3. Results
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Fig. 3 TClI Observational Data TC ERA-I Bilinear RMW
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Fig. 5 TC ERA-I Bilinear RMW AH ERA-I Bilinear RMW
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Fig. 5 TC ERA-I Bilinear RMW AH ERA-I Bilinear RMW

With this data, can’t really change the RMW issue, but
let’s look at net vertical motion (mean motion) inside
and outside of the RMW anyway...
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Fig. 7
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Fig. 8
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Fig. 9




4. Conclusions



Summary

Little study has been conducted to evaluate the similarities and
differences in the convective environments of TCs and PLs

— Specifically, the vertical velocity profiles in the AH archetype
of PLs

In this study, CFDs were constructed for three TCs and three AHs

The TC ERA-I CFDs were compared to the CFDs from the Nelson
et al. (2017) study

The net vertical motion within 10R* and within the RMW were
correlated to intensity change

Composite planar and cross-sectional plots of vertical velocity
and temperature were made for the TCs and AHs
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Expectations

 ERA-I tends to underestimate PL intensity (Zappa et al.
2014)

— 1x10~ s! for vorticity
— 2 m s for surface wind speed

* The spatial resolution of the ERA-I dataset at 0.7° is not
conducive to fully resolve convective scale processes

 ERA-I should not be expected to fully capture the high
magnitude (strength), low-frequency vertical velocities

that Nelson et al. (2017) and Stern et al. (2016)
observed

— In fact, peak updrafts and downdrafts were, at most, 50
times weaker in the ERA-I TCs than in the TCI XDD dataset!
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Comparing TCl observation to ERA-

Unfortunately, the CFDs do not compare well between the
TCl observations and the TC ERA-I data

— With respect to altitude, midlevel maximum of vertical velocity
in the TC ERA-I dataset = level of non-divergence (?)
The use of a bilinear interpolated RMW is not accurate
enough to produce a correct CFRD

Both the ERA-I data and the TCl observation data agreed
with the presence of convection in the downshear
guadrants

— BUT the peaks of convection in the ERA-I tended to be down-
azimuth of the observations

— ERA-I may not be accurately representing shear driven
convective asymmetries



Comparing TCl observation to ERA-

Despite the lack of agreement between the
observational dataset and ERA-| dataset of TCs, some

conclusions can still be made about the location of

40

convection in AHs in comparison to TCs



AHs vs. TCs

Peak strength of the vertical velocities in the AHs were half as strong
as the TCs

AHs had convection relatively higher in the troposphere
— The increase in strength of updrafts above the surface was not as strong as in
the TCs
The strongest vertical velocities in AHs occurred outside of the inner
core
— However, if the RMWs were wrong in the TCs, they are likely to be wrong in
the AHs!
Both the TC ERA-I and AH ERA-I data suggest weaker convection
occurred over much of the upshear quadrants

— However, in the AHs, the strongest updrafts and downdrafts did not
exclusively occur in the downshear quadrants...

— The strongest downdrafts appear to have occurred down-azimuth of the
strongest updrafts, which contradicts the findings of Nelson et al. (2017) for
TCs
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Net vertical motion

* The results here do not agree with past studies (e.g.,
Rogers et al. 2012, Nelson et al. 2017)

— For TCs and AHs represented by ERA-I net vertical motion
inside of the RMW is not a good predictor of cyclone
intensity

* Errors associated with RMW placement (?)

— The net vertical motion within 10R* had acceptable
correlations to intensity

— Correlations of net vertical motion and intensity for AHs
were considerably weaker than for TCs
* AHs have much weaker RMWSs and are relatively short-lived
compared to TCs

* Could have went into building the upper-level vortex instead of
the lower-level vortex
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Planar composites

e 925-hPa vertical velocity composites of AHs and
TCs were not too drastically different

— One difference is that the vertical velocities near the
TC center were stronger than in the AHs

 925-hPa temperature composites of AHs and TCs
were different

— ‘Bull’s-eye’ of increased temperature in AHs =2
smaller warm core

— What does this mean for sensible/latent heat fluxes?
(Rasmussen 1981, Terpstra et al. 2016)
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Radial composites

* For the TC composite, updrafts maximized in
strength aloft and inside the inner core

* For the AH composite, updrafts maximized in
strength at outer radii and at low-levels

— AHs have a band of downdrafts that was not
present in the TCs
e What caused the downdraft band below 3 km to occur?

* Not caused by a transition of phase as this band
occurred at approximately the 250 K level

* Broad scale subsidence?
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Future work

* Create CFDs from runs of the Weather Research
and Forecasting (WRF) model for both the three
TCs observed in TCl and the three AHs analyzed
in this study

* Analyze the role of low-level updrafts inside the
RMW and the cause of the band of downdrafts

near 3 km in the AHs

e Ultimately, in order to fully understand the
convective environments of AHs, high-density
dropsonde observations of AHs similar to the TCI
experiment should be conducted
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