3. Results

Fig. 2

TC ERA-I Bilinear RMW

0

TC ERA-I Bilinear RMW

Because of the drastic differences in the CFDs, especially in the CFRDs, could the RMW placement be wrong?

TC ERA-I with TCI RMW

2⁶

2⁵

2⁴

2³

2²

2¹

2⁰

2⁻¹

2⁻²

2⁻³

2-4

0

TC ERA-I with TCI RMW

Despite the lack of agreement between the observational dataset and ERA-I dataset of TCs, some conclusions can still be made about the location of convection in AHs in comparison to TCs

(g)

AH ERA-I Bilinear RMW

a6

o6

With this data, can't really change the RMW issue, but let's look at net vertical motion (mean motion) inside and outside of the RMW anyway...

AH ERA-I Bilinear RMW

AH ERA-I Bilinear RMW

4. Conclusions

Summary

- Little study has been conducted to evaluate the similarities and differences in the convective environments of TCs and PLs
 - Specifically, the vertical velocity profiles in the AH archetype of PLs
- In this study, CFDs were constructed for three TCs and three AHs
- The TC ERA-I CFDs were compared to the CFDs from the Nelson et al. (2017) study
- The net vertical motion within 10R* and within the RMW were correlated to intensity change
- Composite planar and cross-sectional plots of vertical velocity and temperature were made for the TCs and AHs

Expectations

- ERA-I tends to underestimate PL intensity (Zappa et al. 2014)
 - $1 \times 10^{-5} \text{ s}^{-1}$ for vorticity
 - 2 m s⁻¹ for surface wind speed
- The spatial resolution of the ERA-I dataset at 0.7° is not conducive to fully resolve convective scale processes
- ERA-I should not be expected to fully capture the high magnitude (strength), low-frequency vertical velocities that Nelson et al. (2017) and Stern et al. (2016) observed
 - In fact, peak updrafts and downdrafts were, at most, 50 times weaker in the ERA-I TCs than in the TCI XDD dataset!

Comparing TCI observation to ERA-I

- Unfortunately, the CFDs do not compare well between the TCI observations and the TC ERA-I data
 - With respect to altitude, midlevel maximum of vertical velocity in the TC ERA-I dataset = level of non-divergence (?)
- The use of a bilinear interpolated RMW is not accurate enough to produce a correct CFRD
- Both the ERA-I data and the TCI observation data agreed with the presence of convection in the downshear quadrants
 - BUT the peaks of convection in the ERA-I tended to be downazimuth of the observations
 - ERA-I may not be accurately representing shear driven convective asymmetries

Comparing TCI observation to ERA-I

- Unfortunately, the CFDs do not compare well between the TCI observations and the TC ERA-I data
 - With respect to altitude, midlevel maximum of vertical velocity

Despite the lack of agreement between the observational dataset and ERA-I dataset of TCs, some conclusions can still be made about the location of convection in AHs in comparison to TCs

- BUT the peaks of convection in the ERA-I tended to be downazimuth of the observations
- ERA-I may not be accurately representing shear driven convective asymmetries

AHs vs. TCs

- Peak strength of the vertical velocities in the AHs were half as strong as the TCs
- AHs had convection relatively higher in the troposphere
 - The increase in strength of updrafts above the surface was not as strong as in the TCs
- The strongest vertical velocities in AHs occurred outside of the inner core
 - However, if the RMWs were wrong in the TCs, they are likely to be wrong in the AHs!
- Both the TC ERA-I and AH ERA-I data suggest weaker convection occurred over much of the upshear quadrants
 - However, in the AHs, the strongest updrafts and downdrafts did not exclusively occur in the downshear quadrants...
 - The strongest downdrafts appear to have occurred down-azimuth of the strongest updrafts, which contradicts the findings of Nelson et al. (2017) for TCs

Net vertical motion

- The results here do not agree with past studies (e.g., Rogers et al. 2012, Nelson et al. 2017)
 - For TCs and AHs represented by ERA-I net vertical motion inside of the RMW is not a good predictor of cyclone intensity
 - Errors associated with RMW placement (?)
 - The net vertical motion within 10R* had acceptable correlations to intensity
 - Correlations of net vertical motion and intensity for AHs were considerably weaker than for TCs
 - AHs have much weaker RMWs and are relatively short-lived compared to TCs
 - Could have went into building the upper-level vortex instead of the lower-level vortex

Planar composites

- 925-hPa vertical velocity composites of AHs and TCs were not too drastically different
 - One difference is that the vertical velocities near the TC center were stronger than in the AHs
- 925-hPa temperature composites of AHs and TCs were different
 - 'Bull's-eye' of increased temperature in AHs → smaller warm core
 - What does this mean for sensible/latent heat fluxes? (Rasmussen 1981, Terpstra et al. 2016)

Radial composites

- For the TC composite, updrafts maximized in strength aloft and inside the inner core
- For the AH composite, updrafts maximized in strength at outer radii and at low-levels
 - AHs have a band of downdrafts that was not present in the TCs
 - What caused the downdraft band below 3 km to occur?
 - Not caused by a transition of phase as this band occurred at approximately the 250 K level
 - Broad scale subsidence?

Future work

- Create CFDs from runs of the Weather Research and Forecasting (WRF) model for both the three TCs observed in TCI and the three AHs analyzed in this study
- Analyze the role of low-level updrafts inside the RMW and the cause of the band of downdrafts near 3 km in the AHs
- Ultimately, in order to fully understand the convective environments of AHs, high-density dropsonde observations of AHs similar to the TCI experiment should be conducted

References

- Aberson, S. D., M. T. Montgomery, M. Bell, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part II. Bull. Amer. Meteor. Soc., 87, 1349–1354, doi:10.1175/BAMS-87-10-1349.
- AMS, 2017: Glossary of meteorology: polar low. Accessed: 21 April 2017, [Available online at http://glossary.ametsoc.org/wiki/Polar low.]
- Black, M. L., R. W. Burpee, and F. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 1887–1909.
- Black, M. L., J. F. Gamache, F. D. M. Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. *Mon. Wea. Rev.*, 130, 2291–2312.
- Black, P., L. Harrison, M. Beaubien, R. Bluth, R. Woods, A. Penny, R. Smith, and J. Doyle, 2017: High Definition Sounding System (HDSS) for atmospheric profiling. J. Atmos. Oceanic Technol., 34, 777–796, doi:10.1175/JTECH-D-14-00210.1.
- Black, R. A., H. B. Bluestein, and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122, 2722–2739.
- Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.
- DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209–220.
- Douglas, M. W., L. S. Fedor, and M. A. Shapiro, 1991: Polar low structure over the northern Gulf of Alaska based on research aircraft observations. Mon. Wea. Rev., 119, 32–54.
- Douglas, M. W., M. A. Shapiro, L. S. Fedor, and L. Saukkonen, 1995: Research aircraft observations of a polar low at the east Greenland ice edge. Mon. Wea. Rev., 123, 5–15.
- Emanuel, K. A., and R. Rotunno, 1989: Polar lows as arctic hurricanes. Tellus, 41A, 1–17.
- Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633–654, doi:10.1175/2009JAS3119.1.
- Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285–308, doi:10.1175/2009JAS3132.1.
- Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407–420.
- Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839–856.
- Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237–1259.
- Montgomery, M. T., and B. F. Farrell, 1992: Polar low dynamics. J. Atmos. Sci., 49, 2484–2505. Moore, R. W., and T. H. V. Haar, 2003: Diagnosis of a polar low warm core utilizing the Advanced Microwave Sounding Unit. *Wea. Forecasting*, **18**, 700–711.
- Nelson, T. C., L. C. Harrison, and K. L. Corbosiero, 2017: Convective asymmetries measured by eXpendable Digital Dropsondes (XDDs) in tropical cyclones. Submitted to Mon. Wea. Rev.
- NHC, 2017: Glossary of NHC terms. Accessed: 08 February 2017, [Available online at http://www.nhc.noaa.gov/aboutgloss.shtml.]
- Noer, G., Ø. Saetra, T. Lein, and Y. Gusdal, 2011: A climatological study of polar lows in the Nordic seas. Quart. J. Roy. Meteor. Soc., 137, 1762–1772, doi:10.1002/qj.846.
- Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349–2371.
- Rasmussen, E., 1981: An investigation of a polar low with a spiral cloud structure. J. Atmos. Sci., 38, 1785–1792.
- Rasmussen, E. A., and J. Turner, Eds., 2003: Polar lows: Mesoscale weather systems in the polar regions. Cambridge University Press.
- Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. *Mon. Wea. Rev.*, 140, 77–99, doi:10.1175/MWR-D-10-05075.1.
- Sardie, J. E., and T. T. Warner, 1983: On the mechanism for the development of polar lows. J. Atmos. Sci., 40, 869–881.
- Stern, D. P., and S. D. Aberson, 2006: Extreme vertical winds measured by dropwindsondes in hurricanes. 27th Conf. on Hurricanes and Tropical Meteorology.
- Stern, D. P., G. H. Bryan, and S. D. Aberson, 2016: Extreme low-level updrafts and wind speeds measured by dropsondes in tropical cyclones. *Mon. Wea. Rev.*, **144**, 2177–2204, doi: 10.1175/ MWR-D-15-0313.1.
- Stern, D. P., J. L. Vigh, and D. S. Nolan, 2015: Revisiting the relationship between eyewall con- traction and intensification. J. Atmos. Sci., 72, 1283–1306, doi:10.1175/JAS-D-14-0261.1.
- Terpstra, A., C. Michel, and T. Spengler, 2016: Forward and reverse shear environments during polar low genesis over the northeast Atlantic. *Mon. Wea. Rev.*, **144**, 1341–1354, doi: 10.1175/ MWR-D-15-0314.1.
- Yanase, W., and H. Niino, 2007: Dependence of polar low development on baroclinicity and phys- ical processes: An idealized high-resolution numerical experiment. J. Atmos. Sci., 64, 3044–3067, doi:10.1175/JAS4001.1.
- Zappa, G., L. Shaffrey, and K. Hodges, 2014: Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-Interim Reanalysis? *Mon. Wea. Rev.*, **142**, 2596–2608, doi:10.1175/MWR-D-14-00064.1.
- Zipser, E. J., 2003: Some views on "hot towers" after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM). *Meteor. Monogr.*, **51**, 49–58.