

NB Interf Papel yout Conductors Papel yout Conductors Papel yout					٤.				Particle_Size_D	istribution_C	lassExample - E							
And Image			Home	T		Page La	nyout	Formula		Review	View AC	ROBAT	🖓 Tell me		Fangqun	NU RS	hare	
B J J A A Agement Number Format is lable: Cit Editing Cyber Form Form Sopret Sopret </th <th></th> <th><u>.</u></th> <th>×</th> <th>A</th> <th>rial</th> <th></th> <th></th> <th>- 10</th> <th>1 🗆</th> <th>0/</th> <th>E Conditio</th> <th>nal Form</th> <th>tting -</th> <th></th> <th></th> <th></th> <th></th>		<u>.</u>	×	A	rial			- 10	1 🗆	0/	E Conditio	nal Form	tting -					
Pate Image: Image			Do -		B	1	u -	A A		70	Exercise Formation	es Table -						
Classest Fest Siges N28 X X X A B C D E F 0 H I Sufes Mass size 1 Size (diameter, DP) Dp dDp dcp (acqP) F of particles distribution distribution 2 Bits Ø Immeval Dp dDp dcp (acqP) Size (diameter, DP) Dp dcp (acqP) Size (diameter, DP) Mass size distribution distribution 2 Bits Ø Immeval Dp dDp (dcqDp Si dcqDp) Si d ScingDp MidMidiogDp Si d ScingDp MidMidiogDp<	P	aste	~			Ā. 1	×.		Alignment	- vumber				15 E010	19			
N28 * X			× .								Egge Cell Styl	65.7						
N2B → × ✓		Clipbo	bard G			Po	et.				5	tyries					^	
A B C D E F G H I J K L M N O P C 2 Bit 0 Interval Bit 0 Interval Bit 0	N	28			× v	f _x												
Size (diameters, DP) and De double of the second pm De p mm due for the second pm pm pm pm <th due="" for="" second<="" td="" the=""><td>1</td><td>A</td><td>B</td><td>C</td><td>D</td><td>E</td><td>F</td><td>G</td><td>н</td><td>1</td><td>J Number size distribution</td><td>KL</td><td>M Surface area size distributio</td><td>N</td><td>0</td><td>P Mass size distribution</td><td>C</td></th>	<td>1</td> <td>A</td> <td>B</td> <td>C</td> <td>D</td> <td>E</td> <td>F</td> <td>G</td> <td>н</td> <td>1</td> <td>J Number size distribution</td> <td>KL</td> <td>M Surface area size distributio</td> <td>N</td> <td>0</td> <td>P Mass size distribution</td> <td>C</td>	1	A	B	C	D	E	F	G	н	1	J Number size distribution	KL	M Surface area size distributio	N	0	P Mass size distribution	C
2 Deriv Instrum Op Deriv Deriv <thderiv< th=""> Deriv Deri</thderiv<>	2	Die #	Size (dia	met	er, Dp)	De	40.0	disaDa	# of particles	dillation	difference		Ci dCidical			distance		
4 1 0.000 0.000 0.005 0.015 0.016<	2	Bin #	In	µm		μm	um	unitless	# cm ⁻¹	cm ⁻³ um ⁻¹	# cm ⁻³	µm ² cr	n ⁻³ µm ² cm	3	Pa m ⁻³	undiogup pg m ⁻¹		
6 2 0.00 - 0.04 0.03 0.20 0.34 3.00E+03 7 4 0.010 - 0.05 0.35 0.03 1.20E+03 7 4 0.010 - 0.035 0.30 0.23 1.20E+03 8 5 0.010 - 0.020 0.010 0.035 1.02E+02 9 6 0.200 - 0.010 0.030 0.55 1.02E+02 9 6 0.200 - 0.020 0.031 1.20E+02 11 0 0.000 2.500 0.300 0.55 1.00E+01 12 9 1.000 - 2.500 0.300 0.55 1.00E+01 13 10 2.500 7.50 1.500 0.300 0.55 1.00E+01 14 11 7.000 10.000 5.500 0.000 0.176 1.00E+02 15 Total Mumber concentrations (# cm*) 19 Density 1.500 C110 C2103 PH23 PH23	4	1	0.010	_	0.020	0.015	0.010	0.301	2.00E+03									
6 3 0.040 = 0.070 0.055 0.030 0.243 1.252+03 7 4 0.070 - 0.056 0.030 0.201 1.252+02 9 6 0.200 - 0.000 0.200 0.201 1.252+62 9 6 0.200 - 0.000 0.200 0.201 1.252+62 10 7 0.000 - 0.000 0.200 0.201 1.252+62 11 8 0.000 - 0.000 0.550 0.200 0.201+11 12 9 1.000 0.550 0.200 0.201+10 1.500 0.201+10 13 10 2.000 1.500 1.500 0.002+01 1.500+01 16 Total 1.500 1.500 0.002+01 1.500+01 PMoto 19 Density 1.500 CH10 - CCH0 8 PMto 5 21 CH100 - CH10 PMto 5 PMto 5 22 CH100 - CH102 PMto 5 PMto 5 23 <td>5</td> <td>2</td> <td>0.020</td> <td>-</td> <td>0.040</td> <td>0.030</td> <td>0.020</td> <td>0.301</td> <td>3.00E+03</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	5	2	0.020	-	0.040	0.030	0.020	0.301	3.00E+03									
8 6 0:00 -0:200 0:100 0:201 5:000-402 9 6 0:200 -0:400 0:000 0:200	6	3	0.040	-	0.070	0.055	0.030	0.243	1.20E+03 1.80E+02			-					-	
9 6 0.200 - 0.400 0.300 0.200 0.201 1.202+02 10 7 0.400 - 0.700 0.500 0.200 0.201 1.202+02 11 8 0 7.000 - 1.700 0.500 0.200 0.155 1.002+02 13 9 2:00 - 7.700 4.700 4.200 0.421 3.002+01 14 11 7.000 1.000 8:500 3.000 0.155 5.002+02 15 12 10.000 15:000 12:500 5.000 0.155 5.0000 0.155 5.000+02 15 12 10.000 15:000 12:500 5.0000 0.155 5.00000 0.155 5.00000 0.155 5.0000 0.155 5.00000 0.155 5.00000 0.155 5.00000 0.155 5.00000 0.155 5.00000 0.155 5.00000 0.155 5.00000 0.155 5.00000 0.155 5.0000000000	8	5	0.100	-	0.200	0.150	0.100	0.301	5.00E+02									
11 8 0.700 = 1000 0.890 0.300 0.555 1000-e10 13 9 1000 = 2.000 1700 1.000 0.200 1.000 0.200 1.000 1.000 0.200 1.000 0.200 1.000 1	9	6	0.200	-	0.400	0.300	0.200	0.301	1.20E+02			-					_	
12 9 1.000 2.500 1750 1.500 0.398 2.500+00 13 10 2.500 7.000 1750 4.500 0.400 4.47 3.000 0.155 5.000 1.055 5.000 1.055 5.000 1.055 5.000 1.055 5.000 1.055 5.000 1.055 5.000 1.055 5.000 1.055 5.000 1.055 5.000 1.055 5.000 1.055	11	8	0.700	-	1.000	0.850	0.300	0.155	1.00E+01									
11 11 7:00 0:000 8:100 3:000 0:850 1:000-000 1:000-000 1:000-000 1:000-000 1:000-000 1:000-000 1:000-000 1:000-000 1:000-000 1:000-000 1:000-000 0:100-000 1:000-000 0:100-000 0:000-000 0:100-000 0:000-000-000 0:000-000-000 0:000-000-000 0:000-000-000-000 0:000-000-000-000-000-000 0:000-000-000-000-000-000-000-000-000-0	12	9	1.000	-	2.500	1.750	1.500	0.398	2.50E+00								_	
15 12 10.000 15.000 12.500 5.000 0.176 1.00E-02 16 Total	13	10	7.000	-	10.000	8.500	3.000	0.155	5.00E-02					-			-	
16 Total Mass Concentrations (# cm ⁻) Mass Concentrations (pg m ⁻) 19 Particle PM10 PM10 19 Density 1.500 CH10 PM10 20 CH10 PM2.5 PM2.5 21 CH10 CON.8 PM0.1 22 CH100 CON.2 PM0.1 23 CH100 CON.2 PM0.1 24 CH100 CON.2 PM0.1 25 CH100 CON.2 PM0.1 26 CH100 CON.2 PM0.1 27 CH100 CH100 CON.2 28 CMM: Number concentration of particles with diameter < ## pm	15	12	10.000		15.000	12.500	5.000	0.176	1.00E-02	1								
Particle Number Concentrations (# cm ²) Mass Concentrations (gr m ²) 19 Density 1.500 CH10 PM10 20 CH40 CCN0.8 PM10.5 21 CH10 - CCN0.8 PM10.5 22 CH100 - CCN0.4 PM10.5 23 CH100 - CCN0.4 PM10.5 24 CH1000 - CN0.2 PM0.1 25 CH1000 - CN0.2 PM0.1 26 CH1000 - CN0.2 PM0.1 27 CM100 - CN0.2 PM0.1 28 PM69/ Mass concentration of particles with diameter < ## pm	16	Total																
Particle Particle Particle 20 CH40 ~ CCN0 8 PM25 21 CH70 ~ CCN0 8 PM25 22 CH100 ~ CCN0 4 PM0.1 23 CH400 ~ CCN0 2 PM0.1 24 CH100 ~ CCN0 2 PM0.1 25 CH400 ~ CM00 ~ CM02 26 CH100 CH100 ~ CM02 27 PM8# Mass concentration of particles with diameter <## im	18							Number	Concentration	ns (# cm ⁻³)				Mass Co	oncentrati	ions (µg m ⁻²)		
Society Low Child PARD 21 Child Child PARD 22 Child Child PARD 23 Child Child PARD 24 Child Child PARD 25 Child Child PARD 26 Child Child PARD 27 PAR#: Mass concentration of particles with dismeter < ## pn	10		Particle		1.600			Child						OMANO				
P1 Ct/0 - CCN0.4 PHt 0 22 Ct100 - CCN0.2 PM0.1 23 Ct1000 - CCN0.2 PM0.1 24 Ct1000 - CCN0.2 PM0.1 25 Ct1000 - CCN0.2 PM0.1 26 Ct1000 - CCN0.2 - CCN0.2 27 Ct1000 - CCN0.2 - CCN0.2 28 PM.010 - CCN0.2 - CCN0.2 29 CM100 - CCN0.2 - CCN0.2 20 CM100 - CCN0.2 - CCN0.2 20 CM100 - CCN0.2 - CCN0.2 20 CM100 - CCN0.2 - CCN0.2	20		Density		1.500			CN40		~ CCN0.8				PM2.5				
22 CH100 - CCN0 2 PM0.1 23 CH100 - CCN0 2 PM0.1 24 CH100 - CCN0 2 PM0.1 25 CH100 - CCN0 2 PM0.1 26 CH100 - CCN0 2 PM0.1 27 PM0.8# Mass concentration of particles with diameter <### µm	21							CN70		~ CCN0.4				PM1.0				
24 CH1000 25 CH1000 26 PM##, Mass concentration of particles with diameter <## pm	22							CN100 CN400		~ CCN0.2				PM0.1			-	
25 36 27 28 PM## Mass concentration of particles with diameter < ## µm	24							CN1000										
27 PM## Mass concentration of particles with diameter <## µm 28 CNWF Number concentration of particles (or condensation nucle) with diamter > ## em	25																	
28 PM##: Mass concentration of particles with diameter < ## µm	27																	
29 CN##: Number concentration of particles (or condensation nuclei) with diamter > ## nm	28		PM##: 3	Aass	concent	ration of	particle	s with die	meter < ## µn	a -								
	29		CN##: N	lumb	er conce	entration	of part	icles (or c	ondensation m	iclei) with d	ianster > ## g	m						
	1		c	assE	xample	(4						4						

Thermodynamics of Aerosols
Gibbs free energy:
G = H - TS = U + PV - TS
<i>H</i> is the enthalpy, <i>S</i> is the entropy, and <i>T</i> is the absolute temperature, <i>U</i> is the internal energy, <i>P</i> is the pressure, and <i>V</i> is the volume.
Gibbs free energy of a system containing k chemical compounds can be calculated by summation of the products of the chemical potentials and the number of moles of each species
$G = \mu_1 n_1 + \mu_2 n_2 + \cdots + \mu_k n_k$

Chemical potential:

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T, p, n_j} \qquad n_j \text{ the number of moles} \\ \text{of system species}$$

The chemical potential has an important function in the system's thermodynamic behavior analogous to pressure or temperature.

A difference in chemical potential can be viewed as the cause for chemical reaction or for mass transfer from one phase to another.

Conditions for Chemical Equilibrium

$$aA + bB \rightleftharpoons cC + dD$$

$$\sum_{i=1}^k \nu_i \mu_i = 0$$

 v_i is the corresponding stoichiometric coefficient (positive for reactants, negative for products)

Chemical Potentials of Ideal Gases and Ideal Gas Mixtures

The Single Ideal Gas

$$\mu(T, p) = \mu^{\circ}(T, 1 \text{ atm}) + RT \ln p$$

where μ° is the standard chemical potential defined at a pressure of 1 atm and therefore is a function of temperature only. *R* is the ideal gas constant. Pressure *p* actually stands for the ratio (*p*/1 atm) and is dimensionless. This definition suggests that the chemical potential of an ideal gas at constant temperature increases logarithmically with its pressure.

The Ideal Gas Mixture

$$\mu_i = \mu_i^{\circ}(T) + RT \ln p_i$$

the partial pressure of compound $i \qquad p_i = y_i p$

 y_i is the gas mole fraction of compound *i*.

Chemical Potentials of Solutions

Ideal Solutions A solution is defined as ideal if the chemical potential of *every* component is a linear function of the logarithm of its aqueous mole fraction x_i , according to the relation

$$\mu_i = \mu_i^*(T, p) + RT \ln x_i$$

The standard chemical potential μ_i^* is the chemical potential of pure species $i(x_i = 1)$ at the same temperature and pressure as the solution under discussion. Note that in general μ_i^* is a function of both T and p but does not depend on the chemical composition of the solution.

$$I(g) \rightleftharpoons I(aq)$$
 $\mu_i^{\circ}(T) + RT \ln p_i = \mu_i^*(T, p) + RT \ln x_i$

$$\mu_i(\mathbf{g}) = \mu_i(\mathbf{aq})$$
 $p_i = \exp\left(\frac{\mu_i^* - \mu_i^\circ}{RT}\right) x_i = K_i(T, p) x_i$

The standard chemical potentials μ_i^* and μ_i° are functions only of temperature and pressure, and therefore the constant K_i is independent of the solution's composition.

 $p_i = p_i^\circ x_i$

Chemical Potential of Water in Atmospheric Particles $H_2O(g) \rightleftharpoons H_2O(aq)$ $\mu_{H_2O(g)} = \mu_{H_2O(aq)}$

or

$$\mu_{\rm H_2O}^{\circ} + RT \ln p_w = \mu_{\rm H_2O}^* + RT \ln \alpha_w \tag{9.61}$$

where p_w is the water vapor pressure (in atm) and α_w is the water activity in solution. For pure water in equilibrium with its vapor, $\alpha_w = 1$ and $p_w = p_w^\circ$ (the saturation vapor pressure of water at this temperature); therefore

$$\mu_{\rm H_2O}^* - \mu_{\rm H_2O}^\circ = RT \ln p_w^\circ \tag{9.62}$$

Using (9.62) in (9.61) yields

$$\alpha_w = \frac{p_w}{p_w^\circ} = \frac{\mathrm{RH}}{100}$$

$$g_{l} - g_{v} = -kT \ln \frac{p_{A}}{p_{A}^{\circ}} \qquad \Delta G = -\frac{4}{3}\pi R_{p}^{3} \frac{kT}{v_{l}} \ln S + 4\pi R_{p}^{2}\sigma$$

$$S = \text{ratio of eq. vapor pressure around a droplet (p_{A}) \text{ relative to above a flat surface } (p^{\circ}_{A}) \qquad AG^{*} = \frac{2\sigma v_{l}}{kT \ln S}$$
For a droplet to exist, S>1. pcurved > p^{\text{flot always}} \qquad \text{FIGURE 9.10 Gibbs free energy change for formation of a droplet of radius } R_{p} \text{ for a vapor with saturation ratio } S.
$$Kelvin Equation \qquad \text{How does S vary with } R_{p}^{2}$$

$$p_{A} = p_{A}^{\circ} \exp\left(\frac{2\sigma v_{l}}{kTR_{p}}\right) \qquad p_{A} = p_{A}^{\circ} \exp\left(\frac{2\sigma M}{kT\rho_{l}R_{p}}\right)$$

Cloud droplet formation

- Supersaturations that develop in natural clouds due to the adiabatic ascent of air rarely exceed 1% (RH=101%)
- Consequently, droplets <u>do not</u> form in natural clouds by the homogeneous nucleation of pure water.
- Droplets can form and grow on aerosol at much lower supersaturations than are required for homogeneous nucleation.

Key knowledge points of Lecture 2:

1. Number, surface area, and mass size distributions:

CN, CCN, PM

2. Major microphysical processes controlling particle

properties in the atmosphere

- 3. Key thermodynamics driving gas-particle interactions
- 4. Kelvin effect importance of particle sizes