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ABSTRACT

The role of the human forecaster in improving upon the accuracy of numerical weather prediction is ex-

plored using multiyear verification of human-generated short-range precipitation forecasts and medium-

range maximum temperature forecasts from the Weather Prediction Center (WPC). Results show that

human-generated forecasts improve over raw deterministic model guidance. Over the past two decades,WPC

human forecasters achieved a 20%–40% improvement over the North American Mesoscale (NAM) model

and the Global Forecast System (GFS) for the 1 in. (25.4mm) (24 h)21 threshold for day 1 precipitation

forecasts, with a smaller, but statistically significant, 5%–15% improvement over the deterministic ECMWF

model.Medium-rangemaximum temperature forecasts also exhibit statistically significant improvement over

GFS model output statistics (MOS), and the improvement has been increasing over the past 5 yr. The quality

added by humans for forecasts of high-impact events varies by element and forecast projection, with generally

large improvements when the forecaster makes changes $88F (4.48C) to MOS temperatures. Human im-

provement over guidance for extreme rainfall events [3 in. (76.2mm) (24 h)21] is largest in the short-range

forecast. However, human-generated forecasts failed to outperform the most skillful downscaled, bias-

corrected ensemble guidance for precipitation andmaximum temperature available near the same time as the

human-modified forecasts. Thus, as additional downscaled and bias-corrected sensible weather element

guidance becomes operationally available, and with the support of near-real-time verification, forecaster

training, and tools to guide forecaster interventions, a key test is whether forecasters can learn to make

statistically significant improvements over the most skillful of this guidance. Such a test can inform to what

degree, and just how quickly, the role of the forecaster changes.

1. Introduction

As the skill of numerical weather prediction (NWP)

and associated postprocessed guidance continues to

improve, recent debate asks to what degree can human

forecasters add quality1 to NWP (e.g., Mass 2003; Bosart

2003; Roebber et al. 2004; Reynolds 2003; Doswell 2004;

Stuart et al. 2006, 2007; Homar et al. 2006; Novak et al.

2008; Ruth et al. 2009). The National Centers for Envi-

ronmental Prediction’s (NCEP) Weather Prediction

Center (WPC2) has a broad mission to serve as a center

of excellence in quantitative precipitation forecasting,

medium-range forecasting, winter weather forecasting, sur-

face analysis, and the interpretation of operational NWP.

Historically, forecasters at the WPC have had access to

a large portion of the available model guidance suite, re-

cently including multimodel ensemble information from

international partners. TheWPC’s unique national forecast

mission coupled with its access to state-of-the-art model

guidance provides a rare opportunity to assess the quality

added by humans to ever-improving NWP guidance.

This work will examine multiyear historical and con-

temporary verification for short-range deterministic
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1Although ‘‘value added’’ is often used colloquially, this work

abides by the terms for forecast ‘‘goodness’’ defined in Table 1 of

Murphy (1993), where ‘‘value’’ refers to the benefit realized by

decision makers through the use of the forecasts and ‘‘quality’’

refers to the correspondence between forecasts and the matching

observations.

2 The center’s name was changed from the Hydrometeorological

Prediction Center to the Weather Prediction Center on 5 March

2013.
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precipitation forecasts and medium-range maximum tem-

perature forecasts generated at the WPC. Although hu-

mans can add substantial value to NWP through retaining

forecast continuity (run-to-run consistency), assuring ele-

ment consistency (e.g., wind shifts with fronts), and helping

users make informed decisions (e.g., Roebber et al. 2010),

this work focuses on the human role in improving forecast

accuracy. In this respect, the current work examines only

one component of the forecaster’s role, and is limited to

analysis of just two weather elements.

The current work builds upon and extends previous

analyses of WPC skill by Olson et al. (1995), Reynolds

(2003), and Sukovich et al. (2014, manuscript submitted

to Wea. Forecasting, hereafter SRNBR), and points to

future verification approaches in the continuing history

of NWP and the human forecaster. Section 2 presents

analysis of quantitative precipitation forecasts (QPFs)

while section 3 explores human improvement to medium-

rangemaximum temperature forecasts. A discussion of the

limitations of the work and implications of the verification

for the future role of the forecaster is presented in section 4.

2. QPF

a. Production and verification method3

TheWPC forecasters create deterministic QPFs at 6-h

intervals through the day 3 forecast projection, and 48-h

QPFs for days 4–5 and 6–7. The focus here is on the

day 1–3 forecasts. The WPC deterministic QPF during

the study period was defined as the most-likely, areal-

averaged amount mapped onto a 32-km horizontal res-

olution grid. An example 24-h accumulated QPF is

shown in Fig. 1a. The forecast process for QPF involves

forecaster assessment of observations of moisture, lift,

and instability, as well as comparisons among deter-

ministic and ensemble forecasts of these parameters.

Objectively postprocessed model-based QPFs are also

available to WPC forecasters. Emphasis shifts from

nowcasting based on observations in the first 6–12 h of

the forecast, to an increasing use of NWP as lead time

increases. For example, subjective blends of model

guidance are used almost exclusively beyond 36 h.

Forecasters manually draw precipitation isohyets, which

operational software converts into a grid. In areas of

complex topography, forecasters usemonthly Parameter-

elevation Regressions on Independent Slopes Model

(PRISM; Daly et al. 1994; Daly et al. 2008) output as

a background.

The 24-h accumulated QPFwas verified using a human

quality-controlled (QCed) analysis valid at 1200 UTC.

The analyst can choose a first-guess field from either

the multisensor stage IV quantitative precipitation es-

timate mosaic analyses (Lin and Mitchell 2005) or

Climate Prediction Center (CPC) daily precipitation

analyses (Higgins et al. 1996). The analyst QCs the

analysis based on gauge data and a review of radar data,

and can adjust isohyets if necessary. The QCed precip-

itation analysis is mapped onto a 32-km grid, matching

the forecast grid. Retrospective tests show that the rela-

tive skill difference between theWPC and NWP datasets

shown in this paper are not sensitive to the precipitation

analysis used (e.g., the WPC QCed analysis or stage IV).

Conventional 2 3 2 contingency tables of dichot-

omous outcomes (e.g., Brill 2009) for precipitation ex-

ceeding several thresholds are created by comparing

each QPF to the corresponding verifying analysis. The

23 2 contingency tables are used to calculate the threat

score and frequency bias for the day 1 and day 3 forecast

periods. TheWPC forecast period naming convention is

shown in Fig. 2. Focus is placed on the threat score for

the day 1 QPF valid at 1200 UTC at the 1 in. (25.4mm)

(24 h)21 threshold. This threat score is reported to

Congress as part of the Government Performance and

Results Act of 1993 (GPRA). Historically, the goal of

theWPCQPF was to improve upon the model guidance

available during the interval of forecast preparation

(Reynolds 2003). Therefore, the performance of the

WPC QPF is compared against model forecasts that are

somewhat older (i.e., time lagged) than the WPC issu-

ance time. The latency of theWPC forecasts for themost

frequently used model guidance is shown in Table 1.

The historical verification analysis was constrained to

data available during the last;50 yr, which were largely

deterministic forecasts. Bias-corrected forecasts were

also generally not available for verification purposes

during the historical time frame. Bias correction can

dramatically improve raw QPF guidance (e.g., Yussouf

and Stensrud 2006; Brown and Seo 2010), and ensemble

approaches can quantify predictability and reduce error.

Thus, the contemporary verification compares the WPC

QPF to one created by an ensemble algorithm with bias

correction, issued near the time of the human-modified

forecast. This product, the pseudo-bias-corrected en-

semble QPF (ENSBC), is based on the premise that the

larger the uncertainty, the smoother the forecast should

be, whereas the smaller the uncertainty, the more de-

tailed the forecast should be. During the study period

the ENSBCwas composed of a high-resolution ensemble

part composed of output from the deterministic NCEP

North AmericanMesoscale (NAM) model (Janji�c 2003),

Global Forecast System (GFS; Caplan et al. 1997), and

3Forecast production methods are described throughout the

paper as they were conducted during 2012, and may have since

changed.
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FIG. 1. Examples of WPC forecasts of (a) QPF (shaded, from 0.01 to

20.0 in.), (b) medium-range maximum temperature [shaded, 8F from 258 to
1058F (from 220.68 to 40.68C)], and (c) medium-range pressure patterns and

fronts. Examples are from different days.
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European Centre for Medium-Range Weather Forecasts

(ECMWF; Magnusson and Kallen 2013), and a full en-

semble part composed of the high-resolution ensemble

plus the Canadian Global Environmental Multiscale

Model (GEM; B�elair et al. 2009), Met Office model

(UKMO), and all members of the NCEP Short-Range

Ensemble Forecast (SREF; Du et al. 2006). The product

is objectively downscaled from 32 to 10 km (5kmover the

west) using PRISM. A detailed description of the

ENSBC algorithm is provided in appendix A.

Additionally, the historical analysis is limited to ver-

ificationmetrics with a long record to facilitate historical

context [threat score, frequency bias (referred to as bias

hereafter), and mean absolute error (MAE)]. Metrics

such as the threat score have inherent limitations, in-

cluding a double penalty for false alarms (Baldwin et al.

2002) and bias sensitivity (Brill 2009; Brill and Mesinger

2009). To address this issue, a bias-removed threat score

is calculated using the procedure based on probability

matching (Ebert 2001) described by Clark et al. (2009).

The procedure uses probability matching to reassign the

distribution of a forecast field with that of the observed

field, so that the modified forecast field has the same

spatial patterns as the original forecast, but has values

adjusted so the distribution of their amplitudes exactly

matches those of the analysis. The end result is the re-

moval of all bias. Because the NAM precipitation skill

lags so severely relative to WPC and other internation-

al guidance, and to simplify interpretation, the bias-

removed threat score calculation was not conducted for

the NAM. This reduced skill is likely due to the use of

6-h-old boundary conditions from the GFS, an earlier

data cutoff, as well as a less advanced data assimilation

system (G. DiMego and E. Rogers 2013, personal

communication).

Finally, it is important to quantify the statistical sig-

nificance of comparisons. To accomplish this task, the

forecast verification system (fvs) software was used (de-

scribed in appendix B). Assessment of statistical signifi-

cance in fvs is accomplished using random resampling

following the method of Hamill (1999).

Thus, contemporary verification addressing these four

issues (ensemble approaches, bias-corrected guidance,

bias sensitivity, and statistical significance) was con-

ducted during the latest years available (2011–12).

b. Results

Verification of theWPCQPFover the last 50yr (Fig. 3)

is a testament to the advancement of precipitation fore-

casts. Threat scores of the 1 in. (24 h)21 threshold for day

1 forecasts doubled during the period, while day 2 and 3

forecasts also continued to improve (Fig. 3). Improve-

ment has accelerated after 1995. This improvement is

directly tied to the quality of the NWP guidance. In fact,

during the 1993–2012 period, the correlations of yearly

values of the day 1 threat score for the 1 in. (24 h)21

threshold between WPC and the NAM and WPC and

the GFS were 0.91 and 0.88, respectively.

Although NWP serves as skillful guidance, verifica-

tion over the past two decades shows WPC human fore-

casters achieved a 20%–40% improvement over the

deterministic NAM and GFS simulations for the threat

score of the 1 in. (24 h)21 threshold for the day 1 forecast

(Fig. 4a). This improvement was occurring during a pe-

riod of advances inNWP skill. For example, theGFS 1 in.

(24 h)21 day 1 threat score in 1993 was 0.14, whereas in

2012 it was 0.25. Based on the long-term rate of model

improvement, it would take;13 yr until the GFS attains

a day 1 threat score equivalent to the currentWPC threat

score. This rate is nearly identical to the 14 yr reported

by Reynolds (2003) for the 2001 verification year.

The ECMWF precipitation forecast information be-

came available toWPC forecasters in themid-2000s, and

the first full year of formal verification was established in

2008. Verification of the 1 in. (24 h)21 day 1 forecast over

the 2008–12 period shows that theWPC forecast exhibits

smaller 5%–15% improvements over the very skillful

deterministic ECMWFmodel (Fig. 4a). However, WPC

improvement over the ECMWF model has nearly dou-

bled over the past 5 yr.

A complete picture of precipitation verification must

include bias information. In recent years the NAM,

GFS, and ECWMF guidance have exhibited a low bias

TABLE 1. Timing of the availability of day 1 QPF guidance from

the WPC, GFS, NAM, and ECMWF systems. The elapsed time

between when guidance is available and when the WPC forecast is

available (WPC latency) is shown in the right column.

Guidance source Time available (UTC) WPC latency (h)

Overnight WPC 1000

0000 UTC GFS 0500 5

0000 UTC NAM 0300 7

0000 UTC ECMWF 0700 3

Overnight ENSBC 0900 1FIG. 2. Timeline showing the WPC forecast period naming

convention for the overnight issuance, including the forecast pro-

jection (h), time (UTC), and day 1, day 2, and day 3 designations.
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at the 1 in. (24 h)21 threshold, while the WPC has sus-

tained a more favorable bias near 1.0 (Fig. 4a). Con-

temporary verification using the bias-removed threat

score shows that WPC has maintained a statistically

significant advantage over the ECMWF andGFS during

2011 and 2012 (Fig. 4b). However, the ensemble-based

postprocessed QPF from the ENSBC was very com-

petitive. In fact, the ENSBC and WPC forecasts were

statistically similar for the 1 in. (24 h)21 threshold during

2012 (Fig. 4b).

Mass (2003) and McCarthy et al. (2007) have asserted

that the human is most effective for the near-term

forecast. However, the WPC percent improvement over

the GFS at the 1 in. (24 h)21 threshold for the day 3

forecast is similar to the percent improvement for this

threshold for the day 1 forecast (cf. Figs. 4b and 4d). All

guidance, includingWPC, has a slight low bias at the day 3

forecast (Figs. 4c,d). For both the day 1 and day 3 fore-

casts, the competitive skill of the ECWMF forecast is

evident, for which the human adds small, but statistically

significant, positive skill. However, once again, theWPC

is statistically similar to the ENSBC at the 1 in. (24 h)21

threshold for the day 3 period during 2012 (Fig. 4d).

Thus, at least for precipitation at this threshold, the

quality added by the forecaster does not appear de-

pendent on forecast projection.

Mass (2003), Bosart (2003), Stuart et al. (2006), and

McCarthy et al. (2007) have suggested that the human

forecaster may be most adept at improving over NWP

guidance for high-impact events. The threat score for

the 3 in. (76.2mm) (24 h)21 threshold is arbitrarily used

here as a proxy for a high-impact event. The skill of both

model and human forecasts at the 3 in. (24 h)21 thresh-

old is rather poor when compared to the 1-in threshold,

illustrating the challenge of forecasting extreme rainfall

events (Fritsch and Carbone 2004; SRNBR). However,

the day 1 WPC threat score exhibits a large improve-

ment over select models (Fig. 5a), with a slight dry bias.

Contemporary verification accounting for bias shows

WPC significantly improved over the GFS in 2012 and

ECMWF in both 2011 and 2012 at this threshold.

However, once again, WPC was similar in skill to the

ENSBC product (Fig. 5b).

Skill comparisons for the 3 in. (24 h)21 threshold at the

day 3 lead time reveal generally less forecaster im-

provement, with similar model and WPC threat scores

(Fig. 5c). In fact, the GFS was superior to the WPC

forecast in 2001 and 2003, and the ECMWFwas superior

to the WPC forecast in 2009. All guidance, except the

GFS, is severely underbiased. The authors speculate

that the GFS had frequent gridpoint storms (e.g., Giorgi

1991) during the verification period, which may have

improved its bias, but degraded its threat score. Con-

temporary verification shows the WPC bias-removed

threat score is not statistically significantly different than

the corresponding threat scores from any of the com-

petitive guidance options (Fig. 5d).

All of the above results suggest humans can make

statistically significant improvements over competitive

deterministic model guidance for precipitation. The

FIG. 3. Time series of annual WPC threat scores for the 1 in. (24 h)21 threshold for the day 1

(red), day 2 (green), and day 3 (blue) forecasts from 1960 to 2012. Percent areal coverage of the

1 in. (24 h)21 threshold over the contiguous United States over the year is shown by the purple

line. Linear threat score trends are shown in their forecast day colors. The linear trends are

divided into two periods to account for increasing improvement after 1995. (Data are updated

yearly online: http://www.WPC.ncep.noaa.gov/images/WPCvrf/WPC10yr.gif.)
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magnitude of the quality added by the forecaster is gen-

erally not dependent on forecast projection for the 1 in.

(24h)21 threshold; however, human improvement for

extreme rainfall events does appear dependent on fore-

cast projection, favoring larger human improvements

over deterministic model guidance in the short-range

forecast. However, a downscaled, bias-corrected en-

semble forecast available near the same time as the

human-modified forecast exhibits similar skill—even for

extreme precipitation events.

3. Maximum temperature

a. Production and verification method

WPC forecasters produce a 3–7-day forecast suite

including gridded predictions of sensible weather ele-

ments to support the National Digital Forecast Data-

base (NDFD; Glahn and Ruth 2003) (Fig. 1b), graphical

depictions of the surface fronts and pressure patterns

(Fig. 1c), and associated discussion of forecast factors

and confidence. Two forecasters work in tandem to

complete this task and coordinate with users after as-

sessment of NWP. Since 2004, forecasters have used

a graphical interface to apply weights to individual models

and ensemble systems to derive a most-likely sensible

weather solution. The result of the forecaster’s chosen

blend can be manually edited.

Before model data are weighted by the forecaster, the

data are bias corrected and downscaled to a 5-km hori-

zontal resolution. Bias correction of gridded model data

is accomplished using the NCEP decaying averaging

bias-correction method of Cui et al. (2012), applied as

Bnew5 (12w)Bpast1wBcurrent , (1)

whereBcurrent is the latest calculated forecast error given

by the difference between the forecast and verifying

analysis, Bpast is the past accumulated bias, and Bnew is

the updated accumulated bias. The NCEP 5-km reso-

lution Real-Time Mesoscale Analysis (RTMA; De

Pondeca et al. 2011) was used as the verifying analysis.

FIG. 4. WPC QPF percent improvement (bars) over the NAM (green), GFS (blue), and ECMWF (purple) for the 24-h accumulated

precipitation threat scores on day (a) 1 and (c) 3 for the 1 in. (24 h)21 threshold during the 2001–12 period. The frequency bias for each of

the datasets is shown with colored lines having diamond symbols. (b),(d) As in (a),(c), but calculated using bias-removed threat score and

including the ENSBC product. Statistically significant differences from WPC at the 90% level are marked by the black asterisk.
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The weight factorw controls howmuch influence to give

the most recent bias behavior of weather systems. A w

equal to 2% was used operationally. Once initialized,

the bias estimate can be updated by considering just the

current forecast error (Bcurrent) and the stored average

bias (Bpast). The new bias-corrected forecast is gener-

ated by subtracting Bnew from the current forecasts at

each lead time and each grid point.

Downscaling of coarse model data onto a 5-km reso-

lution grid is accomplished using a decaying averaged

downscaling increment (B. Cui et al. 2013, unpublished

manuscript). The downscaling increments are created at

each 6-h time step by differencing the coarse 18-resolution
GFS analysis (GDAS) and 5-km resolution RTMA

according to

Dnew5 (12w)Dpast1wDcurrent , (2)

where Dcurrent is the latest calculated downscaling in-

crement given by the difference between GDAS and

RTMA, Dpast is the past accumulated downscale in-

crement, andDnew is the updated downscale increment.

The weight factorw controls howmuch influence to give

the most recent difference. A w equal to 10% was used

operationally. The 6-h grids are then downscaled using

the mean downscaling increment for each 6-h period.

For maximum and minimum temperatures, at each grid

point, the downscaled 6-h grids are compared to each

other to find the highest (lowest) values for maximum

(minimum) temperature over the 1200–0600 UTC pe-

riod (0000–1800 UTC period) to get a final maximum

(minimum) temperature forecast grid. The verifying

maximum (minimum) temperature is taken as the

highest (lowest) hourly value from the RTMA at each

grid point.

The resulting maximum and minimum temperatures

are extracted from the 5-km grid to 448 points for the

forecaster to edit where necessary. An objective analysis

is performed on the incremental changes made by the

forecaster at the 448 points to create a difference grid.

The forecaster-edited difference grids are added to

the forecaster-weighted output grids to get a final

adjusted 5-km forecast grid. Complete details of the

methodology for all elements are documented online

FIG. 5. Comparison of the threat score (bars) and frequency bias (lines with diamonds) for the 3 in. (24 h)21 threshold for day (a) 1 and

(c) 3 forecasts during the 2001–12 period. (b),(d) As in (a),(c), but using bias-removed threat score and including the ENSBC product.

Statistically significant differences in threat score from WPC at the 90% level are marked by the black asterisks.
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(http://www.wpc.ncep.noaa.gov/5km_grids/medr_5km_

methodology_newparms.pdf).

Both point and gridded verification experiments are

conducted. Points are verified by the respective ob-

served station information, while the RTMA is used to

verify gridded fields. The fvs (described in appendix B)

is used to calculate both point-based and gridded veri-

fications of sensible weather elements, including the

determination of statistical significance.

b. Results

Historical verification of maximum temperature at

93 points across the nation shows the marked improve-

ments in medium-range temperature forecast skill over

time. Today’s 7-daymaximum temperature forecast is as

accurate as a 3-day forecast in the late 1980s (Fig. 6).

Comparison of the 0000 UTC GFS MOS forecast to the

2000 UTC ‘‘final’’ daily issuance of the WPC forecast

shows the human forecaster improves upon GFS MOS

(Fig. 6). Before 1998 WPC forecasters were verified

relative to a version of MOS termed ‘‘Kleins’’ (Klein

and Glahn 1974). Starting in 1998, WPC forecasters

were verified relative to modern MOS (Glahn et al.

2009), and MOS was used as the starting point for their

forecasts. Differences between the Kleins and MOS

approaches are apparent, with WPC forecasters im-

proving more against Kleins (Fig. 6). The long-term

(30 yr) trend shows the human is improving less over the

NWP. However, within the last 7 yr, the WPC forecasts

are improving over MOS on the order of 5% (Fig. 6).

This improvementmay be related to a change in forecast

methodology in 2004, whereby forecasters use a graphi-

cal interface to apply weights to individual models and

ensemble systems to derive amost likely sensibleweather

solution. Further, ECMWF guidance became available

reliably to forecasters by 2008.

It is necessary to account for the 13-h latency between

the WPC final forecast issuance (1900 UTC) and the

0000 UTC GFS MOS (Table 2). WPC issues a prelim-

inary forecast that substantially reduces this latency.

A comparison of the preliminary WPC forecast issu-

ance to the 0000 and 1200 UTC MOS is examined. This

analysis also uses the full expanded set of 448 points over

the conterminous United States (CONUS). The results

are summarized as an aggregate of monthly scores av-

eraged during the 2007–12 period (72 months) for

maximum temperature. WPC accomplishes a 7%–9%

improvement over 0000 UTCMOSwith an 8-h latency, as

well as a 4%–5% improvement over the 1200 UTC MOS

with a human forecast issued 4 h prior to MOS (Fig. 7).

FIG. 6. Time series comparison of the WPC (solid lines) and 0000 UTC GFS MOS (dashed

lines)maximum temperature forecastMAE (8F) at 98major stations for day 3 (blue), 5 (green),

and 7 (red). Data are missing between 1996 and 1997.

TABLE 2. As in Table 1, but for the medium-range forecast

guidance from the WPC and GFS.

Guidance source

Time

available (UTC)

WPC latency

final

(preliminary) (h)

WPC final (preliminary) 1900 (1400)

0000 UTC GFS MOS 0600 13 (8)

0000 UTC ECMWF 0800 11 (6)

0000 UTC ECMWF

ensemble

1000 9 (4)

1200 UTC GFS MOS 1800 1 (24)
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Both results are statistically significant at the 90% level

for all days. Using a linear trend over the past decade, it

would take ;5 additional years for the 1200 UTC GFS

MOS to improve to the accuracy of earlier-issued hu-

man maximum temperature forecasts.

One hypothesis for the improvement over MOS is

that the human forecaster is adept at recognizing when

MOS is in large error and, thus, makes large changes

from MOS. Figure 8 shows that for frequent small

changes the human forecaster makes small improve-

ments over 1200 UTC MOS (;5%). However, for in-

frequent large deviations from 1200 UTC MOS [i.e.,

.88F (4.48C)], forecasters usually make changes in the

correct direction, exhibiting average percent improve-

ments near 15%.

Gridded verification allows examination of how the

human gridded forecasts compare to downscaled, bias-

corrected international model guidance and gridded

MOS (GMOS; Glahn et al. 2009). The WPC final fore-

casts are statistically significantly better than all raw

downscaled international model guidance and GMOS

(Fig. 9a). However, bias-correction substantially im-

proves the maximum temperature model guidance; so

much so that the bias-corrected ECMWF ensemble

FIG. 7. (a) Comparison of 2007–12 time-averaged maximum temperature MAE for WPC

(blue) and 0000 (green) and 1200 (red) UTC GFS MOS for the day 3, 5, and 7 forecast pro-

jections. (b) WPC percent improvement over the 0000 (green) and 1200 (red) UTCGFSMOS.
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mean is statistically significantly superior to the WPC

gridded forecast for days 5–7 (Fig. 9b).

Given that surface pressure patterns influence tem-

perature and precipitation patterns, further verification

of the WPC mean sea level pressure (PMSL) forecasts

for days 3–7 was conducted for 2012. Verification of the

anomaly correlation of the deterministic ECMWF and

GFS, and their respective ensemble system means, are

FIG. 8. (top) WPC final forecast percent improvement over the 1200 UTC GFS MOS at stations that were adjusted from MOS during

2012. Percent improvement (left axis) for changes from $18 to 108F (from $217.28 to 212.28C) are displayed for day 4–7-forecasts.

(bottom) Corresponding percentage of points adjusted out of a maximum of 448 points (right axis).

FIG. 9. Comparison of 5-km gridded maximum temperature MAE fromWPC (red) and (a) raw and (b) downscaled and bias-corrected

0000 UTC ECMWF (green), ECMWF ensemble (purple), GFS (blue), and GEFS (brown) over the CONUS during 2012. RTMA is used

as the verifying analysis. Because of missing data, a homogeneous sample of 321 days is used in (a) and 313 days in (b). Statistically

significantly larger (smaller) errors than WPC at the 90% level are shown as asterisks (hashtags).
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shown in Fig. 10. WPC has a higher anomaly correlation

score than all guidance at all time ranges; however,WPC

is only statistically significantly superior to all these

gridded datasets at the day 6 forecast projection. The

deterministic ECMWF, which is available near the time

of the final WPC forecast issuance, exhibits similar skill

to WPC at days 3 and 4. The 0000 UTC ECMWF en-

semble mean at day 7 is also similar to the WPC skill.

4. Discussion and summary

Analyses of multiyear verification of short-range

precipitation forecasts and medium-range maximum

temperature forecasts from the Weather Prediction

Center (WPC) are compared to automated NWP guid-

ance. Results show that human-generated forecasts im-

prove over raw deterministic model guidance when

verified using both traditional methods as well as con-

temporary methods. However, perhaps the more com-

pelling result is that on the basis of a statistical analysis

of two recent years, human-generated forecasts failed to

outperform the most skillful downscaled, bias-corrected

ensemble guidance for precipitation and maximum

temperature available near the same time as the human-

modified forecasts.

Specifically, historical verification results show that

the human-generated WPC QPFs improve upon deter-

ministic raw model guidance, and that the percent im-

provement has been relatively constant over the past

two decades (e.g., Fig. 4a). Medium-range maximum

temperature forecasts also exhibit improvement over

MOS. The improvement has been increasing during the

2005–12 period. The quality added by humans for forecasts

of high-impact events varies by element and forecast

projection, with generally large improvements when the

forecaster makes changes $88F (4.48C) to MOS tem-

peratures in the medium-range forecast. Human im-

provement for extreme rainfall events [3 in. (24 h)21] is

dependent on forecast projection, favoring larger human

improvements in the short-range forecast. Contempo-

rary verification confirms that the human forecaster

makes small, but statistically significant improvements

over competitive deterministic model guidance for

precipitation and maximum temperature.

However, human-generated forecasts failed to out-

perform the most skillful downscaled, bias-corrected

ensemble guidance for precipitation and maximum

temperature available near the same time as the human-

modified forecasts. Such downscaled, bias-corrected

ensemble guidance represents the most skillful opera-

tional benchmark. Thus, it is premature to claim supe-

riority by the human forecaster until such forecasts

are statistically significantly better than the most skill-

ful guidance. In fact, these results raise the question of

whether human-generated forecast superiority has ended.

Indeed, as computer resources advance, models will

explicitly simulate more processes, and more and better

observations will be used by improved data assimilation

systems. These advances will lead to improved NWP

guidance. Additionally, more sophisticated postprocess-

ing of rawmodel guidance, including bias correction and

downscaling, will improve automated forecasts of sen-

sible weather elements. Roebber et al. (2004) cite the

human ability to interpret and evaluate information

as an inherent advantage over algorithmic automated

processes. However, artificial intelligence algorithms

continue to strive to simulate such human decisions, for

example, developing methods to automate selective

consensus of ensemble members (e.g., Etherton 2007),

or applying artificial neural network and evolutionary

programming approaches that ‘‘learn’’ through time

(e.g., Bakhshaii and Stull 2009; Roebber 2010). Given

this future environment, it is difficult to envision the

human forecaster adding quality in terms of forecast

accuracy.

On the other hand, there is a distinction between long-

term statistical verification (the primary focus of this

paper) and critical deviations from skillful guidance in

local regions and cases. Contemporary postprocessing

approaches are best at correcting repeatable, systematic

errors but struggle when the forecast sample size is small

for unusual weather scenarios. The forecaster’s decision

to deviate from skillful automated guidance in these

unusual weather scenarios often comes with substantial

societal consequences, such as whether a snowstorm will

affect a city (Bosart 2003) or whether a killing freeze will

FIG. 10. Comparison of the PMSL forecast anomaly correlation

for the WPC final forecast (red) and various international model

guidance options: ECMWF (orange), ECMWF ensemble (green),

GFS (blue), andGEFS (brown). Statistically significant differences

from WPC at the 90% level are shown as asterisks.
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occur. Thus, it is especially critical that the forecaster

make the very best decision in these scenarios. Figure 8

shows that when forecasters make large changes from

MOS, the deviations are generally in the correct direction,

providing evidence of skill in recognizing opportunities

to deviate from MOS temperatures. Obviously, more

evidence of this skill for other variables, benchmarked

against more skillful datasets, and filtered to examine

only the most critical weather scenarios, is needed to

more conclusively demonstrate the forecaster’s skill at

these deviations.

Bosart (2003) contends that as more and more auto-

mation occurs, forecasters’ skill at recognizing critical

opportunities to deviate from guidance may atrophy.

Thus, a key component of assuring the forecaster con-

tinues to add quality to NWP is keeping the forecaster

engaged in the forecast process. Indeed, the WPC fore-

casters appear to have learned how to improve over the

ECWMF precipitation forecasts over the past 5 yr (Figs.

4a,c), perhaps learning when to deviate from the skillful

guidance. From the authors’ experience a key to this

improvement is greater emphasis on using the most

skillful datasets as the forecaster’s starting point, and

encouraging changes only when confidence is high.

Further, improvement can be gained with greater avail-

ability of near-real-time verification, using the most

skillful guidance as the benchmark. Finally, investment

in training forecasters in the strengths andweaknesses of

the most skillful guidance, and providing tools to guide

forecaster modifications may lead to further forecaster

improvements. An example of such a tool is ensemble

sensitivity analysis, which can indicate the source of

upstream uncertainties for a given forecast parameter.

As demonstrated by Zheng et al. (2013), in theory, this

tool allows forecasters to identify and monitor the sen-

sitive areas using available observations (satellite, air-

craft, or other types) in real time to assess the likelihood

of future scenarios.

Emphasis on the most skillful downscaled, bias-

corrected guidance with supporting near-real-time veri-

fication, forecaster training, and tools to guide forecaster

interventions has only recently been established at WPC,

but has already resulted in forecasters making high-

order forecast decisions. These high-order decisions

include the removal of outlier forecast guidance that

degrades the consensus forecast (e.g., a spurious tropical

cyclone), adjusting for regime-dependent biases that are

not corrected (or that are introduced) in the postprocess-

ing, and perhaps most importantly, deciding when to

substantially deviate from the skillful guidance. Thus, as

additional downscaled and bias-corrected sensible

weather element guidance becomes operationally avail-

able, and with the support of near-real-time verification,

forecaster training, and tools to guide forecaster in-

terventions, a key test is whether forecasters can learn to

make statistically significant improvements over the

most skillful of these guidance options. Such a test can

inform to what degree, and just how quickly, the role of

the forecaster changes.

Given that only one component of the forecaster’s

role (accuracy) was considered and only deterministic

short-range QPF and medium-range maximum tem-

perature forecasts were assessed, the above results must

not be overgeneralized. Downscaling and bias correct-

ing of a full suite of sensible weather elements is not an

operational reality yet, as challenges remain with ele-

ments such as wind, sky cover, ceiling, and visibility, to

name a few. Additionally, the contemporary verification

was limited to 2 yr. Further, the financial cost–benefit

of human involvement in the forecast process was

not considered in the above analysis. Finally, a critical

question facing the forecasting community is if and how

a forecaster may add quality to the ensemble guidance

of many variables (e.g., Roebber et al. 2004; Novak et al.

2008). Thus, a more complete investigation of the hu-

man’s role in improving upon NWP using other metrics,

elements, time ranges, and formats (probabilistic) is

encouraged, and may lead to new paradigms for human

involvement in the forecast process.
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APPENDIX A

Description of Pseudo-Bias-Corrected Ensemble
QPF

The pseudo-bias-corrected ensemble QPF (ENSBC)

is a series of 6-h accumulations posted at 6-h intervals.

Each 6-h QPF is computed in three phases:

1) calculate the weighted ensemble mean (WEM),

2) perform the pseudo–bias correction (PBC), and

3) apply downscaling based on data obtained from the

PRISM precipitation climatology.

500 WEATHER AND FORECAST ING VOLUME 29



The first phase assumes that the larger the uncertainty, the

smoother the forecast should be, whereas the smaller the

uncertainty, the more detailed the forecast should be.

Two ensemble means are computed. The high-

resolution ensemble mean is the mean of an ensemble

made up of relatively high-resolution deterministic sin-

gle model runs (NAM, GFS, and ECMWF). The full

ensemble mean is the mean of a high-resolution en-

semble consisting of the same deterministic runs along

with the GEM and UKMO simulations, and a standard

ensemble system (e.g., the NCEP Short-Range Ensem-

ble Forecast or NCEP Global Ensemble Forecast Sys-

tem). The maximum QPF from the high-resolution

ensemble is added as an additionalmember. Themembers

of the high-resolution ensemble are equally weighted

in the warm season, but not in the cold season (October–

April), and the weights are adjusted periodically with

reference to verification. The members of the full ensem-

ble are equallyweighted. The spread of the full ensemble is

obtained to compute a normalized spread, ŝ, which is the

full ensemble spread divided by the full ensemble mean,

with a small amount added to prevent division by zero. A

weight value w is computed at each grid point:

w5
ŝ

ŝmax

, (A1)

where ŝmax is the domain maximum of the normalized

spread. Then, the WEM is computed at each grid point:

WEM5wm1 (12w)mhr , (A2)

where m is the full ensemble mean and mhr is the high-

resolution ensemble mean. Thus, where the forecast

uncertainty as measured by the normalized spread is

relatively large, the WEM is weighted toward the full

ensemble mean; whereas, at points with lower normal-

ized spread and less uncertainty, the WEM is weighted

toward the high-resolution ensemble mean.

In the next phase, the WEM is passed to the PBC,

which has nine tuning parameters, is perpetually evolv-

ing, and undergoes fairly regular (about every 6 weeks

or so) adjustments based on verification. Here, the PBC

is described in general terms.

For WEM 6-h precipitation amounts less than about

6–9mm, the PBC algorithm uses the 10th percentile

QPF from the full ensemble to reduce the frequency bias

(areal coverage). A weighting function v is applied to

modify the WEM according to

WEM5v3WEM1 (12v)QPF10 , (A3)

where QPF10 is the 10th percentile QPF from the multi-

model ensemble. Theweighting function linearly increases

to one as WEM values increase from 0 up to 6–9mm,

with higher limits for longer forecast projections.

For WEM precipitation amounts greater than

;10mm, the WEM is compared to the high-resolution

ensemble mean, which is assumed to have better bias

characteristics than the WEM based on the findings of

Ebert (2001). The algorithm iterates over an arbitrary

list of increasing precipitation thresholds, computes the

bias of the volume of QPF exceeding the threshold for

theWEM relative to the high-resolution ensemblemean

over the entire domain, and then applies a correction

factor to bring this volumetric bias to unity for QPF

exceeding the threshold. The correction factor is con-

strained to range between 0.5 and 2.0. As the threshold

value increases, the high-resolution ensemble mean is

nudged toward the 90th percentile amount from the full

ensemble. This is intended to augment bias for higher

thresholds, at which ensemble means tend to be under-

biased. The successive bias corrections alter the amount

of precipitation but not its placement.

The final phase is a downscaling based on PRISM and

accomplished using correction factors that vary monthly.

Although more sophisticated downscaling techniques

exist (Voisin et al. 2010), they are too complex and

computationally demanding for the development and

computing resources available to the WPC. This simple

terrain correction is based on 5-kmPRISMdata over the

western third of the CONUS and 10-km resolution data

elsewhere. The method has some similarity to the ter-

rain correction scaling used in Mountain Mapper

(Henkel and Peterson 1996). The PRISM data are first

remapped to the 32-kmWPCQPF grid, preserving area

averages. These values are then placed back on the high-

resolution PRISM grid via bilinear interpolation. Then,

the ratios of the original PRISM data to the back-

interpolated data are computed. Finally, the ratios are

moved to the 32-km resolution by assigning the nearest-

neighboring value from the high-resolution grid. A

monthly varying lower bound ranging from 0.3 in the

cold season to 0.9 in the warm season is imposed on the

ratios. The downscaling coefficients are replaced with

values smoothed using a nine-point smoother at points

where the values are less than 1. Multiplication of the

pseudo-bias-corrected QPF by the downscaling factor

completes the ENSBC processing.

As various model data sources become available, the

ENSBC is executed 10 times per day to provide guid-

ance for WPC forecast operations. However, a special

configuration of ENSBC execution is performed to

create a competitive, realistic benchmark for the WPC

QPF suite of day 1–3 forecasts. This configuration re-

leases products in the same order as the WPC manual

forecasts for two ‘‘final’’ cycles per day: 0000 and 1200UTC.
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The execution schedule permits the creation of products

using the samemodels available toWPC forecasters, but

without the human time handicap; therefore, the auto-

mated product suite is about an hour earlier than the

WPC official delivery deadline for day 1, almost 2 h

earlier for day 2, and nearly 4 h earlier for the day 3

forecasts. It should be noted that WPC forecasters often

send products well in advance of the deadlines, espe-

cially for day 3. All comparisons to ENSBC in the main

text are against this benchmark.

APPENDIX B

ADescription of theWPC–EnvironmentalModeling
Center (EMC) Forecast Verification System (fvs)

The fvs performs three functions:

1) retrieve and combine data records read from one

or more Verification Statistics DataBase (VSDB) text

files under the control of user-defined search conditions,

2) compute performance metrics from the combined

data, and

3) display the performance metrics and optional statis-

tical significance box-and-whiskers elements graphi-

cally or in a text formatted output.

The VSDB records in the text files are created by

comparisons of forecast objects to observed objects.

This comparison is typically, but not necessarily, a fore-

cast grid to analysis grid, a forecast grid to observation

points, or point forecasts to point observations. The soft-

ware systems used to generateVSDB record files are quite

varied and not part of fvs. A single VSDB record usually

contains summary statistics for comparisons at multiple

analysis or observation points over an area or spatial

volume. The summary statistics are either means or

fractions. For example, for verification of standardized

anomalies, the following means along with the data

count are written in the VSDB record: means of forecast

and observed anomalies, means of squares of forecast

and observed anomalies, and the mean of the product of

forecast and observed anomalies. With the data count,

these means can be converted into partial sums that are

combined in step 1 outlined above. Another example

applies to the verification of dichotomous events such as

QPF exceeding a specific threshold for which a 2 3 2

contingency table is required. In this case, each VSDB

record contains fractions of forecasts exceeding the

threshold, observations exceeding the threshold, and

both exceeding the threshold (hits). Again, multiplica-

tion by the data count turns these fractions into values

that can be added in combining the data according to

user-specified search conditions.

In addition to the data values, each VSDB record

contains information identifying the forecast source,

forecast hour, valid time, verification area or volume,

verifying analysis, parameter, and the statistic type. The

statistic type is important because it determines what

set of performance metrics can be computed once the

VSDB records have been retrieved and combined. The

user-defined search conditions are important because

they inform the fvs as to the independent variable as-

sociated with the display of the performance metrics.

Any of the identifier fields or combinations of themmay

be specified as the independent variable; so, the fvs will

search for and combine VSDB records as a function of

different values (string or numeric) for selected identi-

fier information. The fvs will also perform consistency

checks (event equalization) under user direction to as-

sure equal comparisons of multiple forecast sources. If

consistency checking is in force, the fvs saves the un-

combined data from the search of VSDB records in

a binary file. The uncombined data are used in random

resampling following the method of Hamill (1999) if the

user requests displays of box-and-whiskers objects to

depict the statistical significance of differences of any

performance metric for paired comparisons of different

forecast sources.

Once step 1 is finished, the resulting data may be used

to compute a variety of performance metrics, depending

on the statistic type. The fvs performs steps 2 and 3

seamlessly, first computing the requested metric, then

generating the display. If box-and-whiskers objects are

requested, the resampling is done separately at each

point along the abscissa of the graphical depiction dur-

ing the display process. Numerous user-specified pa-

rameters are provided to allow the user to control the

labels; text fonts; bar, line, or marker characteristics; and

colors for the objects appearing in the graphical display.

REFERENCES

Bakhshaii, A., and R. Stull, 2009: Deterministic ensemble forecasts

using gene-expression programming. Wea. Forecasting, 24,

1431–1451, doi:10.1175/2009WAF2222192.1.

Baldwin,M. E., S. Lakshmivarahan, and J. S. Kain, 2002:Development

of an ‘‘events oriented’’ approach to forecast verification. Pre-

prints, 19th Conf. onWeather Analysis and Forecasting/15th Conf.

on Numerical Weather Prediction, San Antonio, TX, Amer. Me-

teor. Soc., 7B.3. [Available online at https://ams.confex.com/ams/

SLS_WAF_NWP/techprogram/paper_47738.htm.]

B�elair, S., M. Roch, A.-M. Leduc, P. A. Vaillancourt, S. Laroche, and

J.Mailhot, 2009:Medium-rangequantitativeprecipitation forecasts

fromCanada’s new 33-km deterministic global operational system.

Wea. Forecasting, 24, 690–708, doi:10.1175/2008WAF2222175.1.

Bosart, L. F., 2003: Whither the weather analysis and forecasting

process? Wea. Forecasting, 18, 520–529, doi:10.1175/

1520-0434(2003)18,520:WTWAAF.2.0.CO;2.

502 WEATHER AND FORECAST ING VOLUME 29

https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47738.htm
https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47738.htm


Brill, K. F., 2009: A general analytic method for assessing sensitivity

to bias of performance measures for dichotomous forecasts.

Wea. Forecasting, 24, 307–318, doi:10.1175/2008WAF2222144.1.

——, and F. Mesinger, 2009: Applying a general analytic method

for assessing bias sensitivity to bias-adjusted threat and equi-

table threat scores.Wea. Forecasting, 24, 1748–1754, doi:10.1175/

2009WAF2222272.1.

Brown, J. D., and D.-J. Seo, 2010: A nonparametric postprocessor

for bias correction of hydrometeorological and hydrologic

ensemble forecasts. J. Hydrometeor., 11, 642–665, doi:10.1175/

2009JHM1188.1.

Caplan, P., J. Derber, W. Gemmill, S.-Y. Hong, H.-L. Pan, and

D. Parrish, 1997: Changes to the 1995 NCEP operational

Medium-Range Forecast Model Analysis–Forecast System.Wea.

Forecasting, 12, 581–594, doi:10.1175/1520-0434(1997)012,0581:

CTTNOM.2.0.CO;2.

Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A

comparison of precipitation forecast skill between small

convection-allowing and large convection-parameterizing

ensembles. Wea. Forecasting, 24, 1121–1140, doi:10.1175/

2009WAF2222222.1.

Cui, B., Z. Toth, Y. Zhu, and D. Hou, 2012: Bias correction for

global ensemble forecast. Wea. Forecasting, 27, 396–410,

doi:10.1175/WAF-D-11-00011.1.

Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-

topographic model for mapping climatological precipitation

over mountainous terrain. J. Appl. Meteor., 33, 140–158,

doi:10.1175/1520-0450(1994)033,0140:ASTMFM.2.0.CO;2.

——, M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H.

Taylor, J. Curtis, and P. A. Pasteris, 2008: Physiographically

sensitive mapping of climatological temperature and pre-

cipitation across the conterminous United States. Int. J. Cli-

matol., 28, 2031–2064, doi:10.1002/joc.1688.
De Pondeca, M. S. F. V., and Coauthors, 2011: The Real-Time

Mesoscale Analysis at NOAA’s National Centers for Envi-

ronmental Prediction: Current status and development. Wea.

Forecasting, 26, 593–612, doi:10.1175/WAF-D-10-05037.1.

Doswell, C. A., III, 2004: Weather forecasting by humans—Heuristics

and decisionmaking.Wea. Forecasting, 19, 1115–1126, doi:10.1175/

WAF-821.1.

Du, J., and Coauthors, 2006: New dimension of NCEP Short-

Range Ensemble Forecasting (SREF) system: Inclusion of

WRFmembers. Preprints,WMOExpert TeamMeeting on the

Ensemble Prediction System, Exeter, United Kingdom,World

Meteorological Organization. [Available online at http://

www.emc.ncep.noaa.gov/mmb/SREF/reference.html.]

Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict

the probability and distribution of precipitation. Mon. Wea.

Rev., 129, 2461–2480, doi:10.1175/1520-0493(2001)129,2461:

AOAPMS.2.0.CO;2.

Etherton, B. J., 2007: Preemptive forecasts using an ensembleKalman

filter.Mon.Wea. Rev., 135, 3484–3495, doi:10.1175/MWR3480.1.

Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative

precipitation forecasts in the warm season: A USWRP re-

search and development strategy.Bull. Amer.Meteor. Soc., 85,

955–965, doi:10.1175/BAMS-85-7-955.

Giorgi, F., 1991: Sensitivity of simulated summertime precipitation

over the western United States to different physics parame-

terizations. Mon. Wea. Rev., 119, 2870–2888, doi:10.1175/

1520-0493(1991)119,2870:SOSSPO.2.0.CO;2.

Glahn, H. R., and D. P. Ruth, 2003: The new digital forecast da-

tabase of the National Weather Service. Bull. Amer. Meteor.

Soc., 84, 195–201, doi:10.1175/BAMS-84-2-195.

——,K. Gilbert, R. Cosgrove, D. P. Ruth, andK. Sheets, 2009: The

gridding of MOS. Wea. Forecasting, 24, 520–529, doi:10.1175/

2008WAF2007080.1.

Hamill, T. M., 1999: Hypothesis tests for evaluating numerical

precipitation forecasts.Wea. Forecasting, 14, 155–167, doi:10.1175/

1520-0434(1999)014,0155:HTFENP.2.0.CO;2.

Henkel, A., and C. Peterson, 1996: Can deterministic quantitative

precipitation forecasts in mountainous regions be specified in

a rapid, climatologically consistent manner with Mountain

Mapper functioning as the tool for mechanical specification,

quality control, and verification? Extended Abstracts, Fifth

National Heavy Precipitation Workshop, State College, PA,

NWS/NOAA, 31 pp. [Available from Office of Climate, Wa-

ter, and Weather Services, W/OS, 1325 East–West Hwy., Sil-

ver Spring, MD 20910.]

Higgins, R. W., J. E. Janowiak, and Y.-P. Yao, 1996: A gridded

hourly precipitation data base for the United States (1963–

1993). NCEP/Climate Prediction Center Atlas 1, NOAA/

NWS, 47 pp.

Homar, V., D. J. Stensrud, J. J. Levit, andD. R. Bright, 2006: Value

of human-generated perturbations in short-range ensemble

forecasts of severe weather. Wea. Forecasting, 21, 347–363,

doi:10.1175/WAF920.1.

Janji�c, Z. I., 2003: A nonhydrostatic model based on a new ap-

proach. Meteor. Atmos. Phys., 82, 271–285, doi:10.1007/

s00703-001-0587-6.

Klein, W. H., and H. R. Glahn, 1974: Forecasting local weather

by means of model output statistics. Bull. Amer. Meteor.

Soc., 55, 1217–1227, doi:10.1175/1520-0477(1974)055,1217:

FLWBMO.2.0.CO;2.

Lin, Y., and K. Mitchell, 2005: The NCEP stage II/IV hourly pre-

cipitation analyses: Development and applications. Preprints,

19th Conf. on Hydrology, San Diego, CA, Amer. Meteor.

Soc., 1.2. [Available online at https://ams.confex.com/ams/

pdfpapers/83847.pdf.]

Magnusson, L., and E. Kallen, 2013: Factors influencing skill im-

provements in the ECMWF forecast system. Mon. Wea. Rev.,

141, 3142–3153, doi:10.1175/MWR-D-12-00318.1.

Mass, C. F., 2003: IFPS and the future of the National Weath-

er Service. Wea. Forecasting, 18, 75–79, doi:10.1175/

1520-0434(2003)018,0075:IATFOT.2.0.CO;2.

McCarthy, P. J., D. Ball, and W. Purcell, 2007: Project Phoenix:

Optimizing the machine–person mix in high-impact weather

forecasting. Preprints, 22nd Conf. on Weather Analysis and

Forecasting/18th Conf. onNumericalWeather Prediction, Park

City, UT, Amer. Meteor. Soc., 6A.5. [Available online at

https://ams.confex.com/ams/pdfpapers/122657.pdf.]

Murphy, A. H., 1993: What is a good forecast? An essay on the

nature of goodness in weather forecasting. Wea. Forecast-

ing, 8, 281–293, doi:10.1175/1520-0434(1993)008,0281:

WIAGFA.2.0.CO;2.

Novak, D. R., D. R. Bright, and M. J. Brennan, 2008: Operational

forecaster uncertainty needs and future roles. Wea. Fore-

casting, 23, 1069–1084, doi:10.1175/2008WAF2222142.1.

Olson,D.A.,N.W. Junker, andB.Korty, 1995:Evaluation of 33 years

of quantitative precipitation forecasting at the NMC. Wea.

Forecasting, 10, 498–511, doi:10.1175/1520-0434(1995)010,0498:

EOYOQP.2.0.CO;2.

Reynolds, D., 2003: Value-added quantitative precipitation fore-

casts: How valuable is the forecaster? Bull. Amer. Meteor.

Soc., 84, 876–878, doi:10.1175/BAMS-84-7-876.

Roebber, P. J., 2010: Seeking consensus: A new approach. Mon.

Wea. Rev., 138, 4402–4415, doi:10.1175/2010MWR3508.1.

JUNE 2014 NOVAK ET AL . 503

http://www.emc.ncep.noaa.gov/mmb/SREF/reference.html
http://www.emc.ncep.noaa.gov/mmb/SREF/reference.html
https://ams.confex.com/ams/pdfpapers/83847.pdf
https://ams.confex.com/ams/pdfpapers/83847.pdf
https://ams.confex.com/ams/pdfpapers/122657.pdf


——, D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004:

Toward improved prediction: High-resolution and en-

semble modeling systems in operations. Wea. Forecas-

ting, 19, 936–949, doi:10.1175/1520-0434(2004)019,0936:

TIPHAE.2.0.CO;2.

——, M. Westendorf, and G. R. Meadows, 2010: Innovative

weather: A new strategy for student, university, and commu-

nity relationships. Bull. Amer. Meteor. Soc., 91, 877–888,

doi:10.1175/2010BAMS2854.1.

Ruth, D. P., B. Glahn, V. Dagostaro, and K. Gilbert, 2009: The

performance of MOS in the digital age. Wea. Forecasting, 24,

504–519, doi:10.1175/2008WAF2222158.1.

Stuart, N. A., and Coauthors, 2006: The future of humans in an

increasingly automated forecast process. Bull. Amer. Meteor.

Soc., 87, 1497–1501, doi:10.1175/BAMS-87-11-1497.

——, D. M. Schultz, and G. Klein, 2007: Maintaining the role of

humans in the forecast process: Analyzing the psyche of expert

forecasters.Bull. Amer.Meteor. Soc., 88, 1893–1898, doi:10.1175/

BAMS-88-12-1893.

Voisin, N., J. C. Schaake, and D. P. Lettenmaier, 2010: Calibration

and downscaling methods for quantitative ensemble precipita-

tion forecasts. Wea. Forecasting, 25, 1603–1627, doi:10.1175/

2010WAF2222367.1.

Yussouf, N., and D. J. Stensrud, 2006: Prediction of near-surface

variables at independent locations from a bias-corrected en-

semble forecasting system. Mon. Wea. Rev., 134, 3415–3424,

doi:10.1175/MWR3258.1.

Zheng, M., E. K. M. Chang, and B. A. Colle, 2013: Ensemble

sensitivity tools for assessing extratropical cyclone intensity

and track predictability. Wea. Forecasting, 28, 1133–1156.

504 WEATHER AND FORECAST ING VOLUME 29


