Marty 11 13 6 20 50
28 Sept Marty 13 16 15 14 58
02 Oct Joaquin 15 13 6 10 44
03 Oct Joaquin 11 11 7 14 43
04 Oct Joaquin 13 16 15 11 55
05 Oct Joaquin 9 13 7 24 53
20 Oct Patricia 5 5 2 0 12
21 Oct Patricia 13 18 13 7 51
22 Oct Patricia 5 13 12 13 43
23 Oct Patricia 5 6 9 8 28

Table 3.10: List of dropsonde-to-dropsonde spatial 0.5-autocorrelation thresholds (in km)
for each day in the dataset for vertical velocity (w), horizontal wind speed (|Vh|), relative
humidity (RH), temperature (T ), and equivalent potential temperature (θe). The size of the
RMW (in km) and TC intensity (in m s−1) are also noted.

Day Name w |Vh| RH T θe RMW Intensity

27 Sept Marty 4.8 9.6 6.9 6.9 6.9 37 26
28 Sept Marty 3.8 7.3 3.4 4.6 3.8 21 36
02 Oct Joaquin 3.8 7.0 3.8 5.4 4.8 31 57
03 Oct Joaquin 3.2 5.1 3.2 4.6 3.2 27 67
04 Oct Joaquin 4.9 18.9 6.0 15.1 7.6 38 44
05 Oct Joaquin 4.5 11.5 6.4 7.0 5.1 49 39
20 Oct Patricia 17.2 15.3 18.4 16.0 17.6 77 15
21 Oct Patricia 4.8 15.7 5.2 14.4 5.2 40 26
22 Oct Patricia 3.8 12.7 4.1 8.9 4.4 19 59
23 Oct Patricia 1.4 7.2 2.1 2.1 1.3 11 93

Mean —— 5.2 11.0 6.0 8.5 6.0 35 46
Median —— 4.2 10.5 4.7 7.0 5.0 34 41
St. Dev. —— 4.3 4.6 4.6 5.0 4.5 18 22
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Table 3.11: Same as Table 3.10, but for the temporal 0.5-autocorrelation thresholds (in s)
for each day in the dataset and any given individual sounding. The size of the RMW (in
km) and TC intensity (in m s−1) are also noted.

Day Name w |Vh| RH T θe RMW Intensity

27 Sept Marty 19 25 30 22 28 37 26
28 Sept Marty 23 31 27 24 31 21 36
02 Oct Joaquin 23 41 31 27 25 31 57
03 Oct Joaquin 25 38 33 35 34 27 67
04 Oct Joaquin 22 31 36 23 31 38 44
05 Oct Joaquin 20 31 35 21 30 49 39
20 Oct Patricia 8 21 30 15 19 77 15
21 Oct Patricia 22 32 26 13 22 40 26
22 Oct Patricia 21 27 32 17 25 19 59
23 Oct Patricia 20 33 19 17 20 11 93

Mean —— 20.3 31.0 29.9 21.4 26.5 35 46
Median —— 21.5 31.0 30.5 21.5 26.5 34 41
St. Dev. —— 4.4 5.5 4.7 6.1 5.1 18 22

Table 3.12: Number of updraft (U) and downdraft (D) soundings for each day.

Day Name U N

27 Sept Marty 4 3
28 Sept Marty 9 5
02 Oct Joaquin 13 15
03 Oct Joaquin 15 4
04 Oct Joaquin 4 0
05 Oct Joaquin 5 0
20 Oct Patricia 8 1
21 Oct Patricia 5 1
22 Oct Patricia 3 2
23 Oct Patricia 12 6

Total —— 78 37
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Table 3.13: Same as Table 3.11, but for soundings containing an updraft. Also included are
the p-values (p) for the Student‘s t-test comparisons between the temporal scales in Table
3.11 and the temporal scales in updraft soundings for each variable.

Day Name w |Vh| RH T θe RMW Intensity

27 Sept Marty 24 28 21 34 29 37 26
28 Sept Marty 30 42 21 27 34 21 36
02 Oct Joaquin 30 39 22 29 17 31 57
03 Oct Joaquin 26 43 27 51 40 27 67
04 Oct Joaquin 34 38 26 50 63 38 44
05 Oct Joaquin 10 24 28 25 27 49 39
20 Oct Patricia 5 19 37 14 17 77 15
21 Oct Patricia 33 25 21 27 25 40 26
22 Oct Patricia 19 28 20 15 14 19 59
23 Oct Patricia 26 37 21 22 27 11 93

Mean —— 23.7 32.3 24.4 29.4 29.3 35 46
Median —— 26 32.5 21.5 27.0 27.0 34 41
St. Dev. —— 9.7 8.5 5.3 12.7 14.3 18 22

p —— 0.34 0.69 0.03 0.10 0.57

Table 3.14: Same as Table 3.13, but for soundings containing a downdraft.

Day Name w |Vh| RH T θe RMW Intensity

27 Sept Marty 8 21 22 10 32 37 26
28 Sept Marty 27 23 20 23 29 21 36
02 Oct Joaquin 26 41 25 28 21 31 57
03 Oct Joaquin 32 47 43 67 38 27 67
04 Oct Joaquin 0 0 0 0 0 38 44
05 Oct Joaquin 0 0 0 0 0 49 39
20 Oct Patricia 27 19 15 18 5 77 15
21 Oct Patricia 21 31 24 21 24 40 26
22 Oct Patricia 22 34 48 40 31 19 59
23 Oct Patricia 20 71 18 17 20 11 93

Mean —— 22.9 35.9 26.9 28.0 25.0 35 46
Median —— 24.0 32.5 23.0 22.0 26.5 34 41
St. Dev. —— 6.7 16.1 11.2 16.9 10.1 18 22

p —— 0.40 0.47 0.52 0.35 0.71
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Figure 3.29: Median atmospheric profiles of (a, b, c, d) w (m s−1), (e, f, g, h) |Vh| (m s−1),
(i, j, k, l) RH (%), (m, n, o, p) T (K), and (q, r, s, t) θe (K) during Marty for data (a, e, i,
m, q) within 1.25R∗, (b, f, j, n, r) 1.25–3R∗, (c, g, k, o, s) 3–5R∗, and (d, h, l, p, t) 5–10R∗.

133



−1 0 1 2 3

0
10

<1.25R*

w [m/s]

Al
t. 

[k
m

]

−1 0 1 2 3

0
10

1.25−3R*

w [m/s]

Al
t. 

[k
m

]

−1 0 1 2 3

0
10

3−5R*

w [m/s]

Al
t. 

[k
m

]

−1 0 1 2 3

0
10

5−10R*

w [m/s]

Al
t. 

[k
m

]

0 10 20 30 40 50

0
10

|Vh| [m/s]

Al
t. 

[k
m

]

0 10 20 30 40 50

0
10

|Vh| [m/s]

Al
t. 

[k
m

]

0 10 20 30 40 50

0
10

|Vh| [m/s]
Al

t. 
[k

m
]

0 10 20 30 40 50

0
10

|Vh| [m/s]

Al
t. 

[k
m

]

0 20 40 60 80

0
10

RH [%]

Al
t. 

[k
m

]

0 20 40 60 80

0
10

RH [%]

Al
t. 

[k
m

]

0 20 40 60 80

0
10

RH [%]

Al
t. 

[k
m

]

0 20 40 60 80

0
10

RH [%]

Al
t. 

[k
m

]

200 240 280

0
10

T [K]

Al
t. 

[k
m

]

200 240 280

0
10

T [K]

Al
t. 

[k
m

]

200 240 280

0
10

T [K]

Al
t. 

[k
m

]

200 240 280
0

10

T [K]

Al
t. 

[k
m

]

320 360 400

0
10

θe [K]

Al
t. 

[k
m

]

320 360 400

0
10

θe [K]

Al
t. 

[k
m

]

320 360 400

0
10

θe [K]

Al
t. 

[k
m

]

320 360 400

0
10

θe [K]

Al
t. 

[k
m

]

	
(a)	 (b)	 (c)	 (d)	

(e)	 (f)	 (g)	 (h)	

(i)	 (j)	 (k)	 (l)	

(m)	 (n)	 (o)	 (p)	

(q)	 (r)	 (s)	 (t)	

27 Sept. 28 Sept.

02 Oct. 03 Oct. 04 Oct. 05 Oct.

20 Oct. 21 Oct. 22 Oct. 23 Oct.

Figure 3.30: Same as Fig. 3.29, but for Joaquin.
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Figure 3.31: Same as Fig. 3.29, but for Patricia.
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Figure 3.32: Comparison of the (a) daily dropsonde-to-dropsonde horizontal 0.5-
autocorrelation length scales (km) to the RMWs (km), and (b) daily dropsonde-to-dropsonde
horizontal 0.5-autocorrelation length scales to the daily temporal 0.5-autocorrelation length
scales (s) for w, T , |Vh|, RH, and θe (black, red, blue, green, and dark red, respectively).
The 1:1 (or x = y) line (black) is shown in (a).
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Figure 3.33: Spatial autocorrelations for XDDs launched into Marty (red), Joaquin (green),
and Patricia (blue). The spatial autocorrelations for w, |Vh|, RH, T , and θe are provided
in panels (a)–(e), respectively. Correlations of 0.5 and 0.0 are denoted with dashed red and
black lines, respectively. Each panel has an inset in the upper-right corner that shows the
variations in the 0.5-autocorrelation crossings.
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Figure 3.34: Same as Fig. 3.33, but for temporal autocorrelations in each sounding.
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Figure 3.35: Vertical profiles of (a) w, (b) |Vh|, (c) RH, (d) T , and (e) θe from an updraft
sounding (dropsonde 72CC) launched into the eyewall of Patricia on 23 October. The red
horizontal lines denote the depth of the updraft. The black long dashed vertical line in panel
(a) denotes w = 0 m s−1. The black short dashed vertical line in panel (a) denotes w = 2 m
s−1, which is the minimum w strength required for an updraft.
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Figure 3.36: Same as Fig. 3.35, but with respect to time. The red vertical lines denote the
time of the updraft. The black long dashed horizontal line in panel (a) denotes w = 0 m
s−1. The black short dashed horizontal line in panel (a) denotes w = 2 m s−1, which is the
minimum w strength required for an updraft.
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Figure 3.37: Same as Fig. 3.35, but for profiles of perturbation (a) w, (b) |Vh|, (c) RH, (d)
T , and (e) θe. The black dashed vertical line denotes zero-perturbation.
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Figure 3.38: Temporal autocorrelation correlograms of (a) w (black), (b) |Vh| (blue), (c)
RH (green), (d) T (red), and (e) θe (dark red). Correlations of 0.5 and 0.0 are denoted
with horizontal dashed red and black lines, respectively. Correlograms for the single updraft
sounding in Figs. 3.35–3.37 are in solid color lines, and correlograms for all soundings on 23
October are in dashed color lines.
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Figure 3.39: 0.5-autocorrelation temporal thresholds for (a) w, (b) |Vh|, (c) RH, (d) T ,
and (e) θe within individual soundings that recorded an updraft as a function of maximum
updraft depth in the sounding. Correlations and linear fits (red lines) are also provided.
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Figure 3.40: Same as Fig. 3.39, but for individual downdraft soundings.
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CHAPTER 4

Computational fluid dynamics modeling

4.1 Introduction and methods

Prior to performing any physical test drops of the new XDDs with the pd sensors,

three-dimensional modeling of the typical airflow and pressure anomaly distribution around

a falling XDD was examined. A three-dimensional model of a falling XDD, using a basic

computational fluid dynamics (CFD) model, is useful to obtain estimates of optimal port

location, pitot-static calibration coefficients (ratio of the true Bernoulli pd to the true airspeed

to the pitot-static-indicated pd), drag force, and errors associated with angle of attack.

A three-dimensional model of the XDD itself, obtained from computer-aided design and

drafting (CAD) files provided by Yankee Environmental Systems, was imported into the

‘simFlow ’ three-dimensional CFD model (Fig. 4.1). The three-dimensional model is not a

perfect representation of the XDDs or their fall characteristics, but it is reasonable to use

the CFD model for basic simulations and to estimate the behavior of the XDD as it falls.

The CAD file itself is not included in this dissertation due to proprietary concerns.

simFlow has been established as an adequate and robust CFD modeling software pack-

age (e.g., Lodh et al., 2017). simFlow uses the ParaView and OpenFOAM open source tools,

which are commonly used in engineering studies. It can model both incompressible and com-

pressible flows, include turbulence and simple chemical reactions, and simulate heat transfer.

All values of pressure, wind speed, and turbulence are normalized by the density of the fluid,

even though the units for these values are reported as Pa, m s−1, and J, respectively.
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In order to compute the wind flow around the XDD as it falls, and the pressure per-

turbations observed during descent, a non-uniform gridded mesh of the XDD and the space

around the XDD was created (Fig. 4.2). simFlow creates the non-uniform gridded mesh

from a user defined initial fixed grid. The specifications for the mesh size and CFD model are

provided in Table 4.1. The CFD model was run for 250 s with a 1-s time step, incompress-

ible free-stream airflow of 20 m s−1, and Reynolds-averaged NavierStokes (RANS) k-ω shear

stress transport (SST) turbulence. The RANS k-ω SST turbulence model performs well in

conditions of adverse pressure gradients or separating flows around an object and in both

high and low Reynolds number situations (Menter, 1993). Adverse pressure gradients occur

when the pressure increases in the direction of the flow, such as for an XDD falling through

the atmosphere in a motion-relative, Langrangian framework (e.g., Figs. 4.3c, 4.4c). The

CFD model was also run at free-stream airflows of 20 m s−1 at different angles of incidence

from 0–360◦, every 5◦ to simulate the behavior of the XDD as it falls near terminal fall speed.

Note that in simFlow, the horizontal axes are x and z and the vertical axis is y.

4.2 Results

4.2.1 Airflow characteristics

The CFD model runs show that, at 20 m s−1 true, the apparent airflow decreases to

approximately 10 m s−1 at the nose of the XDD, which corresponds to an increase in pressure

of 170–215 Pa (Figs. 4.3a, c, 4.4a, c). The flow diverges around the nose and either enters the

twisted slots in the foam or flows parallel to the contours of the dropsonde body (Figs. 4.3b,

4.4b). There is a slight increase in the apparent airspeed outside of the dropsonde body along

the sides, which corresponds to a relatively weak low-pressure anomaly along the sides of the

dropsonde body (Figs. 4.3a, c, 4.4a, c). The flow then converges in the aft of the dropsonde
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and a weak wake low forms, with high turbulent kinetic energy (TKE) approximately half an

inch behind the quadrifilar antenna and rotation of the airflow immediately behind the foam

body (Figs. 4.3b, c, d, 4.4b, c, d). The low-pressure anomaly in the aft dissipates quickly,

indicating that the pressure recovery is quick for the XDDs and that the low pressure is

not appreciably strong, deep, or steady in the aft of the dropsonde (Figs. 4.3c, 4.4c). The

airflow immediately behind the quadrifilar antenna is relatively calm, with weak airflow and

a weak, but steady, 30–40 Pa low-pressure anomaly (Figs. 4.3a, c, d, 4.4a, c, d)

The tail of the dropsonde (Fig. 4.5) has four pockets of strong negative pressure

anomalies (−80 to −90 Pa) associated with the blocked flow from the foam body of the

XDD (Fig. 4.5c) and a weaker, −30 to −40 Pa, pocket of low pressure behind the antenna

(Fig. 4.5a). But, these negative pressures are comparable to the negative pressures along

the side of the dropsonde body (e.g., Fig. 4.5c), which would produce a weak or near-zero pd

for the venturi-static methods. Weak or near-zero pd values are more prone to large percent

errors associated with signal saturation as previously described in section 2.4. This means

that the venturi-static method may not work well despite being the least prone to icing

conditions.

A venturi port somewhere in the aft of the XDD is still plausible if a pitot-venturi

method was used. Even though there is appreciable turbulence associated with the wake low

in towards the aft of the XDD, the high TKE zone is far enough away from the end of the

antenna (Fig. 4.3d), and the negative pressure anomaly and airflow strength immediately

behind the antenna is reasonably uniform (Fig. 4.5a, b), to justify an antenna venturi port.

The pressure behind the antenna varies by only 0.2 Pa within 0.25 in. of the center point.

The low pressure (and airspeed) behind the antenna is more uniform than the low pressure

and airflow behind the foam body of the XDD (Fig. 4.5c, d), and the rotor-like feature
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in the airflow behind the foam body is problematic (Fig. 4.3b). This collectively suggests

that a venturi port at the end of the quadrifilar antenna would be the most optimal venturi

method. The strength of the low-pressure anomaly behind the foam body and to either side

of the antenna is also a stronger function of the angle of incidence of the XDD to the flow

(Fig. 4.8, discussed below) and, subsequently, the phase of the XDD in its rotation, which

complicates the analysis of the pd and pitot-indicated TAS data.

The variance in the low pressure along the sides of the dropsonde presents a challenge

for the pitot-static method. If a pitot-static was used, then the static port should be located

towards the back end of the foam body to obtain a pressure measurement closer to the

true static air pressure (0 Pa; Figs. 4.3c, 4.4c). A side static port is also logistically and

operationally challenging, because of the effort it takes to route the pitot tube around the

circuit board and electronics and puncturing the side wall of the XDD sleeve (Table 2.1).

The pitot-static method would also suffer the same strong angle of incidence and dropsonde

rotation issues as the pitot-venturi with a body venturi. Further, both nose-pitot methods

will be less resilient to icing. These problems make the pitot-static method arduous, despite

the previous hypothesis that it would be the most reproducible from dropsonde-to-dropsonde.

The nose of the dropsonde has little variance in the ram pressure caused by the airflow

(Fig. 4.6a, b). The pressure along the leading edge/nose of the dropsonde foam body varies

by approximately 20 Pa, but along the central line (shown in black in Fig. 4.6a, b) it only

varies by 1–5 Pa at most. The strongest pressure occurs in the area between the nose and

side wall and the corners of the rounded nose (Fig. 4.6a). The pressure along the central

line is constant within 0.1 in. of the center point of the nose and varies by only 4 Pa within

0.25 in. A 4 Pa difference due to port placement would correspond to a velocity difference of

0.2 m s−1. This means that little variation in the pressure should exist with port placement
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along the central line of the nose of the dropsonde and that the two pitot methods should be

highly reproducible from dropsonde-to-dropsonde. These results indicate that the TAS from

a pitot-static would more closely represent the true airspeed, but the operational limitations

of the pitot-static and the strong influence of dropsonde tilt on the static pressure make it

infeasible for use on the XDDs. The pitot-venturi method with an antenna port, therefore,

is likely the most robust methodology out of the three modeled in the CFD, despite its

limitations (Table 2.1).

The results from the CFD model indicate that any method used would not accurately

obtain the TAS without a calibration coefficient. Because the pitot-venturi method appears

to be the most reproducible and most operationally viable method, it was tested in the CFD

model to estimate an airspeed calibration coefficient by placing “zero-mass” pressure probes

on the nose and the antenna at the geometric center of the dropsonde and an aft body probe

to one side of the XDD (Fig. 4.7). These probes report the exact pressure at a specific

location in the CFD model output without adding in an actual probe to the XDD model.

The pitot-venturi method using the antenna port was compared to the pitot-venturi method

using an aft body port, and both were rotated with respect to both of the vertical planes (x-y

plane and z-y plane) to examine the impact of dropsonde tilt or tumbling on the observed

pd.

The calibration coefficient (P ∗) for each method is calculated by:

P ∗ =
0.5V 2

pd
, (4.1)

note that density is not included in the calculation, because the differential pressure obtained

from the CFD model is normalized by density. In order to obtain the TAS, one would need
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to multiply the observed pd by P ∗ and use equation 2.3. The estimated P ∗ value for the

pitot-venturi with the antenna venturi port is 0.97, which is larger than for the pitot-venturi

with the body venturi port at 0.81. This means that the pitot-venturi with the body port

should overestimate the airspeed by approximately 20%, whereas the pitot-venturi with the

tail port is closer to the true airspeed.

Figure 4.8 shows the response of pd for the pitot-venturi method with an antenna port

or a body port to the angle of incidence. The model XDD was rotated in both the x-y plane

and the z-y plane and the average zero-incidence normalized signal (S∗) was plotted. Cross

sections of the typical airflow and pressure at incidences of 0, 90, 180, and 270◦ in both

the x-y and z-y plane are provided in Figures 4.9 and 4.10. S∗ rises slightly above unity

over an 80◦ span (±40◦), then decreases rapidly to zero at approximately ±80◦. At large

incidences to the flow, the signal changes sign and indicates an incorrect, negative, pd that

minimizes at incidences of 140 and 220◦. The pitot-venturi method with an antenna port has

S∗ values closer to unity at ±40◦ incidences, but stronger (more negative) S∗ values outside

of ±40◦ (Fig. 4.8). The pitot-venturi method with an antenna port has errors within ±0.5

m s−1 at ±5◦ incidences and ±1 m s−1 at ±10◦. The angle of incidence, therefore, is an

appreciable error that can affect the measurement beyond the desired error budget of ±0.1

m s−1. At present, the severity of the tilt of the XDDs during descent is not known and

further study of dropsonde dynamics is needed to obtain a realistic measure of tilt effects on

the TAS measurement. Measurements of dropsonde tilt during descent can be used to make

adjustments to the measured differential pressure TAS and account for most of these errors.

Further error estimates of the pitot-venturi-derived TAS and vertical velocity, provided in

chapters 5–7, assume an angle of incidence of 0◦.
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4.2.2 Drag coefficient estimate

The simFlow CFD model monitors density normalized drag forces (F ∗) in the three-

dimensional framework (x, z, y). The drag coefficient can be obtained using a modified

version of equation 2.9:

Cd =
2F ∗

AV 2
, (4.2)

for each x, y, and z component. The drag coefficient was computed at an airspeed of 20

m s−1 and in both axial (nose-on) and cross-flow (side-on). The frontal area of the XDD

can be approximated as a circle, with a diameter of 0.066 m (Black et al., 2017). The side

area of the XDD can be approximated by a rectangle, with a length of 0.178 m and a width

of 0.066 m (Black et al., 2017). For reference, the length to diameter ratio of the XDDs is

approximately 2.7.

Using these approximated areas, the CFD model indicated Cd for the XDDs in axial

flow (y-direction) is 0.93, which is close to the 0.95 estimate in section 2.4. Both of these

estimated Cd values are slightly larger than what is expected for a cylinder (with a length

to diameter ratio of 2.7) in axial flow by approximately 0.1–0.15 (Higuchi et al., 2006). The

Cd for cross-flow (x-, z-direction) is an average of 1.30, which is not appreciably different

than the axial drag coefficient and is representative for a smooth cylinder in cross-flow at

the expected Reynolds numbers for the XDDs (Fig. 2.13) (e.g., Munson et al., 2006).
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Table 4.1: Specifications for the simFlow CFD model for the XDDs.

Value or description

Time step 1-s
Duration 250 s

Compression Incompressible
Airspeed 20 m s−1

Wind direction 0–360◦

Turbulence RANS k-ω SST
Boundary conditions Free slip or inflow/outflow

Number of initial grid points 10x10x10
Grid spacing (x; z; y) 0.016 m; 0.034 m; 0.016 m

Transport model Newtonian: ν=1.5x10−5 m2 s−1

Solver Geometric agglomerated algebraic multigrid solver (GAMG)

152



Figure 4.1: Three-dimensional model of the XDDs provided by Yankee Environmental Sys-
tems.
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(a) (b) 

Figure 4.2: Three-dimensional non-uniform grid (brown and green in panel (a) and mesh
around the XDDs (orange in panel (b)). Note, the vertical axis is denoted in simFlow as ‘y’
rather than the traditional ‘z’.

	(a)	 (b)	

(c)	 (d)	

Figure 4.3: Results of the CFD model at zero angle of incidence in the x-direction. Panel
(a) is the airflow (m s−1; shaded). Panel (b) shows the streamlines of the airflow, with
the airspeed shaded in m s−1. Panel (c) is the anomalous pressure relative to the ambient
pressure (Pa; shaded). Panel (d) is TKE (J; shaded).
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	(a)	 (b)	

(c)	 (d)	

Figure 4.4: Same as Fig. 4.3, but for the z-direction.

	(a)	 (b)	

(c)	 (d)	

Figure 4.5: Anomalous pressure (Pa; shaded) and airflow (m s−1; shaded) behind the main
body of the dropsonde. Panels (a) and (b) are immediately behind the quadrifilar antenna,
whereas panels (c) and (d) are immediately behind the foam body of the dropsonde.
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	(a)	 (b)	

Figure 4.6: Anomalous pressure (Pa; shaded) and airflow (m s−1; shaded) at the nose of the
dropsonde. The center-line of the XDD foam body is shown as a dashed black line.

 (a) (b) 

Figure 4.7: Location of pressure probes/ports for the CFD model analysis. The nose pitot
port is the red dot in panel (b), the antenna venturi port is the green dot in panel (a), and
the venturi body port is the purple dot in panel (a).
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Figure 4.8: Polar plot of S∗ for the pitot-venturi with the antenna port (blue) and the body
port (red). S∗ values of 1 and 0 are highlighted in black and green, respectively.
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(a)	

(b)	

(c)	

(d)	

Relative	
airflow	

Dropsonde	
motion	

Figure 4.9: Airflow around the XDD as it falls (m s−1; shaded) rotated in the x-y plane.
Panel (a) is at an angle of 180◦, panel (b) is at an angle of 90◦, panel (c) is at an angle of
0◦, and panel (d) is at an angle of 270◦.
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	 (a)	

(b)	

(c)	

(d)	

Relative	
airflow	
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Figure 4.10: Same as Fig. 4.9 but rotated in the z-y plane.
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CHAPTER 5

Clear air tests and calibrations

While the CFD model analysis is useful for beginning to understand the port location

sensitivity and discerning the optimum port configuration, the pitot-venturi with an aft

antenna port should be tested in clear air conditions prior to operational drops, and the

dropsonde-to-dropsonde variance should be tested in reality. Moreover, the actual P ∗ for

the chosen method needs to be established by comparing P ∗ values for a small subset of

dropsondes. To accomplish this, individual P ∗ values using the pitot-venturi, with the aft

antenna port, were obtained and compared using a rotating arm device. The final error

estimate for the pitot-venturi-derived vertical velocities was calculated after conducting full-

scale meteorological flights (chapter 6).

5.1 Methods and data

All clear air rotating arm tests documented here were conducted at Yankee Environ-

mental Systems in Turners Fall, MA. All data were telemetered using a similar protocol and

forward error correction as in TCI, but the receivers were located at Yankee Environmental

Systems rather than on an aircraft. The telemetered data include: date, time, p, T , pd, GPS

fall speed, and GPS altitude. The pd sensor used for all tests was the AllSensors DLHR-

L05D-E1BD described in section 2.5. The pitot and venturi ports themselves are blunt ends

of standard pitot tubing for model airplanes, with an inner diameter of 1.5 mm and an outer

diameter of 2.5 mm. The ends of the tubing were placed flush to the foam exterior (e.g.,

Fig. 5.1).
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The pd for the DLHR-L05D-E1BD sensor is calculated by the following transfer func-

tion:

pd = 248.84
1.25(D −Do)FSS

N2
, (5.1)

where D is the digital output (units as decimal counts, hereafter called DO), Do is the zero-

pd offset, FSS is the full-scale span of the measurement (25 DO), and N is the number of

bits in the measurement (18). This equation was obtained from All Sensors (2019) and was

modified to produce differential pressure values with units of Pa. The TAS was calculated

using equation 2.3.

During the prototyping and development stage, eight XDDs were placed on the ground

and allowed to transmit for approximately 1−10 minutes, depending on the dropsonde. The

mean DO bias for each XDD during this time period was assumed to be representative of

the Do term. By subtracting the mean Do from the raw DO in equation 5.1, the observed pd

values were calibrated for any zero-pd/zero-airspeed bias. The zero-pd/zero-airspeed digital

output is provided in Figure 5.4. The results from Figure 5.4 indicate that a single, uni-

versal zero-pd offset correction for all XDDs cannot be used, because the mean values are

appreciably different from dropsonde-to-dropsonde. The offset value should be calculated

for each XDD individually prior to launch and automatically subtracted. The zero-pd values

are nearly constant over time for each XDD, with small standard deviations of 3−16 DO

(0.002–0.012%).

5.1.1 Rotating arm

In order to obtain true P ∗ values, estimate the dropsonde-to-dropsonde variance in the

P ∗ value, and verify port sensitivity from the CFD model (chapter 4), a large rotating arm
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was built to swing the XDDs in a circle, with a constant radius. This was done in lieu of

wind tunnel testing due to time and budget constraints, as well as the availability of wind

tunnels suitable for the size of the XDDs and their expected fall speeds. The rotating arm

(Fig. 5.2a) was designed to swing the XDDs in a circle with a diameter of approximately 5

m at a speed of 20 m s−1 to match the speeds used in the CFD model and the approximate

sea-level fall speed of the XDDs. The rotating arm tests were conducted on 15 May 2019.

The rotating arm consists of a WEG 1 HP single phase AC motor, with a nominal

speed of 3480 RPM, a Lexar Industrial MRV063 40:1 worm gear speed reducer, with a 2.95-

in pulley head that connects to a stepped 3, 4, 5, or 6-in pulley head by a v-belt, a truck axle

bearing, and an adjustable arm (Fig. 5.2b). The worm gear speed reducer slows down the

speed of the output shaft to approximately 87 RPM. The speed is then modified by the ratio

of the diameters of the chosen pulley heads. For example, the use of the 2.95-in pulley head

on the output shaft with the 6-in option on the arm reduces the speed by approximately

a factor of two (approximately 43 RPM). At an arm length of exactly 5 m, this would,

theoretically, correspond to a tangential speed of approximately 22 m s−1.

Ultimately, the 3-in pulley head option on the arm was used, with a total arm length of

approximately 2.65 m (104.24 in) (Fig. 5.2a, b). This was done to get the theoretical speed

of the arm as close to 20 m s−1 as possible and to keep the arm well balanced without a

support strut system. The dropsonde was attached to the adjustable arm using a wiring rig

(Fig. 5.2c). The wiring rig consists of a 1x2x3 in. block of wood, with copper tubing glued

into holes drilled into the wood. Wire loops (14 gauge) threaded through the copper tubing

were used to hold the dropsondes in place. The loops were tightened around the dropsondes

each time the rotating arm was used.

The rig of the rotating arm was mounted to planks of wood to provide extra stability
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and anchored into to the ground using four metal stakes (Fig. 5.2a, b). Plastic feet were

used under the wood planks to make sure that the rotating arm was level. The dropsonde

mount was manually leveled prior to testing.

The true speed of the rotating arm was monitored three ways: 1) a Hall Effect sensor;

2) 30 FPS video; and, 3) a manual stop watch timer. Hall Effect sensors are traditionally

used to detect changes in magnetic field (e.g., Ejsing et al., 2004). In this case, the Hall Effect

sensor, controlled by an Arduino nano microprocessor board, triggers upon the passage of a

set of neodymium magnets on the arm above it (Figs. 5.2b and 5.3b). The Arduino nano

calculates the time between triggers and outputs the time onto an LCD screen (Fig. 5.3a).

The Hall Effect sensor is attached to a short rod to place the sensor close enough to the

magnets on the arm to correctly trigger. The Hall Effect speed monitor is powered by a 9 V

battery (Fig. 5.3a).

The arm speed from the 30 FPS video was calculated by slowing the film down frame-

by-frame and calculating the mean time it took to complete one full rotation of the arm.

The speed from the manual stop watch calculation was obtained by calculating the mean

time it took for the arm to complete ten revolutions at the start of each minute that the

arm was rotating. The arm was ran for four minute intervals. Mean arm speeds and mean

pitot-venturi-indicated speeds were used, rather than instantaneous speeds, in an effort to

diminish the effect of ambient wind and wind gusts. It took approximately ten minutes to

set up and complete the calibration of one dropsonde. The pd values were recorded at a 1-Hz

rate.
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5.2 Results and analysis

A total of eight different dropsondes with the nose pitot port and antenna venturi port

were used in the rotating arm calibration tests. The location of the ports was measured for

each dropsonde using calipers after testing. The location of the nose port had a standard

deviation of 0.02–0.03 in. and the antenna port had a standard deviation of 0.03 in. for the

eight dropsondes. The total standard deviation of the port location was 0.04 in. Given the

results of the CFD model analysis in chapter 4, pd is expected to vary negligibly by 0.1–0.2

Pa at most; a TAS error of ±0.01 m s−1.

The Hall Effect sensor speed monitor indicated that the arm took approximately 1.16–

1.17 s to complete one revolution. This agreed well with the mean manual stopwatch cal-

culations and mean video calculated speeds of 1.155–1.165 s rev−1. This corresponds to

tangential speeds of 19.2–19.4 m s−1, depending on the dropsonde and test run. The mean

speeds for each test run/dropsonde were used to calibrate the TAS and calculate the mean

P ∗ value for each dropsonde and the eight dropsonde dataset using equation 4.1.

The mean TAS for the eight test runs was 20.6–21.4 m s−1. This variance between runs

accounts for any persistent or mean errors for a given dropsonde, differences in mean arm

rotational speed, any mean wind biases, small port placement errors, and any true dropsonde-

to-dropsonde variance. The plots for all eight test runs are provided in Figure 5.5. The data

have some noise across all eight runs associated with ambient wind, inconsistent arm speed,

or true precision of the measurement. The standard deviation for seven of the eight tests

was low at 0.43–0.57 m s−1. The first test, dropsonde 8121, had a higher standard deviation

at 0.74 m s−1, but the ambient wind was relatively stronger at that time, compared to the

other seven runs.

A histogram of the mean P ∗ values for each of the eight XDDs is provided in Figure 5.6.
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While the total number of dropsondes (samples) is small, these tests provide validation for

the CFD-estimated P ∗. Further testing of a larger number of dropsondes is required to fully

understand dropsonde-to-dropsonde variance in P ∗ and the true distribution of P ∗ values

for the XDDs. The distribution is positively skewed, with a peak in frequency between P ∗

values of 0.84 and 0.86 (Fig. 5.6). Both the mean and median P ∗ values are 0.85, which is

less than but comparable to the CFD-estimated P ∗.

The absolute difference between the mean arm speed and the mean TAS calibrated

with a mean P ∗ value for all eight tests was 0–0.45 m s−1, with a mean absolute difference of

0.16 m s−1 (Table 5.1). Using individualized P ∗ values for each dropsonde reduces the mean

absolute differences to 0–0.01 m s−1, with a mean absolute difference of 0.006 m s−1 (Table

5.1). As the mean arm speed was used in this analysis, and the instantaneous arm speed or

pitot-venturi-indicated speed may differ due to ambient wind or wind gusts, the traditional

root mean square error (RMSE) for each dropsonde cannot be accurately calculated. A

‘mean speed’ RMSE (MS-RMSE) was computed for both the mean P ∗-calibrated TAS and

the individually P ∗-calibrated TAS across all eight runs. The MS-RMSE for the mean P ∗-

calibrated TAS was 0.6 m s−1, whereas the MS-RMSE for the individually P ∗-calibrated

TAS was considerably smaller at 0.02 m s−1.

These results suggest that individually calibrated dropsondes would produce a more

accurate pitot-venturi-indicated TAS and errors well within the allowed ±0.1 m s−1 bounds.

The individual calibration, however, presents a challenge operationally. For example, to

complete the same calibration for the 785 XDDs launched into Marty, Joaquin, and Patricia

(chapter 3), it would take an estimated 131 hours (or 5.5 days) to complete the calibration.

On the other hand, using a single P ∗ value increases the error to approximately 0–0.5 m s−1.
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Table 5.1: Mean and absolute mean difference between the mean arm speed and the mean
TAS calibrated with a mean P ∗ or individual P ∗ values.

Dropsonde Mean diff. (mean P ∗ cal.) Mean diff. (ind. P ∗ cal.)

8121 0.33 0.01
F424 −0.21 0.01
B0C5 −0.05 0.01
FE03 0.13 0.01
70C5 0.10 0.01
AF12 −0.01 0.00
B645 −0.45 0.00
9425 0.00 0.00

Mean −0.02 −0.006
Absolute mean 0.16 0.006

MS-RMSE 0.62 0.018

	
(a)	 (b)	

Nose	pitot	port		 Antenna	venturi	port		

Figure 5.1: Pitot-venturi XDD prototype, with the nose pitot port (a) and antenna venturi
port (b).
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(a)	 (b)	

(c)	

2.64	m	

Speed	monitor	

1	HP	motor	

40:1	speed	
reducer	

Axle	
bearing	

3-stepped	
pulley	

Neodymium	
magnets	

Figure 5.2: Images of the rotating arm used to calibrate the dropsondes. Panel (a) shows
the arm length and overall scale. Panel (b) shows the general layout of the controlling
mechanisms for the rotating arm. Panel (c) shows the wiring rig to hold dropsondes onto
the end of the arm.

	
(a)	 (b)	Hall	Effect	

sensor	

9	V	battery	

LCD	screen	

Arduino	
nano	

LCD	screen	

Figure 5.3: Images of the Hall Effect speed monitor. Panel (a) shows the monitor with
the Hall Effect sensor attached to a post and an LCD screen output. Panel (b) shows the
internals, circuit board, and Arduino nano used to control the sensor.
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Figure 5.4: Digital output from eight XDDs (S1–S8; gray, blue, dark blue, green, dark green,
red, dark red, and orange, respectively).
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Figure 5.5: Raw, uncalibrated TAS from the eight dropsondes rotating arm tests. The black
horizontal lines denote the mean TAS during the testing period.
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Figure 5.6: Histogram of the observed P ∗ values for the rotating arm calibration tests.
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CHAPTER 6

Meteorological flights

6.1 Introduction

NASA conducted the Doppler Aerosol Wind (DAWN) Lidar verification field campaign

from 15–28 April 2019 out of the NASA Armstrong Flight Research Center in Palmdale,

CA. The goal of the campaign was to test the capabilities of the DAWN Lidar (Kavaya

et al., 2014) onboard a DC-8 aircraft and validate the observations with coincident data

from the Atmospheric Laser Doppler Instrument (ALADIN) wind Lidar on the European

Space Agency Aeolus satellite (Paffrath et al., 2009; Reitebuch et al., 2009) and soundings

of horizontal wind from the XDDs.

A total of four XDDs, with the pd sensor and antenna aft port pitot-venturi configu-

ration, were launched from the DC-8 aircraft at an altitude of approximately 8–9 km. All

flights and XDD drops occurred over the northeastern Pacific between California, Hawaii,

and Alaska. One sounding, launched approximately 1000 km off the coast of southern British

Columbia (47.86◦, −139.18◦) at 03:09 UTC on 18 April, failed to record pd data due to issues

associated with start up of the XDD. The other three soundings recorded pd data and were

launched on 28 April approximately 700 km to the west of the Baja California Peninsula

from 02:04–2:10 UTC. The soundings were launched approximately 40 km apart.

The three soundings are the first successful operational deployments of XDDs with

the pd sensor. In this chapter, the pitot-venturi-indicated fall speeds and vertical velocities

are examined and compared to the other fall speeds and dropsonde-derived vertical velocity
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methods (e.g., the GPS fall speed-based drag force methodology and the M3 methodology).

The synoptic meteorological conditions for the series of drops is also analyzed. An error

analysis is also made, assuming that the true mean vertical velocity in the profiles is zero.

Unfortunately, the vertical velocity profiles observed by the XDDs cannot be truly

verified at this time. The DAWN Lidar data was either not pointed downward or was

pointed at a shallow, 30◦ angle (M. Beaubien and D. Emmitt, personal communication).

This means that either vertical velocity profiles were not obtained or could be erroneous

due to the shallow observation angle. Further, both the ALADIN and DAWN data were not

fully post-processed, quality controlled, and readily available for inclusion in the dissertation.

It is also unknown what the accuracy or quality of the ALADIN vertical velocities would

have been. The specifications for the ALADIN and DAWN Lidars are provided in section

6.2. Comparisons of dropsonde pitot-venturi-derived vertical velocity to Lidar data will be

a subject of future work.

6.2 Data and methods

6.2.1 ALADIN

The ALADIN Lidar, launched on the Aeolus satellite on 22 August 2018, is a direct-

detection Doppler Lidar that detects the phase shifts in both the Rayleigh (molecular) and

Mie (aerosols and cloud particle) regimes (European Space Agency, 2019a,b). It has a

wavelength of 355 nm and a 100-Hz pulse rate (Reitebuch et al., 2009). The ALADIN Lidar

is stated to have a 0.5−2 km vertical resolution and a 1–3 m s−1 horizontal wind speed

precision (Reitebuch et al., 2009). Additional specifications and simulated perfomance can

be found in Reitebuch et al. (2009) and Paffrath et al. (2009). The ALADIN Doppler Lidar

samples wind profiles below 30 km (Reitebuch et al., 2009; Paffrath et al., 2009; European
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Space Agency, 2019a), whereas the XDDs and DAWN sample horizontal winds below flight

level (approximately 8 km). Validations of the ALADIN Lidar-derived winds are ongoing

and are part of the 2019 DAWN Lidar verification field campaign.

6.2.2 DAWN

The DAWN Lidar was developed by NASA to be used on a Earth-orbiting satellite

to measure vertical profiles of horizontal wind (Kavaya et al., 2014). DAWN is a 2-µm

pulsed-wave instrument that relies upon the Doppler shift of high-energy interacting with

atmospheric aerosols to obtain the three-dimensional wind vector. The laser has a pulse rate

of 10-Hz and a pulse length of 1 ns. Additional specifications can be found in Kavaya et al.

(2014).

Comparisons between the DAWN horizontal wind speed and direction to XDD horizon-

tal wind speed and direction was previously analyzed as part of the 2017 NASA Convective

Processes Experiment (CPEX; Emmitt et al., 2018). The root mean square difference was

1–2 m s−1 for horizontal wind speeds and 14–16◦ for horizontal wind direction (Emmitt

et al., 2018). This agrees well with the differences between dropsonde horizontal winds and

DAWN horizontal winds during the 2010 NASA hurricane Genesis and Rapid Intensification

Processes (GRIP) campaign (Kavaya et al., 2014). Emmitt et al. (2018) state that majority

of the differences between the two were due to spatial and temporal separation of the DAWN

and XDD soundings.

The DAWN horizontal wind soundings are approximately 30 seconds in duration, but

cover a horizontal spatial scale of approximately 65 km when flown at 8 km on the DC-8

(Emmitt et al., 2018). In contrast, the XDDs would only traverse 5–10 km horizontally

when launched from 8 km, assuming a hypothetical mean horizontal wind speed of 10 m
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s−1. When the mean horizontal wind speed increases, however, the horizontal displacement

of the XDD also increases (e.g., the XDDs launched near the core of Patricia on 23 October;

section 3.1 and 3.3). Therefore, these differences in sampling could lead to slight differences

between the profiles and not represent true error in the measurements of either instrument.

6.2.3 Flight and dropsonde data

Shown in Figure 6.1 is the flight track of the DC-8 for the 28 April drops. The pd

data obtained by the three dropsondes replaced the IR SST data in the data processing and

telemetry. Therefore, all variables in Table 1.2 were observed, except for the SST . The data

acquisition frequency for pd was 1-Hz for the DC-8 flights. The pd values for each dropsonde

were already calibrated for their individual zero-pd offset (see section 5.1) prior to launch

and were converted to the desired format using equation 5.1. The three XDDs were not

calibrated individually with the rotating arm due to time constraints. Instead, the mean P ∗

value of 0.85 was used to calibrate the three XDDs. Like in section 3.1, data above a specific

altitude, in this case 7.5 km, were removed due to dropsonde adjustments after launch.

There are three possible geometric fall speeds to use in the calculation of vertical veloc-

ity (e.g., equations 2.4 or 2.5): 1) GPS altitude calculated fall speed (dz
dt

); 2) calculated hydro-

static differential pressure fall speed (equation 2.11); and, 3) hydrostatic height-calculated

fall speed (dzp
dt

). The GPS altitude calculated fall speed is different than the actual GPS

fall speed, which is obtained by Doppler shift. The three geometric fall speeds were calcu-

lated using a 15-point center difference similar to the methodology of section 3.1. However,

only equation 2.4, with the hydrostatic fall speed, was used to calculate the final pitot-

venturi-indicated vertical velocity due to uncertainties in the hydrostatic height-calculated

fall speed.
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6.3 Meteorological conditions

The 40-km North American Model (NAM) 00 UTC initialization for 28 April 2019 is

used in this section to examine the synoptic and local conditions during the drops. The 40-

km NAM data was obtained from the University at Albany, State University of New York,

Department of Atmospheric and Environmental Sciences data repository. The 03 UTC valid

forecast is shown here, because it is the closest in time to the drops. The analysis of the

00 UTC output, however, is not appreciably different from the 03 UTC forecast. Artificial,

fixed-point, model soundings were created from the all of the data at the nearest grid points

to the launch locations. The fixed-point model soundings were used to compare to the

observed XDD soundings. The fixed-point model soundings were approximately 20–23 km

to the northwest of the actual drops. The drop locations for the three soundings are provided

in Figure 6.2 as black dots. Geostationary Operational Environmental Satellite (GOES) IR

data, obtained from the San Francisco State University data archives, from 03 UTC on 28

April 2019 shows that the three XDDs were dropped in an area of relatively clear conditions

with little cloud cover (Fig. 6.3).

6.3.1 28 April 2019: 00–03 UTC

The surface temperatures of the eastern Pacific were relatively cool, ranging from 290–

292 K (62.33–65.93◦F) off of the Baja California Peninsula (Fig. 6.2c). There was a weak

surface low pressure (1016 hPa), which was not completely closed off, that was associated

with an upper-level trough (Fig. 6.2). The trough was stacked and closed off at both the

500-hPa and 250-hPa levels (Fig. 6.2a, b). The northern jet was decoupled from the weaker

southern jet at the 250-hPa level (Fig. 6.2a). There was a weak jet streak (closed 70 kt

contour, red) on eastern side of low, adjacent to the location of the XDD drops, which
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could affect the observed vertical velocity (Fig. 6.2a). The upper-level forcing, however,

was relatively weak, and the soundings may be too far enough removed from the influence

of the weak jet streak. The only precipitation forecasted with the low pressure was to the

northwest of the XDD drops (Fig. 6.2d).

The fixed-point model soundings, corresponding to each XDD drop, had slightly pos-

itive vertical velocities in the lowest 800 m but negative vertical velocities of −1 m s−1 to

−2 m s−1 (Fig. 6.4a). The mean vertical velocity for the soundings was approximately −1.1

m s−1. The horizontal wind speed was similar for all three drops, with weak winds below

800 m that increase in strength aloft (Fig. 6.4b). The flight-level horizontal wind speeds

were forecasted to be between 22–28 m s−1 (Fig. 6.4b). The winds were veering below 800

m, indicating warm air advection (Fig. 6.4b). This low-level region also was fairly moist.

The air above 800 m was mostly dry (excluding the 4–6 km layer)(Fig. 6.4d). The modeled

weak horizontal winds, veering/warm air advection, moist air, and weakly positive verti-

cal velocities, occurred below an inversion and 1 km deep stable layer, which would have

suppressed the ability to have deep, strong convection and limited the strength of vertical

velocity observed by the XDDs (Fig. 6.4c).

6.4 Results

6.4.1 Sounding analysis

Upon close examination of the fall speeds above 7.5 km (not shown), the pitot-venturi-

indicated TAS profiles show instances where the dropsonde enters a stable descent earlier

than what the GPS fall speed would suggest. There are also small, but distinct, features

in the two fall speeds that are dislocated in time or altitude (Fig. 6.5). To examine this

observation further, lagged time correlations were created between the two fall speeds for
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all three drops (Fig. 6.6). The GPS fall speed for the three soundings lagged behind the

uncalibrated pitot-venturi-derived fall speed by 1–2 s, with a mean of −1.3 s (Fig. 6.6). All

correlations (r values) outside of ±0.1 are statistically significant. These results imply that

the GPS altitudes and GPS fall speeds likely correspond to data at lower true altitudes.

The mean difference between the GPS fall speed (unadjusted for time lag) and the

pitot-venturi-derived fall speed for all three drops was 4.4 m s−1. If a single P ∗ value of 0.85

was used, the mean difference reduces to 2.5 m s−1, with largest mean difference being 4.7

m s−1 for the first sounding. The third sounding had the smallest mean absolute difference

at 0.09 m s−1.

The GPS fall speeds show the most variability from dropsonde-to-dropsonde, with a

standard deviation of the mean fall speed at 2.4 m s−1 (Fig. 6.5). The hydrostatic fall

speed and hydrostatic height-calculated fall speeds have standard deviations of the mean

fall speeds of 0.25 and 0.48 m s−1, respectively. The mean P ∗-calibrated pitot-venturi TAS

has the smallest standard deviation at 0.1 m s−1. The mean P ∗-calibrated TAS agrees

exceptionally well with the hydrostatic fall speed for all three drops (Fig. 6.5). All three

fall speeds, except for the hydrostatic height-calculated fall speed, agree well for the third

sounding (FE38; Fig. 6.5c).

Shown in Table 6.1 are the mean and mean absolute differences between the P ∗-

calibrated pitot-venturi-derived fall speeds and hydrostatic fall speeds for each sounding

and for the combined three sounding dataset. The mean P ∗-calibrated pitot-venturi-derived

fall speeds and mean hydrostatic fall speeds differ by −0.18 m s−1, with a mean absolute

difference of 0.28 m s−1 for the combined three sounding dataset (Table 6.1). The mean dif-

ferences for 2FEF and FE38 were approximately −0.1 m s−1, with mean absolute differences

between 0.2–0.3 m s−1 (Table 6.1). 9C30 had larger differences, which biased the overall
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mean differences (Table 6.1).

The observed soundings for horizontal wind speed, T , and RH (Fig. 6.7b, c, d) agree

well with the 03 UTC 40-km NAM model fixed-point soundings (Fig. 6.4b, c, d). The

horizontal winds above 6 km and below 1 km were stronger in the XDD soundings (Fig.

6.7b). The inversion and stable layer were more shallow in the XDD soundings and the lapse

rates above the inversion are steeper (Fig. 6.7c). The XDD soundings were also drier below

1 km, with the mid-level moisture peak occurring at a lower altitude of 3.5 km (Fig. 6.7d).

The observed vertical velocity, however, is different from the model fixed-point sound-

ings. The pitot-venturi-derived vertical velocity profiles were weak and relatively near zero

for the entire depth of the sounding (Fig. 6.7a). Sounding 2FEF had weakly negative ver-

tical velocities below 2 km, then weakly positive velocities above 2 km (green; Fig. 6.7a).

Sounding FE38 showed a similar, but weaker and shallower, transition from negative vertical

velocities below 1.5 km and positive above 1.5 km (blue; Fig. 6.7a). Sounding 9C30 was

primarily positive throughout the depth of the sampled atmosphere (red; Fig. 6.7a).

As the model soundings in Figure 6.4 indicate, one would expect positive, or weakly

positive, vertical velocities capped below the stable inversion and downward motion associ-

ated with subsidence above the inversion and relatively high surface pressure (Fig. 6.2c).

Shown in Figure 6.8 are the vertical velocity profiles using the pitot-venturi, M3 method-

ology with the hydrostatic fall speed, and drag force methodology with the GPS fall speed

and assuming a Cd value of 0.95. The M3 methodology vertical velocities were negative for

all three soundings, but sounding 2FEF had a similar structure and shift to more positive

vertical velocities at 2 km as the pitot-venturi vertical velocity profile (Fig. 6.2a and 6.8b).

The GPS fall speed-based drag force vertical velocity profiles had high-amplitude noise and

unrealistically large dropsonde-to-dropsonde variance in the fall speeds (Fig 6.8c). While
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the M3 methodology vertical velocities agree more with the primarily negative NAM model

vertical velocities, none of the dropsonde-derived vertical velocity methods produce the same

canonical subsidence inversion vertical velocity structure as in the NAM model. It is possi-

ble, however, that the model soundings do not accurately represent the true vertical velocity

structure and that the true vertical velocity profile was weak and close to zero. It is also

possible that the vertical velocity profiles do not agree between the NAM model and the

observations, because the NAM model is a rigid fixed-grid sounding and the observational

soundings are not at a fixed point in space. The XDDs drifted approximately 0.5–1 km

during their descent.

6.4.2 Error analysis

Bushnell et al. (1973) claim that the total mean vertical velocity error using a pitot-

static method can be calculated directly from the fall speed or TAS data under the assump-

tion that the true mean vertical velocity is zero in relatively quiescent environments. The

synoptic conditions during the ED drops documented by Bushnell et al. (1973), are compa-

rable to the synoptic conditions for the XDD DC-8 drops. Given that the soundings were

in an area of weak upper-level forcing and relatively calm conditions, the zero-mean vertical

velocity assumption is not likely to severely impact the error analysis. The fixed-point model

soundings, however, indicated that the mean vertical velocity was not zero (approximately

−1 m s−1). Unfortunately, there are no readily available datasets to verify the vertical

velocity from the DC-8 drops at present.

If the mean vertical velocity over the sampling depth is truly zero, then there should

be no difference between the mean actual geometric fall speed and the mean P ∗-calibrated

pitot-static-derived fall speed over that depth (i.e., VTAS − Vgeometric = 0). If this difference
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for any given sounding is not zero, then the difference is the mean vertical velocity error

in the sounding. In this section, the Bushnell et al. (1973) mean vertical velocity error

calculation is used to estimate the errors in the pitot-venturi-derived vertical velocity from

the DC-8 soundings.

If the true mean vertical velocity in the profiles is zero, then the mean differences

in Table 6.1 represent the mean error in the pitot-venturi-derived TAS and pitot-venturi-

derived vertical velocity. In that situation, the mean absolute vertical velocity errors would

be approximately 0.1–0.4 m s−1. The RMSE of the vertical velocity in this case would be

0.23–0.44 m s−1. It is unrealistic, however, that the true mean vertical velocity was exactly

zero or that the true vertical velocity was zero for the majority of the descent. Therefore,

these mean differences in Table 6.1 are the combination of the true mean vertical velocity

and true mean error.

The error estimates are based upon the assumption that the mean P ∗ value can be

applied for all XDDs. It is possible that the mean P ∗ of 0.85 is wrong or that it is un-

representative for these three XDDs. It is also likely that the XDDs should be individually

calibrated with the rotating arm or a highly accurate wind tunnel. One additional possibility

is that the hydrostatic fall speed is not the true geometric fall speed of the XDDs. As shown

by Figure 6.9, however, the use of the hydrostatic height-calculated fall speed or GPS fall

speed does not improve the results and produces large, positive vertical velocity profiles that

are highly unrepresentative of a subsidence inversion sounding. The TAS-derived vertical

velocities with the GPS fall speed also have large, unrealistic peaks above 5.5 km (Fig. 6.9).

The results indicate that the hydrostatic fall speed is the most realistic and consistent mea-

sure of the true geometric fall speed of the XDDs. It is also possible, but highly unlikely,

that the nose pitot tubes were blocked (see section 2.4) for all three XDDs, causing the TAS

180



to be close to, but slightly more than, the geometric fall speed.

The repeatability of the measurement can be estimated from the root mean square

noise (RMSN) of the difference between the pitot-venturi-derived fall speed to the calculated

hydrostatic differential pressure fall speed (“true” Bernoulli fall speed). The RMSN is the

root mean square error after removing any mean bias in the difference between the predicted

and actual value, and it is calculated by:

RMSN =

√∑N
i=1[(P − A)− (P − A)]2

N
, (6.1)

where P is the predicted value (pitot-venturi-derived fall speed), A is the actual, or true,

value (calculated hydrostatic fall speed), and N is the number of observations. The RMSN of

the three soundings was 0.2–0.35 m s−1. With additional smoothing, such as the nine-point

binomial filter used in section 3.1, the noise in the signal can be reduced. The filtering will

not, however, reduce the true precision of the measurement itself.

Table 6.1: Mean and mean absolute differences between the mean P ∗-calibrated pitot-
venturi-derived fall speed and hydrostatic fall speed (e.g., VTAS−Vgeometric) for each sounding
and the combined three soundings. Values are in m s−1.

Dropsonde Mean difference Mean absolute difference

9C30 −0.37 0.38
2FEF −0.07 0.29
FE38 −0.10 0.18

Total −0.18 0.28
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Figure 6.1: Flight path (red) of the DC-8 aircraft on 27–28 April 2019. The drop locations
of the three XDDs with the pd sensor is shown in green. Satellite imagery obtained from
Google Earth. S1 is dropsonde 9C30. S2 is dropsonde 2FEF. S3 is dropsonde FE38.
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(a)	 (b)	

(c)	 (d)	

Figure 6.2: NAM 00 UTC synoptic conditions on 28 April 2019 at 03 UTC. Panel (a) is
the 250 hPa height (m, contoured) and wind speed (kts, shaded). Panel (b) is the 500 hPa
height (m, contoured) and wind speed (kts, shaded). Panel (c) is the surface temperature
(K, shaded) and MSLP (hPa, contours). Panel (d) is the precipitation rate (in hr−1, shaded)
and MSLP (hPa, contours). The location of the drops are shown as the black dots.
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Figure 6.3: IR GOES-West imagery for 28 April at 03 UTC. Obtained from the San Francisco
State University satellite image archive.
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(a)	 (b)	

(c)	 (d)	

Figure 6.4: NAM 00 UTC fixed-point model soundings 28 April 2019 at 03 UTC. Panel (a)
is the vertical velocity sounding (m s−1). Panel (b) is the horizontal wind speed sounding (m
s−1). Panel (c) is the relative humidity sounding (%). Panel (d) is the temperature sounding
(K). The first sounding, 9C30, is in red. The second sounding, 2FEF, is in green. The third
sounding, FE38, is in blue.
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(a)	 (b)	

(c)	

Figure 6.5: Fall speeds for the three XDDs launched on 28 April 2019. Panel (a) is for
dropsonde 9C30 (northern sounding). Panel (b) is for dropsonde 2FEF (middle sounding).
Panel (c) is for dropsonde FE38 (southern sounding). The GPS fall speed is in red. The
hydrostatic fall speed is in green. The pitot-venturi-indicated TAS is in blue. The hydrostatic
height-calculated fall speed is in black.
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Figure 6.6: Correlograms of GPS fall speed and the TAS from the three soundings (9C30,
2FEF, and FE38) individually (red, blue, and green, respectively) and collectively (black).
Negative lags indicate that the GPS fall speed lags behind the pitot-venturi-indicated TAS.
The blue dashed line denotes the 0.5-correlation level. The vertical dashed red line denotes
a time lag of zero.
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Figure 6.7: Same as Fig. 6.4, but for the actual XDD soundings on 28 April 2019.
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Figure 6.8: Vertical velocity profiles from 28 April 2019 using the pitot-venturi methodology
(a), M3 methodology (b), and GPS drag force methodology (c). The first sounding, 9C30,
is in red. The second sounding, 2FEF, is in green. The third sounding, FE38, is in blue.
The vertical dashed black line denotes w = 0 m s−1.
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Figure 6.9: Vertical velocity profiles from 28 April 2019. Panel (a) is the TAS-derived vertical
velocity using the hydrostatic fall speed. Panel (b) is the TAS-derived vertical velocity using
the hydrostatic height-calculated fall speed. Panel (c) is the TAS-derived vertical velocity
using the GPS fall speed. The first sounding, 9C30, is in red. The second sounding, 2FEF,
is in green. The third sounding, FE38, is in blue. The vertical dashed black line denotes w
= 0 m s−1.
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CHAPTER 7

Conclusions

7.1 Summary

Dropsonde technology, and dropsonde-derived vertical velocities, are a relatively young

area of research compared to traditional balloon-borne observations (e.g., Rykatcheff, 1990;

Bushnell, 1966; Bushnell et al., 1973). Observations of dropsonde-derived vertical velocities

and research on their accuracies began in the early 1960’s (Bushnell et al., 1973). Early

dropsonde iterations, such as the EDs, used a pitot-static probe to measure the TAS of the

dropsonde and subtract the geometric fall speed from it to obtain vertical velocity (equations

2.4–2.6). The errors for this methodology were claimed to be±1 m s−1 (Bushnell et al., 1973).

With the development of GPS chip set technology, vertical velocity methods transi-

tioned away from direct physical measurements and instead relied upon a drag force method

(equations 2.9 and 2.10). Recent studies have concluded that GPS fall speeds are often

erroneous and a hydrostatic fall speed should be used with the drag force methods (e.g.,

Wang et al., 2015; Stern et al., 2016; Nelson et al., 2019a). The results in chapter 6 support

this claim. In section 2.3, a modified drag force method was proposed to obtain the vertical

velocity without direct, a priori knowledge of the exact dropsonde mass, area, or drag coef-

ficient. Regardless of the method used, drag force based vertical velocities have ±1–2 m s−1

errors (e.g, Figs. 2.11 and 2.12).

Technological advancements over the past 50–60 years have allowed for smaller and

more accurate pd sensors. This should lead to improved pitot-static-derived TAS and vertical
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velocity. In this dissertation, it was proposed to reintroduce, revisit, and revise the pitot-

static-derived vertical velocity methodology for use on the XDDs. The goal was to decrease

clear-air vertical velocity errors to ±0.1 m s−1 and develop a highly-accurate vertical velocity

dropsonde for use in TC research.

The major objectives, accomplishments, and results of this dissertation are as follows:

1. Estimated drag force methods (e.g., the M3 methodology) can be used to examine

individual updrafts and downdrafts in the TCI dataset

2. High-spatial resolution vertical velocity measurements can be used to examine and

document convective features such as gravity waves, eyewall updrafts, and secondary

eyewalls in TCs

3. While the estimated drag force methods provided a unique opportunity to document

cross sections of the vertical velocity in individual TCs, the majority of the vertical

velocity distribution occurs within ±1–2 m s−1

(a) This presents a major problem, considering that the error estimate for drag force

based vertical velocities are ±1–2 m s−1

4. Not only is addressing the vertical velocity accuracy important to documenting verti-

cal velocities in TCs, but it is also an important parameter needed to document the

horizontal wind in TCs from dropsondes

5. In order to adequately “resolve” TC kinematics and structure within dropsonde tran-

sects, the spatial resolution should be less than approximately 5–10 km

(a) Specifically, the 0.5-autocorrelation spatial scales from the TCI data suggest that
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dropsondes should be launched at fine spatial scales less than 3 km to document

convection and convection-related variables

6. Three modified versions of the traditional pitot-static and their configurations were

presented

(a) It was hypothesized that the venturi-static, with an aft venturi port and side

static port, would be the most optimal configuration as it would be more resilient

to ice accumulation

7. CFD model runs of the XDD in 20 m s−1 flow indicated that the pitot-venturi, with an

antenna aft port, would be the most optimum configuration, because it had a better

response to angle of attack and the observed pd was not sensitive to the exact position

of the port within approximately 0.1–0.25 in

(a) The CFD model results indicated that the drag coefficient is 0.93, which is close

to the estimate of 0.95 from the TCI data in section 3.1

(b) The CFD model results indicated that the pd calibration coefficient, P ∗, for the

pitot-venturi, with an antenna aft port, is 0.91

8. Eight pitot-venturi XDDs, with the antenna aft port, were tested using a rotating arm

at a nominal speed of 19.2–19.4 m s−1.

(a) The actual P ∗ values for these XDDs was approximately 0.85

(b) Dropsonde-to-dropsonde variance in the port locations was low at approximately

0.04 in, which should negligibly affect the TAS by approximately 0.01 m s−1

(c) Using a mean P ∗ value for all of the XDDs introduces mean errors of 0–0.45 m

s−1, whereas individualized P ∗ leads to mean errors of less than 0.01 m s−1
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9. Three pitot-venturi XDDs were successfully launched operationally from a DC-8 air-

craft downwind of an upper level trough and surface high pressure as part of the NASA

DAWN Lidar verification field campaign from 15–28 April 2019

(a) The pitot-venturi-indicated vertical velocities obtained by the XDDs cannot be

verified with the collocated Lidar data at present

(b) The GPS fall speed lagged behind the pitot-venturi-indicated TAS by approxi-

mately 1–2 s

(c) The observed horizontal wind, temperature, and relative humidity soundings

agreed well with fixed-grid point NAM soundings

(d) The pitot-venturi vertical velocity profiles did not agree with the fixed-grid point

NAM soundings, but this discrepancy is not likely due to port blockage or incorrect

geometric fall speed

(e) The observed pitot-venturi vertical velocity profiles were weak and near zero for

the majority of the sampled atmosphere

(f) The hydrostatic fall speed should be used for the geometric fall speed in the

calculations of vertical velocity rather than the GPS fall speed or hydrostatic

height-calculated fall speed

(g) The mean vertical velocity errors and RMSN from the DC-8 drops were presented

(discussed further in section 7.2)

7.2 Final error estimate

From the CFD model analysis (chapter 4), rotating arm tests (section 5.2), and the DC-

8 drops (chapter 6), a final vertical velocity error estimate for the pitot-venturi methodology
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can be obtained. It is important to note that the final vertical velocity error estimates

presented here are for quiescent conditions, where icing and high angle of attack are not

likely and assume that the true mean vertical velocity from the DC-8 drops was zero. Even

in relatively quiescent conditions, with weak ±1 m s−1 low-level vertical velocities, drag

force-based vertical velocity errors are approximately ±1–2 m s−1, depending on altitude

(section 2.4). In order for the pitot-venturi vertical velocity XDDs to be used operationally in

convective environments like TCs, more extensive testing should be completed to understand

dropsonde icing and the response of the dropsonde and the angle of attack to local wind and

local wind shear.

The initial error budget attributed ±0.05 m s−1 to instrumentation error and ±0.05

m s−1 tube/port placement error for a total error of ±0.1 m s−1. The final expected error

analysis is provided in Table 7.1. Table 7.1 includes error estimates for port position error,

P ∗ calibration error, and instrumentation error based upon the CFD model analysis and

rotating arm tests, and the observed mean, observed absolute mean, and observed RMSE

from the DC-8 flights. The final estimated errors for the pitot-venturi XDD vertical velocities

are estimated by the mean absolute errors of these components and the observed mean

absolute errors and RMSE. Error estimates for mean P ∗-calibrated XDDs and individual

P ∗-calibrated XDDs are also provided, as well as a maximum error estimate.

Given the small dropsonde-to-dropsonde variance in the port location, it is unlikely

that port placement would cause more than approximately ±0.01 m s−1 errors in vertical

velocity (section 5.2). Based upon the dropsonde-to-dropsonde variance in the value of P ∗

for the rotating arm tests, which was conducted a known speed unlike the DC-8 drops, the

use of a mean P ∗ leads to larger vertical velocity errors with an absolute mean of 0.16 m

s−1 (Table 5.1, 7.1) and an absolute median of 0.11 m s−1. All of the dropsondes in the
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rotating arm test had errors less than 0.5 m s−1 when using a mean P ∗ value. These errors

depend upon the combined dropsonde-to-dropsonde variance in port placement, dropsonde

body characteristics, performance of the sensor, and the airflow around the dropsonde. The

use of an individualized P ∗ value decreases these errors to approximately 0.01 m s−1, which

is attributed to the expected errors due to port placement (Table 7.1).

The specifications for the DLHR-L05D-E1BD state that the typical errors of the sensor

are 0.2% of the full scale span (−5 to 5 inches of water) (Table 2.2, All Sensors, 2019). This

corresponds to ±5-Pa or ±0.25 m s−1 at typical XDD sea-level fall speeds (Table 7.1). The

three DC-8 drops had total vertical velocity errors of 0.1–0.4 m s−1, with a mean absolute

error of 0.28 m s−1 (Table 6.1). As discussed in section 6.4.2, this assumes that the true

mean vertical velocity in the observed soundings is zero.

The mean absolute error estimate of 0.28 m s−1 from the DC-8 drops is the total

error of instrumentation error, port placement error, and mean P ∗ error (Table 7.1). It is

possible that the three errors could compensate each other, leading to an estimated error

comparable to the specified instrumentation error by All Sensors (2019). In the event that

the three errors do not compensate each other at all, then the expected “maximum” mean

vertical velocity error would be the sum of the three; a value of 0.42 m s−1 for a mean P ∗-

calibrated pitot-venturi XDD and 0.27 m s−1 for an individual P ∗-calibrated pitot-venturi

XDD (Table 7.1). The observed RMSE for all three soundings is comparable to, but less

than, the maximum error estimate at 0.36 m s−1.

7.3 Conclusions

Regardless if a mean P ∗ value or individualized P ∗ values are used, the results show

that typical errors associated with the pitot-venturi-indicated TAS and, subsequently, ver-
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tical velocity are between ±0.2–0.4 m s−1. Given that the typical error range of the drag

force methods is ±1–2 m s−1, this is an improvement in the vertical velocity accuracy by,

approximately, a factor of five in quiescent conditions. The error estimate is also an im-

provement by a factor of two from the Bushnell et al. (1973) findings. The repeatability

of the measurement is also 0.2–0.4 m s−1. With an increased accuracy and decreased error

to 0.2–0.4 m s−1, analyses of dropsonde-derived vertical velocities in TCs, like in sections

3.1 and 3.3, can be improved and the unique convective features observed by dropsondes in

TCs (like the gravity wave in Patricia; Fig. 3.14) can be discussed with more confidence.

In order for the pitot-venturi vertical velocity XDDs to be used operationally in convective

environments like TCs, however, more extensive testing should be completed to understand

dropsonde icing and the response of the dropsonde to local wind and local shear.

While these expected errors are larger than the goal of 0.1 m s−1, the use of a pitot-

venturi method is an improvement upon the previous methods for dropsonde-derived vertical

velocities and it is likely that, with further testing and calibration, the goal of ±0.1 m s−1

errors is achievable and the error estimates provided here can be more solidified. One option

to further improve the accuracy would be to change the sensor to a much smaller surface

mount sensor that would have a much smaller full scale span or smaller instrumentation error

at the typical XDD fall speeds. Further testing of the calibration methods and P ∗ values

would solidify the accuracy and error estimates. Individually calibrating each dropsonde

prior to launch seems to decrease the errors by 40%. Finally, additional high-altitude (> 6

km) drops should be done over a larger range of XDDs in conjunction with other independent

measurements of vertical velocity, such as flight-level or vertically pointing Lidar data, to

increase the confidence in the error estimate.

197



Table 7.1: Expected mean (or absolute mean) errors for mean P ∗-calibrated TAS vertical
velocity and individual P ∗-calibrated TAS vertical velocity.

Mean error type Mean P ∗-cal. Individual P ∗-cal.

Port placement 0.01 m s−1 0.01 m s−1

P ∗ 0.16 m s−1 0.01 m s−1

Instrumentation 0.25 m s−1 0.25 m s−1

Observed mean −0.18 m s−1 NA
Observed absolute mean 0.28 m s−1 NA

Observed RMSE 0.36 m s−1 NA

Maximum 0.42 m s−1 0.27 m s−1

198



APPENDIX A

American Meteorological Society Permission to Republish

 

 

 

199



APPENDIX B

Bootstrap Testing of Vertical Velocity Strength

While there was little sample bias in the three TCs altitudinally, there were radial and

azimuthal biases, especially between shear-relative quadrants (see Fig. 3.3). The sampling

bias in the TCI data makes the interpretation of the azimuthal vertical velocity distribution

difficult. In consideration of sampling biases, bootstrapping, or bootstrap resampling, is a

common method employed to obtain an equal number of samples from unequal populations

to perform statistical comparisons over many sampling iterations (e.g., Ditchek et al., 2017).

Notched box plots are used here to compare medians of bootstrapped samples of positive or

negative vertical velocities over 1000 iterations. The median is used in lieu of the mean, as

the median is more resistant to outliers in the data. The notched boxplots show the spread

in the sample medians (whiskers), interquartile range (box), median (solid black line), and

95% confidence interval of the median (edges of the notches). If the notches of any box

plots overlap, then the medians are considered to be statistically similar (Chambers et al.,

1983). Sample sizes ranged from 296–380 data points, depending upon the population size

in each quadrant for each TC, and are valid minimum sample sizes at the 95% confidence

interval. It is important to note that the notched boxplots illustrate the quadrants with the

strongest median positive or negative XDD-derived vertical velocities observed and are not

a true measure of the strength of convection in each of the quadrants.

Data were split between each of the shear-relative quadrants (DR, UR, UL, and DL)

within 3R∗ and outside of 3R∗. Figures B.1–B.8 show the notched box plots of the medians

for all vertical velocities (teal) and positive (red) or negative (blue) vertical velocities. It
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should be noted that while there may be statistical differences in the medians in the boxplots,

there may not be physically significant differences, since many of the medians differ by less

than 0.1 m s−1. Further, the boxplots compare the statistical similarity in the medians of

the bootstrapped samples and not the similarities between the vertical velocity distributions

themselves.

The box plots for Marty show that the downshear and right quadrants had more

positive median vertical velocities (Fig. B.1). The median vertical velocities were mostly

negative in the UL quadrant (Fig. B.1). For all radii, the DL and DR quadrants had

the statistically strongest median positive and negative vertical velocities, respectively (Fig.

B.5a, b). Within the core, the statistically strongest median positive and negative vertical

velocities were in the left-of-shear quadrants (Fig. B.5c, d). Outside of 3R∗, the strongest

median vertical velocities were in the DR quadrant (Fig. B.5e), but the large gaps in the

azimuthal distribution of Marty at outer radii (see Fig. D.2) could affect the interpretation

of the notched boxplots.

In Joaquin, median vertical velocities were primarily positive in the UR quadrant

(Fig. B.2). The DL quadrant within the core was also primarily positive (Fig. B.2a).

The statistically strongest median positive and negative vertical velocities occurred in the

DR quadrant (Fig. B.6a, b). Within the core, the median positive and negative vertical

velocities in the downshear quadrants were stronger than the upshear quadrants (Fig. B.6c,

d). Outside of 3R∗, the statistically strongest vertical velocities were in the DR quadrant

(Fig. B.6e, f).

Median vertical velocities in Patricia were interestingly primarily negative but were

closer to zero (more positive) in the DR and UL quadrant within the core and the DL quad-

rant outside of the core (Fig. B.3). The statistically strongest median vertical velocities
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occurred in the right-of-shear quadrants for all radii (Fig. B.7a, b). Within the core, the

statistically strongest median positive and negative vertical velocities were in the DR quad-

rant (Fig. B.7c, d). Outside of 3R∗, median positive vertical velocities were statistically

strongest in the downshear quadrants (Fig. B.7e) and median negative vertical velocities

were statistically strongest in the UR quadrant (Fig. B.7f).

The median vertical velocities for the total dataset in the downshear quadrants were

primarily positive, especially the DR quadrant within the core and DL quadrant outside of

the core (Fig. B.4). The statistically strongest median positive vertical velocities for all radii

occurred in the DR quadrant (Fig. B.8a). There was little spread in the medians of the

negative vertical velocity bootstrap samples and all quadrants, except the UL quadrant, had

similar medians (Fig. B.8b). Within the core, the statistically strongest median positive and

negative vertical velocities occurred in the DR and UL quadrants, respectively (Fig. B.8c,

d). Outside of 3R∗, the statistically strongest median vertical velocities occurred in the UR

quadrant (Fig. B.8e, f).
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Figure B.1: Box plots of bootstrapped medians of vertical velocities in Marty for all radii
(a), within 3R∗ (b), and outside of 3R∗ (c). The dashed black line denotes w = 0 m s−1.
From Nelson et al. (2019a). c©American Meteorological Society. Used with permission.
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Figure B.2: Same as Fig. B.1, but for Joaquin. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure B.3: Same as Fig. B.1, but for Patricia. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure B.4: Same as Fig. B.1, but for the total dataset. From Nelson et al. (2019a).
c©American Meteorological Society. Used with permission.
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Figure B.5: Box plots of bootstrapped medians of positive vertical velocities (a, c, e) and
negative vertical velocities (b, d, f) in Marty for all radii (a, b), within 3R∗ (c, d), and
outside of 3R∗ (e, f). Dashed black lines denote the notches of the strongest median positive
or negative vertical velocities. Note that the scales for positive vertical velocities are different
than for negative vertical velocities. From Nelson et al. (2019a). c©American Meteorological
Society. Used with permission.
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Figure B.6: Same as Fig. B.5, but for Joaquin. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure B.7: Same as Fig. B.5, but for Patricia. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure B.8: Same as Fig. B.5, but for the total dataset. From Nelson et al. (2019a).
c©American Meteorological Society. Used with permission.
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APPENDIX C

Flight-level RMWs and HRD Centers

While there are well-documented high-resolution centers available from the Hurricane

Research Division (HRD), they are not available for all observation days. Only seven of the

ten observation days have HRD track, center, or flight-level RMW data. The mean and

median difference between the ZWC tracks and the HRD high-resolution track is 17.2 and

14.6 km, respectively. The largest differences were for Joaquin, which has well-known TC

center and track issues (e.g., Creasey and Elsberry, 2017) and for Patricia on 21 October

as a tropical storm with an ill-defined center. Shown in Figures C.1–C.3 are the NHC Best

Tracks (blue), ZWC tracks (red), and HRD high-resolution tracks (black; when available).

Also shown in Figure C.4 are the histograms for the track differences between the ZWC

tracks and HRD high-resolution tracks for each TC and in total. The tracks agree well when

the TCs are strong and the TC cores are well sampled by the XDDs (e.g., Patricia on 23

October).

The mean difference between the ZWC track and the HRD track for Patricia on 23

October was approximately 6 km. It is possible that this 6 km mean difference can adversely

affect the analysis of the horizontal and radial wind fields. This difference, however, mini-

mally changes the cross sections in Figure 3.14 of the manuscript (Fig. C.5). The eyewall

updraft to the southeast is weaker from 9–12 km when using the HRD track (Fig. C.5a).

The vertical velocity at the TC center is stronger when using the HRD track (Fig. C.5a).

The horizontal winds are not as symmetric or strong when using the HRD track (Fig. C.5b).

Regardless of these small changes, the same results and conclusions can be drawn from the
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Patricia cross section: 1) the eyewall features deep, exceptionally strong updrafts; 2) there is

a low-level updraft associated with a localized horizontal wind maximum and a radial over-

turning circulation; and, 3) there appears to be an upper-level gravity wave to the northwest

of the TC center. Because the same conclusions can be drawn from Figures 3.14 and C.5

and there is little difference between the two cross sections, the use of the ZWC track does

not adversely impact the analysis of the cross section.

Six different variations of TC center and RMW combinations for the seven days that

did have flight-level data and HRD track data were examined: 1) ZWCs and RMWs from

the manuscript; 2) ZWC with single point maximum wind speed XDD-derived RMW; 3)

ZWC with HIRAD-derived RMW; 4) HRD center with the RMWs from the manuscript;

5) HRD center with single point maximum wind speed XDD-derived RMW; and, 6) HRD

center with flight-level RMW (closest flights in time to WB-57) overpass. The RMWs for all

six methods agree reasonably well, with largest discrepancies at weak TC intensities (Fig.

C.6). The RMWs used in the manuscript derived from both XDD and HIRAD data agree

with flight-level data RMWs within a mean and median of 8–9 km, which is close to the

resolution of the NHC Best Track RMWs. The use of a single data point maximum for

obtaining the XDD-derived RMW doesn’t change the results in the CFAzDs and CFADs

appreciably, because the single data point maximum RMW and estimated RMW in the

manuscript agree within a mean and median of 5–6 km.

The median profiles for the subset of seven dates at all radii, within the core, and out-

side of the core (Fig. C.7) agree reasonably well between the methods used in the manuscript

and the HRD data, with the largest discrepancies aloft and outside of the core. The p-values

for Student’s t-test comparisons are 0.8, 0.25, and < 0.01 for all data, inside core, outside of

core. This indicates that only the median profiles outside of the core are different by using

212



the HRD centers and flight-level RMWs.

The CFRDs and CFAzDs for all radii (Fig. C.8) for the subset of seven days look

extremely similar for the methods in the manuscript and for the flight-level RMW/HRD

track method. Shown in Figure C.8 are also percent frequency difference plots (using the

ZWC/XDD-derived RMW method using HRD center and flight-level RMW) for the CFRDs

and CFAzDs for the combined seven dates with flight-level RMW/HRD track data. The dif-

ference plots show that the largest differences outside of ±1% occur within the error bounds

of vertical velocity and, therefore, may not be significantly different. Further, Student’s

t-tests of the binned percentages in the CFRDs and CFAzDs have p-values above 0.97 for

Marty, Joaquin, Patricia, and the combined seven days. This suggests that theres no statis-

tical difference in the CFRDs or CFAzDs using either methodology. The CFADs (not shown)

are not appreciably affected by the center or track, because it is a frequency distribution

with respect to altitude and the lack of data at large radii limit the impact of differences in

the 10R∗ values for the two methods.

	

(a)

)	

(b)

)	

Marty	27	Sept.		 Marty	28	Sept.		

Figure C.1: TC center tracks for Marty. The NHC Best Track center track is in blue, the
XDD-derived ZWC track is in red, and the HRD center track (when available) is in black.
From Nelson et al. (2019a). c©American Meteorological Society. Used with permission.
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Joaquin	2	Oct.	 Joaquin	3	Oct.	

Joaquin	4	Oct.	 Joaquin	5	Oct.	(c)

)	

(d)

)	

Figure C.2: Same as Fig. C.1, but for Joaquin. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure C.3: Same as Fig. C.1, but for Patricia. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure C.4: Histogram of differences between XDD-derived ZWC tracks and HRD center
tracks. The histogram for all of the seven-day subset is in black, Marty in red, Joaquin in
green, and Patricia in blue. From Nelson et al. (2019a). c©American Meteorological Society.
Used with permission.
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Figure C.5: Same as Fig. 3.14 but using the high-resolution HRD TC center tracks. From
Nelson et al. (2019a). c©American Meteorological Society. Used with permission.

216



●

●

2 4 6 8 10

0
20

40
60

80
10

0

Obs. day

R
M

W
 s

ize
 [k

m
]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

Marty −−−−−Joaquin−−−−− −−−−−Patricia−−−−−| | | | | |

Best Track RMW
ZWC, XDD−RMW
ZWC, HIRAD−RMW
RMW

HRD center, FL RMW
HRD center, XDD−RMW
ZWC, Max XDD−RMW
HRD center, Max XDD−RMW
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Figure C.7: Median |Vh| profiles for all six RMW/center methods explored. Panel (a) is for
all of the seven-day subset, panel (b) is for data within the core, and panel (c) is for data
outside of the core. From Nelson et al. (2019a). c©American Meteorological Society. Used
with permission.
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Figure C.8: CFRDs (a, c) and CFAzDs (b, d) for the seven-day subset using the XDD and
HIRAD derived RMWs (a, b) and flight-level RMWs (c, d). Difference plots between the
two methods are provided in panels (e) and (f). The horizontal solid black lines denote the
vertical velocity updraft and downdraft thresholds. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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APPENDIX D

Contour Frequency Diagrams for Data Inside and Outside of the

Core

After restricting the data to within the core (Fig. D.1), similar azimuthal features as

the CFAzD for all radii (Fig. 3.10) are present. One major difference between the two is in

the azimuthal vertical velocity distribution in Marty, where vertical velocities between the

UL and DL quadrants were more negative in the core (Fig. D.1a). The vertical velocity

distributions within the cores of the three TCs are different than for outside of 3R∗ (Fig.

D.2). The azimuthal distributions for all three TCs outside of the core have higher frequencies

of lower vertical velocity strength, but little azimuthal variability exists in vertical velocity

strength (Fig. D.2). This is similar to the azimuthal variability of the core CFAzDs (Fig.

D.1). There were very few data points in the DR or UR quadrants in Marty due to sampling

biases, which makes the distribution outside of the core of Marty not robust (Fig. D.2).

There were also data gaps in the DR quadrant outside of the core in Joaquin. The similarities

between the contoured frequency diagrams for all radii and the contoured frequency diagrams

from the core reflect that: 1) approximately 50% of the data used to derive the full contoured

frequency diagrams comes from the core; and, 2) the cores of the TCs have the most variation

and spread in the strength of the observed vertical velocities.

Like the core CFAzD plots, the core CFADs (Fig. D.3) do not change appreciably

from the total CFADs (Fig. 3.10). Larger differences were found between the CFADs for

the core and the CFADs for data outside of 3R∗, especially for Joaquin and Patricia (e.g.,

Fig. D.3c vs. Fig. D.4c). The shape of the CFAD remained similar for data inside and
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outside of the core, and the vertical velocity distribution spread in Marty was not appreciably

different between the two (Figs. D.3a and D.4a). In Joaquin, the distribution was narrower

for data outside of the core, and the strongest positive vertical velocities occurred primarily

above 13.5 km (Fig. D.3a). Outside of 3R∗, Patricia also had a narrower vertical velocity

distribution, but the strongest vertical velocities occurred below 6 km for positive values and

above 8 km for negative values.
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Figure D.1: CFAzD percentages of vertical velocities (m s−1) within the core. Panel (a) is
for Marty, panel (b) is for Joaquin, panel (c) is for Patricia, and panel (d) is for the entire
dataset. Colored contours are percentages on a logarithmic scale. Black lined contours are
percentages above 20% in intervals of 5%. The horizontal solid black lines denote the vertical
velocity updraft and downdraft thresholds. The dashed white line designates w = 0 m s−1.
From Nelson et al. (2019a). c©American Meteorological Society. Used with permission.
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Figure D.2: Same as Fig. D.1, but for r > 3R∗. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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Figure D.3: CFAD percentages of vertical velocities (m s−1) within the core. Panel (a) is
for Marty, panel (b) is for Joaquin, panel (c) is for Patricia, and panel (d) is for the entire
dataset. Colored contours are percentages on a logarithmic scale. Black lined contours are
percentages above 20% in intervals of 5%. The vertical solid black lines denote the vertical
velocity thresholds. The dashed white line designates w = 0 m s−1. From Nelson et al.
(2019a). c©American Meteorological Society. Used with permission.
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Figure D.4: Same as Fig. D.3, but for r > 3R∗. From Nelson et al. (2019a). c©American
Meteorological Society. Used with permission.
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APPENDIX E

Contour Frequency Diagrams using the GPS Fall Speed

The contoured frequency diagrams for vertical velocities derived from the GPS fall

speed rather than the hydrostatic differential pressure fall speed have vastly different fre-

quency distributions. The vertical velocities tend to be stronger overall and peak in strength

aloft, which agrees better with the CFADs in Black et al. (1996) (Fig. E.1). The vertical

velocities using the GPS fall speed decrease in strength with increasing radius like for the

differential pressure vertical velocities, but the decrease is stronger for the GPS fall speed

vertical velocities (Figs. 3.9, E.2). There is little difference between the CFAzDs using ei-

ther the GPS fall speed, or the differential pressure indicated fall speed other than overall

strength (Figs. 3.10, E.3). Little azimuthal signal can be ascertained in both cases.

The justification for using the differential pressure indicated fall speeds was for two

reasons: 1) the large discrepancies between the two fall speeds (Fig. 2.4); and, 2) Stern et al.

(2016) state that the accuracy of the pressure is better than the GPS height derived fall

speeds. Further, large, unrealistic GPS fall speeds, especially in the lowest few 100 m can

be erroneous (Vömel et al., 2018). Currently, dropsonde manufacturers are working to fix

these issues by filtering or improved GPS receivers and chip sets (e.g., Vömel et al., 2018).

Figure 2.4 does not exhibit as strong of a low-level issue as in Vömel et al. (2018), but the

profile still contains unrealistic, noisy GPS fall speeds. The differences between the two fall

speeds are likely to be due to GPS errors rather than physical or smoothing scale differences

in calculating the differential pressure fall speed.
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Figure E.1: CFAD percentages of vertical velocities (m s−1) derived from GPS fall speed.
Panel (a) is for Marty, panel (b) is for Joaquin, panel (c) is for Patricia, and panel (d) is
for the entire dataset. Colored contours are percentages on a logarithmic scale. Black lined
contours are percentages above 20% in intervals of 5%. The vertical solid black lines denote
the vertical velocity thresholds. The dashed white line designates w = 0 m s−1. Note the
difference in the vertical velocity (x-axis) scale to the previous CFADs. From Nelson et al.
(2019a). c©American Meteorological Society. Used with permission.
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Figure E.2: CFRD percentages of vertical velocities (m s−1) derived from GPS fall speed.
Panel (a) is for Marty, panel (b) is for Joaquin, panel (c) is for Patricia, and panel (d) is
for the entire dataset. Colored contours are percentages on a logarithmic scale. Black lined
contours are percentages above 20% in intervals of 5%. The horizontal solid black lines
denote the vertical velocity thresholds. The dashed white line designates w = 0 m s−1. Note
the difference in the vertical velocity (y-axis) scale to the previous CFRDs. From Nelson
et al. (2019a). c©American Meteorological Society. Used with permission.
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Figure E.3: CFAzD percentages of vertical velocities (m s−1) derived from GPS fall speed.
Panel (a) is for Marty, panel (b) is for Joaquin, panel (c) is for Patricia, and panel (d) is
for the entire dataset. Colored contours are percentages on a logarithmic scale. Black lined
contours are percentages above 20% in intervals of 5%. The horizontal solid black lines
denote the vertical velocity thresholds. The dashed white line designates w = 0 m s−1. Note
the difference in the vertical velocity (y-axis) scale to the previous CFAzDs. From Nelson
et al. (2019a). c©American Meteorological Society. Used with permission.

226



APPENDIX F

Six Detrending Methods for Dropsonde Autocorrelations

Autocorrelations with respect to space and time can be computed for raw data or for

data that have been detrended for any linear, polynomial, or non-linear base state. A total

of six detrend methods were explored: 1) non-detrend; 2) detrend using median profiles from

a specific date (date detrend); 3) detrend using median profiles from a specific TC (storm

detrend); 4) detrend using median profiles from the entire dataset (total detrend); 5) detrend

using median profiles within the four radial sections noted below from the entire dataset

(radial detrend); and, 6) detrend using median profiles within the four radial sections from

a specific date (D+R detrend). The purpose of this section is to document and compare the

six detrend methods for vertical velocity (w), horizontal wind speed (|Vh|), relative humidity

(RH), temperature (T ), and equivalent potential temperature (θe). The four radial sections

are: 1) ≤1.25R∗; 2) 1.25–3R∗; 3) 3–5R∗; and, 4) 5–10R∗. The 1.25R∗ radius was chosen

because DeHart et al. (2014) found that the highest frequencies of updrafts and downdrafts

in the core occurred between 0.75R∗ and 1.25R∗. 3R∗ was also chosen to reflect the outermost

region of the core (Rogers et al., 2013), and 5R∗ was chosen because it is the midpoint of

the R∗ values. Beyond 5R∗, composite low-level azimuthal winds decreased substantially in

strength (not shown).

The median base states for methods 2−5 are provided in Figures F.1−F.6. The median

base states for the D+R detrend method is provided in Figures 3.29−3.31 of the manuscript.

Figures F.1−F.3 are the date detrend median profiles for Marty, Joaquin, and Patricia,

respectively. The date detrend profiles show that there were large variances between the
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median profiles from day-to-day, especially with w and |Vh| (Figs. F.1−F.3). T and θe have

similar profiles from day-to-day (Figs. F.1−F.3). The variance in the RH profiles from

day-to-day was largest in the lowest 6 km below the freezing level (Figs. F.1−F.3).

The storm detrend median profiles show similar variances from storm-to-storm, with

the largest variances with w and |Vh| (Fig. F.4). Patricia had the strongest median |Vh|,

but had the weakest (more negative) median vertical wind speeds (Fig. F.4a, b), which is

problematic as Patricia had the strongest updraft speeds. The total detrend median profiles

(Fig. F.5) most closely resemble the Joaquin median profiles (Fig. F.4). Radial median

profiles (Fig. F.6) better capture the radial variance in the median profiles, but they do

not capture the variance from storm-to-storm (Fig. F.4) or day-to-day (Figs. F.1-F.3).

The radial and date median profiles (D+R) capture the variances daily, radially, and from

storm-to-storm (Figs. 3.29–3.31).

An example of a detrended sounding that sampled an updraft from Patricia on 23

October is provided in Figure F.7. All detrended w profiles show positive perturbations

within the updraft zone and a sharp decrease in speed within the updraft zone (Figs. F.7a,

b). This specific convective eyewall sounding shows strong variances in the detrended RH,

T , and θe profiles (Figs. F.7c, d, e). Date, storm, total, and radial detrend methods produced

qualitatively similar thermal profiles, but D+R detrended thermal profiles are weaker and

more negative (Figs. F.7d, e). The differences in the median profiles changes the temporal

autocorrelations within the sounding (Fig. F.8). 0.5-autocorrelation temporal thresholds

range from 62−76 s for w, 91−110 s for |Vh|, 23−92 s for RH, 82−126 s for T , and 77−115

s for θe (Fig. F.8).

The 0.5-autocorrelation spatial thresholds for detrend methods 1−6 show that little

variation exists for w (Tables F.1−F.5, 3.10). There was also little variation for RH and θe
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when detrended by the latter five methods (Tables F.1−F.5). Larger variations were observed

for T and |Vh| (Tables F.1−F.5, 3.10). Overall, the D+R detrended spatial autocorrelation

scales are smaller than the other methods and the non-detrended variables had the largest

spatial autocorrelation scales (Tables F.1−F.5, 3.10). Table F.6 shows the pairwise Student’s

t-test p-values for the spatial autocorrelation thresholds for each variable for methods 1−6.

The non-detrend method for |Vh|, RH, T , and θe exhibited statistically significant differ-

ences and some of the other detrend methods for T were also statistically different (Table

F.6). The 0.5-autocorrelation temporal thresholds for detrend methods 1−5 show that the

non-detrend method produces the largest temporal scales and the D+R detrend method

produces the smallest temporal scales (Tables F.7−F.11, 3.11). This result is supported

by pairwise Student’s t-tests, which show that for all variables, except w, the non-detrend

method produces statistically larger temporal autocorrelation scales (Table F.12). Similarly,

Student’s t-test p-values indicate statistical differences for the D+R detrend method and all

other methods, except for w and the date detrend method (Table F.12).

Figures F.9−F.11 show the spatial autocorrelation correlograms for Marty (Fig. F.9),

Joaquin (Fig. F.10), and Patricia (Fig. F.11). The spatial correlograms for w were similar

for all six detrend methods (Figs. F.9a, F.10a, F.11a). The non-detrend method produces

correlograms that do not decrease appreciably with increasing distance, which rarely cross

the 0.5-autocorrelation threshold (Fig. F.9−F.11). Variations in the |Vh| correlograms exist

for the other five detrend methods, but the shapes of the correlograms are similar (Figs.

F.9b, F.10b, F.11b). The T and θe spatial correlograms have the largest differences between

the five other detrend methods, especially within the inner 100 km (Figs. F.9d, e, F.10d, e,

F.11d, e).

Figures F.12−F.14 show the temporal autocorrelation correlograms for Marty (Fig.
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F.12), Joaquin (Fig. F.13), and Patricia (Fig. F.14). The detrend methods does not dras-

tically affect the temporal autocorrelation correlograms for w (Figs. F.12a, F.13a, F.14a).

The largest differences in the correlograms were between the non-detrend temporal autocor-

relation correlograms for |Vh|, RH, T , and the other five methods (Figs. F.12b, c, d, F.13b,

c, d, F.14b, c, d). The non-detrended temporal autocorrelation correlograms for all variables

(except w) do not saturate to near-zero at large lags. Rather, the autocorrelations drop to

large, negative values because of the presence of a mean state in the data (Janert, 2011).

Table F.1: List of dropsonde-to-dropsonde spatial 0.5-autocorrelation thresholds (in km)
for each day in the dataset without detrending. Distances larger than 500 km were not
considered and are labeled as “> 500”. From Nelson et al. (2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 4.8 28.1 > 500 > 500 > 500
28 Sept. Marty 4.2 364.6 > 500 > 500 > 500
2 Oct. Joaquin 3.8 17.6 > 500 > 500 > 500
3 Oct. Joaquin 3.2 274.7 > 500 > 500 > 500
4 Oct. Joaquin 4.3 > 500 > 500 > 500 > 500
5 Oct. Joaquin 5.1 383.6 > 500 > 500 > 500
20 Oct. Patricia 19.6 27.4 > 500 > 500 > 500
21 Oct. Patricia 5.7 98 > 500 > 500 > 500
22 Oct. Patricia 3.8 225.7 > 500 > 500 > 500
23 Oct. Patricia 1.4 > 500 > 500 > 500 41.9

Mean All 5.6 192 > 500 > 500 > 500
Median All 4.3 237.8 > 500 > 500 > 500
St. Dev All 5 139.2 NA NA NA
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Table F.2: Same as Table F.2, but for the date detrend method. From Nelson et al. (2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 4.2 23.4 12.7 47.3 50.5
28 Sept. Marty 3.4 8.4 3.1 16.8 5.3
2 Oct. Joaquin 3.8 9.1 24.7 40.8 33.3
3 Oct. Joaquin 3.2 7.4 4.6 17.5 5.5
4 Oct. Joaquin 4.9 21.1 7 25.4 9.2
5 Oct. Joaquin 4.5 63.4 10.2 90.9 12.2
20 Oct. Patricia 20 24.3 50.9 25.4 36
21 Oct. Patricia 5.2 15.2 6.5 17.4 8.3
22 Oct. Patricia 4.1 22.8 4.7 19.8 5.3
23 Oct. Patricia 1.3 15.5 3.8 11.8 4.9

Mean All 5.5 21 12.8 31.3 17
Median All 4.2 18.3 6.8 22.6 8.7
St. Dev All 5.2 16.2 14.8 23.8 16.5

Table F.3: Same as Table F.2, but for the storm detrend method. From Nelson et al. (2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 4.2 30.8 12.2 71.7 79.1
28 Sept. Marty 3.4 11.4 3.1 15.7 5.3
2 Oct. Joaquin 3.8 8.6 30.6 53.6 35.4
3 Oct. Joaquin 3.2 7.8 5.1 18.8 5.5
4 Oct. Joaquin 4.9 22.2 7 25.4 34.1
5 Oct. Joaquin 4.5 36.5 7.7 86.5 8.3
20 Oct. Patricia 19.6 173 25.1 45.8 28.2
21 Oct. Patricia 5.7 17.9 6.5 41.8 7.4
22 Oct. Patricia 3.8 25.4 4.7 32.8 5.6
23 Oct. Patricia 1.3 1.9 4 45.8 11.8

Mean All 5.4 33.5 10.6 43.8 22.1
Median All 4 20 6.8 43.8 10.1
St. Dev All 5.1 50.2 9.5 22.6 23.5

231



Table F.4: Same as Table F.2, but for the total detrend method. From Nelson et al. (2019b).

27 Sept. Marty 4.2 47.3 11.7 121.1 78.6
28 Sept. Marty 3.8 10.7 3.1 24.4 5.3
2 Oct. Joaquin 3.8 9.1 32.2 45.6 35.4
3 Oct. Joaquin 3.2 6.9 5.1 20.7 5.5
4 Oct. Joaquin 4.9 25.4 7 35.7 29.2
5 Oct. Joaquin 4.5 65.3 7 195.6 7.7
20 Oct. Patricia 19.2 387.2 29 320.6 25.1
21 Oct. Patricia 5.7 24.4 6.5 195.6 9.1
22 Oct. Patricia 4.4 26.9 4.7 126.3 6.5
23 Oct. Patricia 1.4 2.1 3.7 38.4 12

Mean All 5.5 60.5 11 43.8 21.3
Median All 4.3 24.9 6.8 43.8 10.6
St. Dev All 4.9 116.4 10.6 22.6 22.8

Table F.5: Same as Table F.2, but for the radial detrend method. From Nelson et al. (2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 4.2 72.8 8.5 163.6 49.4
28 Sept. Marty 3.8 9.5 3.4 29 4.6
2 Oct. Joaquin 3.8 9.7 27.4 39.7 31.6
3 Oct. Joaquin 3.2 6 4.6 14.7 4.1
4 Oct. Joaquin 4.9 20.6 7 30.3 21.6
5 Oct. Joaquin 4.5 35.2 7 194 6.4
20 Oct. Patricia 19.6 > 500 38.8 312.4 104.5
21 Oct. Patricia 5.2 76.2 6.5 83.6 11.3
22 Oct. Patricia 4.4 26.3 4.4 38.2 6.5
23 Oct. Patricia 1.4 2.1 4 36.5 5.4

Mean All 5.5 50.8 11.2 94.2 24.6
Median All 4.3 23.4 6.8 38.9 8.6
St. Dev All 5.1 74.8 12 98.1 31.8
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Table F.6: Pairwise Student’s t-test p-values for the 0.5-autocorrelation spatial thresholds
for each variable and each detrend method. Statistically different spatial thresholds have
p-values below 0.05. From Nelson et al. (2019b).

w No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 0.95 - - - -

Storm detrend 0.94 0.99 - - -
Total detrend 0.97 0.98 0.97 - -
Radial detrend 0.97 0.98 0.98 1 -
D+R detrend 0.87 0.91 0.92 0.9 0.9

|Vh| No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 2.50E-05 - - - -

Storm detrend 8.00E-05 0.73819 - - -
Total detrend 0.00083 0.29223 0.46997 - -
Radial detrend 0.00037 0.42577 0.64271 0.795 -
D+R detrend 9.90E-06 0.78791 0.54683 0.18781 0.2881

RH No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 2.00E-16 - - - -

Storm detrend 2.00E-16 0.89 - - -
Total detrend 2.00E-16 0.91 0.98 - -
Radial detrend 2.00E-16 0.92 0.97 0.99 -
D+R detrend 2.00E-16 0.67 0.77 0.75 0.75

T No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 2.80E-11 - - - -

Storm detrend 1.60E-10 0.63592 - - -
Total detrend 2.50E-06 0.00322 0.01178 - -
Radial detrend 2.10E-07 0.01989 0.05969 0.49711 -
D+R detrend 1.10E-12 0.38789 0.18374 0.00023 0.00188

θe No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 2.00E-16 - - - -

Storm detrend 2.00E-16 0.74 - - -
Total detrend 2.00E-16 0.78 0.96 - -
Radial detrend 2.00E-16 0.62 0.87 0.83 -
D+R detrend 2.00E-16 0.46 0.29 0.31 0.22

233



Table F.7: List of the temporal 0.5-autocorrelation thresholds (in s) for each day in the
dataset without detrending. From Nelson et al. (2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 22 39 51 98 36
28 Sept. Marty 27 77 50 99 39
2 Oct. Joaquin 24 63 45 94 39
3 Oct. Joaquin 28 71 50 103 46
4 Oct. Joaquin 22 77 78 104 39
5 Oct. Joaquin 22 74 72 104 43
20 Oct. Patricia 8 42 56 99 53
21 Oct. Patricia 24 53 48 101 46
22 Oct. Patricia 22 59 75 94 42
23 Oct. Patricia 25 74 52 95 46

Mean All 22.4 62.9 57.7 99.1 42.9
Median All 23 67 51.5 99 42.5
St. Dev All 5.5 14.3 12.3 3.9 5

Table F.8: Same as Table F.7, but for the date detrend method. From Nelson et al. (2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 20 38 35 29 44
28 Sept. Marty 23 35 29 29 39
2 Oct. Joaquin 24 45 40 37 44
3 Oct. Joaquin 26 38 40 38 41
4 Oct. Joaquin 22 36 40 25 39
5 Oct. Joaquin 21 44 36 26 33
20 Oct. Patricia 8 26 46 20 35
21 Oct. Patricia 23 37 41 18 34
22 Oct. Patricia 21 29 41 21 40
23 Oct. Patricia 25 50 23 27 24

Mean All 21.3 37.8 37.1 27 37.3
Median All 22.5 37.5 40 26.5 39
St. Dev All 5 7.2 6.7 6.7 6
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Table F.9: Same as Table F.7, but for the storm detrend method. From Nelson et al. (2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 20 46 36 28 45
28 Sept. Marty 24 39 30 29 37
2 Oct. Joaquin 24 42 44 36 43
3 Oct. Joaquin 26 40 39 37 40
4 Oct. Joaquin 22 36 41 22 41
5 Oct. Joaquin 21 45 39 26 33
20 Oct. Patricia 8 39 54 32 43
21 Oct. Patricia 24 39 41 19 35
22 Oct. Patricia 22 35 43 19 45
23 Oct. Patricia 25 59 27 43 34

Mean All 21.6 42 39.4 29.1 39.6
Median All 23 39.5 40 28.5 40.5
St. Dev All 5.1 6.9 7.5 8 4.6

Table F.10: Same as Table F.7, but for the total detrend method. From Nelson et al. (2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 20 54 35 32 42
28 Sept. Marty 25 34 31 26 38
2 Oct. Joaquin 25 42 43 34 42
3 Oct. Joaquin 26 42 39 47 44
4 Oct. Joaquin 22 42 42 29 43
5 Oct. Joaquin 21 49 39 38 36
20 Oct. Patricia 8 50 56 30 40
21 Oct. Patricia 25 43 41 24 32
22 Oct. Patricia 22 35 42 23 41
23 Oct. Patricia 26 57 28 40 35

Mean All 22 44.8 39.6 32.3 39.3
Median All 23.5 42.5 40 31 40.5
St. Dev All 5.4 7.6 7.6 7.6 3.9

235



Table F.11: Same as Table F.7, but for the radial detrend method. From Nelson et al.
(2019b).

Date Storm w |Vh| RH T θe
27 Sept. Marty 20 48 31 45 40
28 Sept. Marty 25 34 31 28 33
2 Oct. Joaquin 24 42 42 34 41
3 Oct. Joaquin 26 40 38 44 39
4 Oct. Joaquin 22 39 42 26 39
5 Oct. Joaquin 21 44 38 33 34
20 Oct. Patricia 8 52 59 39 42
21 Oct. Patricia 25 49 39 30 34
22 Oct. Patricia 22 38 36 22 39
23 Oct. Patricia 26 60 29 36 34

Mean All 21.9 44.6 38.5 33.7 37.5
Median All 23 43 38 33.5 39
St. Dev All 5.3 7.7 8.5 7.5 3.4
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Table F.12: Pairwise Student’s t-test p-values for the 0.5-autocorrelation temporal thresholds
for each variable and each detrend method. Statistically different spatial thresholds have p-
values below 0.05. From Nelson et al. (2019b).

w No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 0.64 - - - -

Storm detrend 0.73 0.9 - - -
Total detrend 0.86 0.76 0.86 - -
Radial detrend 0.83 0.8 0.9 0.97 -
D+R detrend 0.37 0.67 0.58 0.47 0.49

|Vh| No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 3.20E-08 - - - -

Storm detrend 1.70E-06 0.28536 - - -
Total detrend 2.20E-05 0.0777 0.47502 - -
Radial detrend 1.80E-05 0.08632 0.50699 0.95921 -
D+R detrend 4.80E-11 0.08632 0.00659 0.00082 0.00096

RH No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 8.00E-07 - - - -

Storm detrend 7.50E-06 0.536 - - -
Total detrend 9.10E-06 0.501 0.957 - -
Radial detrend 3.10E-06 0.706 0.808 0.767 -
D+R detrend 5.70E-10 0.056 0.013 0.011 0.024

T No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend < 2.00E-16 - - - -

Storm detrend < 2.00E-16 0.49499 - - -
Total detrend < 2.00E-16 0.08862 0.29979 - -
Radial detrend < 2.00E-16 0.03271 0.13815 0.64876 -
D+R detrend < 2.00E-16 0.07244 0.01475 0.00077 0.00018

θe No detrend Date detrend Storm detrend Total detrend Radial detrend
Date detrend 0.011 - - - -

Storm detrend 0.126 0.283 - - -
Total detrend 0.095 0.35 0.888 - -
Radial detrend 0.014 0.925 0.327 0.4 -
D+R detrend 2.70E-10 4.60E-06 8.90E-08 1.50E-07 3.30E-06
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Figure F.1: Median atmospheric profiles of (a) w (m s−1), (b) |Vh| (m s−1), (c) RH (%), (d)
T (K), and (e) θe (K) for each observation day in Marty. From Nelson et al. (2019b).
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Figure F.2: Same as Fig. F.1, but for Joaquin. From Nelson et al. (2019b).
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Figure F.3: Same as Fig. F.1, but for Patricia. From Nelson et al. (2019b).
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Figure F.4: Median atmospheric profiles of (a) w (m s−1), (b) |Vh| (m s−1), (c) RH (%), (d)
T (K), and (e) θe (K) for each tropical cyclone. From Nelson et al. (2019b).

241



−1 0 1 2 3

0
5

10
15

w [m/s]

Al
t. 

[k
m

]

0 10 20 30 40 50

0
5

10
15

|Vh| [m/s]
Al

t. 
[k

m
]

0 20 40 60 80 100

0
5

10
15

RH [%]

Al
t. 

[k
m

]

200 220 240 260 280 300

0
5

10
15

Temp. [K]

Al
t. 

[k
m

]

320 340 360 380 400

0
5

10
15

θe [K]

Al
t. 

[k
m

]

	
(a) (b)

(c) (d)	

(e)	

Figure F.5: Median atmospheric profiles of (a) w (m s−1), (b) |Vh| (m s−1), (c) RH (%), (d)
T (K), and (e) θe (K) for the entire dataset. From Nelson et al. (2019b).
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Figure F.6: Median atmospheric profiles of (a) w (m s−1), (b) |Vh| (m s−1), (c) RH (%),
(d) T (K), and (e) θe (K) for the entire dataset, divided into four radial sections: < 1.25R∗

(red), 1.25–3R∗ (yellow), 3–5R∗ (green), and 5–10R∗ (blue). From Nelson et al. (2019b).
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Figure F.7: Detrended atmospheric profiles of (a) w (m s−1), (b) |Vh| (m s−1), (c) RH (%),
(d) T (K), and (e) θe (K) from an updraft sounding (Droponde 72CC) launched into the
eyewall of Patricia on 23 October. The red horizontal lines denote the depth of the updraft.
From Nelson et al. (2019b).
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Figure F.8: Temporal autocorrelation correlograms of (a) w (m s−1), (b) |Vh| (m s−1), (c)
RH (%), (d) T (K), and (e) θe (K) from an updraft sounding (Dropsonde 72CC) launched
into the eyewall of Patricia on 23 October. The black vertical lines denote the maximum
and minimum 0.5-autocorrelation threshold. Correlations of 0.5 and 0.0 are denoted with
horizontal dashed red and black lines, respectively. From Nelson et al. (2019b).
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Figure F.9: Spatial autocorrelation correlograms of (a) w (m s−1), (b) |Vh| (m s−1), (c) RH
(%), (d) T (K), and (e) θe (K) for each of the six detrend methods in Marty. Correlations
of 0.5 and 0.0 are denoted with horizontal dashed red and black lines, respectively. From
Nelson et al. (2019b).
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Figure F.10: Same as Fig. F.9, but for Joaquin. From Nelson et al. (2019b).

247



Figure F.11: Same as Fig. F.9, but for Patricia. From Nelson et al. (2019b).
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Figure F.12: Temporal autocorrelation correlograms of (a) w (m s−1), (b) |Vh| (m s−1), (c)
RH (%), (d) T (K), and (e) θe (K) for each of the six detrend methods in Marty. From
Nelson et al. (2019b).
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Figure F.13: Same as Fig. F.12, but for Joaquin. From Nelson et al. (2019b).
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Figure F.14: Same as Fig. F.12, but for Patricia. From Nelson et al. (2019b).
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