Inertial Range Properties in 3D and 2D Turbulence

For reference, a few inertial range properties are listed below, omitting nondimensional constants.

	3D Energy Range	2D Enstrophy Range	
Energy spectrum	$\varepsilon^{2/3}k^{-5/3}$	$\eta^{2/3}k^{-3}$	(T.1)
Turnover time	$\varepsilon^{-1/3}k^{-2/3}$	$\eta^{-1/3}$	(T.2)
Viscous scale, L_{ν}	$(\nu^3/\varepsilon)^{1/4}$	$(\nu^3/\eta)^{1/6}$	(T.3)
Passive tracer spectrum	$\chi \varepsilon^{-1/3} k^{-5/3}$	$\chi \eta^{-1/3} k^{-1}$	(T.4)

In these expressions:

 ν = viscosity, k = wavenumber, ε = energy cascade rate, η = enstrophy cascade rate, χ = tracer variance cascade rate.

where $\mathbf{u} = u\mathbf{i} + v\mathbf{j}$ and $\zeta = \mathbf{k} \cdot \nabla \times \mathbf{u}$ and F is a stirring term. In terms of a streamfunction, $u = -\partial \psi/\partial y$, $v = \partial \psi/\partial x$, and $\zeta = \nabla^2 \psi$, and (8.39) may be written as

$$\frac{\partial \nabla^2 \psi}{\partial t} + J(\psi, \nabla^2 \psi) = F + \nu \nabla^4 \psi. \tag{8.40} \label{eq:8.40}$$

We obtain an energy equation by multiplying by $-\psi$ and integrating over the domain, and an enstrophy equation by multiplying by ζ and integrating. When F = v = 0 we find

$$\hat{E} = \frac{1}{2} \int_{A} (u^2 + v^2) dA = \frac{1}{2} \int_{A} (\nabla \psi)^2 dA, \qquad \frac{d\hat{E}}{dt} = 0,$$
 (8.41a)

$$\hat{Z} = \frac{1}{2} \int_{A} \zeta^{2} dA = \frac{1}{2} \int_{A} (\nabla^{2} \psi)^{2} dA, \qquad \frac{d\hat{Z}}{dt} = 0, \qquad (8.41b)$$

where the integral is over a finite area with either no-normal flow or periodic boundary conditions. The quantity \hat{E} is the energy, and \hat{Z} is known as the *enstrophy*. The enstrophy invariant arises because the vortex stretching term, so important in three-dimensional turbulence, vanishes identically in two dimensions. In fact, because vorticity is conserved on parcels it is clear that the integral of *any* function of vorticity is zero when integrated over A; that is, from (8.39)

$$\frac{\mathrm{D}g(\zeta)}{\mathrm{D}t} = 0$$
 and $\frac{\mathrm{d}}{\mathrm{d}t} \int_{A} g(\zeta) \, \mathrm{d}A = 0.$ (8.42)

where $g(\zeta)$ is an arbitrary function. Of this infinity of conservation properties, enstrophy conservation (with $g(\zeta) = \zeta^2$) in particular has been found to have enormous consequences to the flow of energy between scales, as we will soon discover.⁸