Problem Set \#1: Sutcliffe Development Theory

1. Overview:

Use archived GEMPAK plots from Tom Galarneau's Real-Time QG Analysis and Forecast Diagnostics webpage located at:
http://www.atmos.albany.edu/student/nmetz/atm401/PS1loops.html
to analyze, diagnose, and interpret the evolution of the $24-25$ Feb 2010 anticyclone in the lee of the Rockies and the $25-27$ Feb 2010 East Coast cyclone based on the application of Sutcliffe development theory.

The Sutcliffe development equation can be expressed as:

$$
\begin{array}{ccc}
-\vec{\nabla}_{p} \bullet \vec{V}_{0}=-\frac{2}{f_{0}}\left(\vec{V}_{t} \bullet \vec{\nabla}_{p} \zeta_{0}\right)-\frac{1}{f_{0}}\left(\vec{V}_{t} \bullet \vec{\nabla}_{p} \zeta_{T}\right)-\frac{1}{f_{0}}\left(\vec{V}_{t} \bullet \vec{\nabla}_{p} f\right) \\
\text { LHS } & \text { Term A } & \text { Term B }
\end{array}
$$

2. Definitions:

Thermal wind: $\vec{V}_{t}=\frac{g}{f_{0}} \hat{k} \times \vec{\nabla} Z$ where Z is $1000-500-\mathrm{hPa}$ thickness and \hat{k} is a unit vector.
Thermal vorticity: $\zeta_{T}=\zeta_{g 500}-\zeta_{g 1000}$ where ζ_{g} is geostrophic relative vorticity.
Coriolis parameter: $f=2 \Omega \sin \phi ; f_{0}=10^{-4} s^{-1}$
LHS $=1000-\mathrm{hPa}$ horizontal convergence

Symbols:
$\mathrm{g}=$ gravity
$\vec{\nabla}_{p}=$ horizontal gradient operator on a pressure surface
$\phi=$ latitude
Subscripts:
$0=1000 \mathrm{hPa}$
$\mathrm{g}=$ geostrophic
$\mathrm{t}=$ thermal wind
$\mathrm{T}=$ thermal vorticity

3. Questions:

Loops from 1200 UTC 19 February to 0600 UTC 1 March 2010 of:

1) $1000-\mathrm{hPa}$ geostrophic relative vorticity.
2) $1000-500-\mathrm{hPa}$ thermal vorticity.
3) Term A of the Sutcliffe development equation.
4) Term B of the Sutcliffe development equation.
5) Term C of the Sutcliffe development equation.
6) The total Sutcliffe forcing [sum of terms on the RHS of the Sutcliffe development equation $(\mathrm{A}+\mathrm{B}+\mathrm{C})]$.
are located at the above website. For the purposes of analysis $\mathbf{T}=\mathbf{0} \mathbf{h}$ for the anticyclone in the lee of the Rockies is 0000 UTC 24 February, while $\mathbf{T}=\mathbf{0} \mathbf{h}$ for the east-coast cyclone is 1200 UTC 25 February.
1. Write a succinct discussion of the synoptic pattern at $\mathbf{T}=\mathbf{0} \mathbf{h}$ based on number 1 and 2 above.
2. Based on Sutcliffe development theory, how do you expect the $1000-\mathrm{hPa}$ cyclone and anticyclone to move over the next 12 hours ($\mathbf{T}=\mathbf{1 2} \mathbf{h}$)? Explain your reasoning.
3. How well does the theory predict the observed 12-h cyclone and anticyclone movement?
4. Based on Sutcliffe development theory, how do you expect the intensity of the $1000-\mathrm{hPa}$ cyclone and anticyclone to change over the next 12 hours ($\mathbf{T}=\mathbf{1 2} \mathbf{h}$)? Explain your reasoning.
5. How well does the theory predict the observed 12-h cyclone and anticyclone intensity change?
6. How does the magnitude of forcing for $1000-\mathrm{hPa}$ convergence from term B compare to that from term C for the cyclone and anticyclone?
7. Discuss the physical implications of the total Sutcliffe forcing for $1000-\mathrm{hPa}$ convergence for the cyclone and anticyclone. Where does Sutcliffe development theory succeed and where does it fail? Explain
