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ABSTRACT

The authors develop and apply an algorithm to define coherent areas of precipitation, emphasizing
mesoscale convection, and compare properties of these areas with observations obtained from NCEP
stage-IV precipitation analyses (gauge and radar combined). In Part II, fully explicit 12-36-h forecasts of
rainfall from the Weather Research and Forecasting model (WRF) are evaluated. These forecasts are
integrated on a 4-km mesh without a cumulus parameterization. Rain areas are defined similarly to Part I,
but emphasize more intense, smaller areas. Furthermore, a time-matching algorithm is devised to group
spatially and temporally coherent areas into rain systems that approximate mesoscale convective systems.
In general, the WRF model produces too many rain areas with length scales of 80 km or greater. Rain
systems typically last too long, and are forecast to occur 1-2 h later than observed. The intensity distribution
among rain systems in the 4-km forecasts is generally too broad, especially in the late afternoon, in sharp
contrast to the intensity distribution obtained on a coarser grid with parameterized convection in Part I. The
model exhibits the largest positive size and intensity bias associated with systems over the Midwest and
Mississippi Valley regions, but little size bias over the High Plains, Ohio Valley, and the southeast United
States. For rain systems lasting 6 h or more, the critical success index for matching forecast and observed
rain systems agrees closely with that obtained in a related study using manually determined rain systems.
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1. Introduction

Brooks and Doswell (1996) have remarked that a
lack of systematic verification of forecasts is “an im-
plicit admission that the quality of the forecasts is of
low priority.” Measures-based statistics arguably fail to
provide useful information about the quality of fore-
casts of highly intermittent, spatially localized phenom-
ena, especially as the richness of the simulated phe-
nomenological spectrum increases. Most so-called
high-resolution, regularly produced forecasts today
(including most real-time and operational forecasts) are
verified using measures-based approaches. By the
above reasoning, one might conclude that there is little
priority placed on the quality of such forecasts. Because
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we do not believe that this is the case, we echo the
sentiment of Murphy (1993) regarding the importance
of verification approaches that probe the joint distribu-
tion of forecasts and observations, thereby yielding a
more complete picture of the nature of forecast errors.

The large dimension of forecast models, often 107-
10® variables, makes full evaluation of the joint distri-
bution of forecasts and observations practically impos-
sible. First, observations are totally inadequate for this
task, but even if they were adequate, the magnitude of
the dimension would make it exceedingly difficult to
distill results to the point where interpretation was pos-
sible. To reduce this dimension, a number of simplifi-
cations are required, each involving assumptions that
contain some degree of arbitrariness whose adverse af-
fect can only be estimated in hindsight. One such ap-
proach, the decomposition of forecasts into discrete,
phenomenologically based objects, is considered
herein.

In this paper, we focus on warm season rainfall fore-
casts from the new Weather Research and Forecasting
model (WRF; Michalakes et al. 2001). Rainfall is useful
as a quantity to verify because (i) it is a highly discrimi-
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nating aspect of numerical forecasts; (ii) rainfall has
obvious practical significance for a variety of forecast
users, including meteorologists, decision makers, and
the general public; and (iii) at least over the continental
United States, rainfall patterns are observed with ex-
ceptional temporal and spatial resolution owing to the
national network of radars and rain gauges. The verifi-
cation challenge is that rainfall is localized and episodic
(though with some remarkable diurnal repeatability),
rendering traditional analysis and verification ap-
proaches problematic. However, these qualities make
rainfall an ideal candidate for object-based approaches
that reduce drastically the dimension of the verification
problem by identifying coherent or contiguous entities
with characteristic attributes.

The method for identification and verification of con-
tiguous rain areas is related to the method developed
by Ebert and McBride (2000), and is broadly similar to
strategies considered by Baldwin and Lakshmivarahan
(2003). The basic approach is described by Davis et al.
(2006, hereafter Part I), and is extended here to include
matching of rain areas in time in order to define rain
systems, analogous to mesoscale convective systems
(MCSs). Herein we consider forecasts performed with a
grid spacing of 4 km, versus the 22-km grid spacing of
forecasts evaluated in Part I. Thus, the convection in
the present forecasts is treated explicitly and motions
are resolved on scales 5-6 times smaller than in Part I.

A brief overview of the verification method appears
in section 3. We then break the results into three dis-
tinct verification pieces: separate forecast and observed
distributions of rain areas, distributions of forecast and
observed rain systems, and characteristics of matched
rain systems (sections 4, 5, and 6, respectively). The
purpose of considering distributions from the popula-
tions of forecast and observed areas separately is to
compare the results with those in Part I. The definition
of rain systems and the statistics of matched systems
will also be compared with results obtained by Done et
al. (2004, hereafter DDW), who examined a subset of
the data used herein by manually identifying and com-
paring MCSs in the forecasts and observations.

We will show that the attributes of rain areas have
some distinct functional dependencies on size (or du-
ration, in the case of rain systems). Further, we will
obtain some conclusions regarding the skill of the WRF
model in predicting rain systems that are qualitatively
similar to those found by DDW. This similarity occurs
despite a notable discrepancy in the members of the
forecast and observed rain systems (MCSs) identified
by the automated and manual approaches. We close
with a further comparison of automated and manual
verification approaches.
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2. Data

Forecasts were obtained from a complete set of real-
time forecasts by the Eulerian mass-coordinate version
of the WRF model (release 1.3) between 3 May and 15
July 2003." Each forecast was initialized at 0000 UTC
by interpolation of the corresponding cycle of the Eta
model (Black 1994) from the National Centers for En-
vironmental Prediction (NCEP). The forecasts were in-
tegrated for 36 h using the Eta for lateral boundary
conditions. The forecasts were integrated on a 4-km
grid on a domain containing 500 X 500 points in the
horizontal plane with 34 vertical levels (see DDW for
more details). The precipitation field was output as
hourly accumulations. As in DDW, herein we only con-
sider forecasts from 12 to 36 h to avoid redundancy (i.e.,
overlap between successive forecasts). Note that DDW
used maximum reflectivity in a column to identify
MCSs.

The observed precipitation was derived from the
stage-IV precipitation analyses from NCEP (Baldwin
and Mitchell 1997), obtained on a 4-km grid at hourly
increments for the entire period. Because the 4-km
stage-IV grid was not identical to the WRF grid, some
interpolation was required to map the observations
onto the WREF grid. This was done as in Part I so that
the volume integral of the observed precipitation was
preserved.

3. Method

a. Rain areas

The method we adopt is described in more detail in
Part I, but an overview is presented here. There are
three distinct steps in the method, results of which are
displayed in corresponding sections 4, 5, and 6, respec-
tively. The first task is to filter the rainfall field and
define rain areas. The filtering is done in a two-step
process. First, the entire field is convolved with a disk
whose radius is closely tied to the minimum scale well
resolved by the model or observations. The particular
convolution (smoothing in our application) chosen re-
places the value of a field at a given point by its average
over all grid points within a distance R. Herein, the
convolving disk has a radius of four grid lengths (16
km), the same number of grid lengths assumed for R in
Part I (wherein four grid lengths equaled 88 km). The
convolution disk radius can, in principle, be greater, but
we find empirically that this choice yields rain areas
similar to what a human would identify.

! The study by DDW considered the same forecast and obser-
vation sources, but only from 13 May to 9 July 2003.
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Fi1G. 1. Grayscale image of 1-h rainfall accumulation (mm) valid
0400 UTC 11 Jun 2003 (28-h forecast).

After convolving the raw field, we retain only those
points that exceed a threshold of 5 mm h™". This effec-
tively removes areas of light precipitation. An example
of the raw field, and the resulting field after the convo-
lution and thresholding processes have been applied,
are shown in Figs. 1 and 2, respectively. The combina-
tion of convolution and thresholding yields fewer,
larger contiguous areas of precipitation than a simple
thresholding would do. It is still possible that small pre-
cipitation areas will result, but in the remainder of this
paper, we will only consider contiguous areas of 25 grid
cells (400 km?) or greater.

Although the original rainfall was smoothed and
thresholded to define rain areas, we retain the original
rainfall values at those points that remain nonzero after
filtering. In this way, we can examine statistics of the
rainfall intensity as another object attribute. We take
this approach rather than considering pointwise predic-
tion of rainfall because, to first order, prediction of
rainfall intensity at a point is a stochastic problem dur-
ing the warm season.

As described in Part I, we define several attributes of
rain areas. Each area is identified by a time, centroid
location, size, major axis, minor axis, orientation angle
between the approximate east-west direction and the
major axis, and the rainfall intensity distribution. De-
rived parameters are also computed. The fraction of
area covered is defined as the ratio of area with rainfall
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FIG. 2. Same as in Fig. 1, but after convolution and thresholding
(5mm h™1).

greater than zero (after convolution and thresholding)
to the product of major and minor axis lengths. It is
indicative of the complexity of the rain-area shape, be-
ing smaller for areas that have “holes” within them or
highly irregular outlines. Aspect ratio, the ratio of mi-
nor to major axis lengths, can indicate whether a rain
area is organized by a quasi-linear feature such as a
front or coastline. For more intense systems dominated
by convection, the aspect ratio can indicate whether a
well-defined convective line is present.

b. Rain systems

A sequence of rain areas at consecutive times can be
discrete realizations of a single, coherent, translating,
rain system. For example, MCSs are recognized as
much by their characteristic time evolution and tempo-
ral coherence as by their instantaneous appearance. It
is useful to develop ways to identify rain systems that
are analogous to time contiguous systems identified by
meteorologists so that the model evaluation is phenom-
enologically based and also so that meaningful statistics
about timing errors can be derived.

Herein we define rain systems by matching rain areas
separated temporally by 1 h if their centroids are sepa-
rated by less than a threshold distance. Upon complet-
ing one pass through the dataset, we obtain all rain
systems lasting at least 2 h (Fig. 3). We denote the
duration of these by the index k (=2). The attributes
(e.g., size, area, intensity, etc.) of matched areas are
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O Centroids of original rain areas (k=1)

% Centroids of areas averaged once (k=2)
B Centroids of areas averaged twice (k=3)
@ Centroid of rain system (k=4)
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FiG. 3. Schematic, in one spatial dimension, of time matching of
rain areas to produce rain systems. Symbols indicate centroids of
original rain areas (open circles), systems lasting 2 h (stars), sys-
tems lasting 3 h (squares), and the single system of 4-h duration
(filled circle) that results from merging all four of the original rain
areas.

averaged to define the attributes of the corresponding
rain system. After one pass, all remaining unmatched
rain areas are assigned a duration of 1 h (k = 1). The set
of 2-h rain systems is treated as a new set of rain areas,
and in the next pass through the data, these are
matched based on spatial proximity and a 1-h time dis-
placement, yielding all rain systems lasting at least 3 h
(k = 3) and a set of unmatched systems whose duration
is 2 h (k = 2). The process is repeated until we have
grouped all the original rain areas into rain systems
with duration ranging from 1 h to, in this case, about 16
h, corresponding to the longest-lived rain system in the
dataset.

The sequential averaging produces attributes of the
final rain system that are linear combinations of the
attributes of the original areas. For k = 2, the proper-
ties of two areas are averaged to obtain the properties
of the rain system lasting 2 h. The weighting may be
expressed as (Y2, ¥2). For k = 3, three rain areas are
averaged and the weighting is (Y4, Y2, V4). For k = 4 the
weighting is (¥, ¥, ¥, 14). Thus, the attributes near the
middle of the system life cycle receive more weight than
attributes near the beginning or ending. Therefore, the
attributes will typically represent the mature stage of a
system more than the initiation or dissipation stages.
The mean translation speed, however, is simply the dif-
ference in endpoint positions divided by the duration.

The threshold centroid displacement used for match-
ing two rain areas separated by 1 h in time can be
interpreted as a maximum allowed translation speed.
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We set this threshold to 40 m s ™!, or 144 km h™ !, and it
is applied to the centroids of each rain area. This upper
bound is consistent with the most rapid ground-relative
movement of MCSs observed (e.g., Carbone et al.
2002). Westward movement nullifies a match. While it
may be desirable to allow westward movement in some
cases, in practice it is difficult to distinguish westward
movement from the formation of a separate upstream
system based solely on hourly rainfall. To distinguish
areas with appreciable deep convection from weaker
rain areas, we require that all rain areas have a 75th
percentile rain rate greater than the median value for
the entire sample (evaluated separately for forecast and
observed rain areas). The speed and intensity criteria
must be met at all times during the existence of a rain
system. For simplicity, we only consider the nearest rain
areas (or rain systems, if k > 1) for matching.

¢. Matching rain systems

In general, we define a centroid for an object (a rain
system) in (x, y, ) space as (X,, Y,, t,) OF (X Vg 1)
depending on whether it is observed or forecast, respec-
tively. All attributes are defined at these centroid loca-
tions. The forecast “position” error is just (x; — X,, y; —
Yo» tr — t,). Thus, time ¢ and space x, y errors are for-
mally separated. If a forecast object has its centroid in
the correct geographical location, but is displaced in
time, the error is one of timing. If the forecast system
correctly predicts its temporal centroid, but predicts the
spatial centroid in the wrong geographical location, the
error is spatial. If everything propagates at the same
speed c, such that x — ¢t = constant, for example, then
either the “x” or “+” dimension can be considered re-
dundant, and the dimensionality reduces to two. Veri-
fication in this reduced-dimensional space was consid-
ered in Davis et al. (2003). In practice, however, differ-
ent systems have widely varying translation velocities
and all three components (x, y, t) are independent to a
significant degree.

To match forecast and observed rain systems, we
adopted simple criteria that are similar to those em-
ployed by DDW. Rain systems were matched if

e the centroids of the forecast and observed systems
were within a distance equal to 4 times the average of
the short-axis lengths of the two areas: [(x; — x,)> +
(s = y,)’] <4L,where L = 1/2(L;+ L,) and L is the
short-axis length;

¢ the average times of the two systems differed by not
more than 3 h: |, — £,| <3 h;

o the duration k of the observed system was between
0.5 and 2 times the forecast system duration: 0.5 =
kolky = 2.
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F1G. 4. (a) Natural log of the number of rain areas vs size, plus symbols for WRF and circles
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for observations; (b) same as in (a) but for fractional area; (c) same as in (a) but for aspect
ratio; and (d) angle of major axis with respect to the east-west grid direction.

The criterion for time difference was the same used
by DDW, and ensured that matched systems occurred
during the same phase of the diurnal cycle. The dis-
tance condition was similar to that applied by DDW.
However, the short-axis length varied significantly with
mean system duration, ranging from about 60 km for
short-lived systems, to over 100 km for long-lived,
larger systems. The average value for systems lasting
3 h or more was roughly 80 km, and 4 times this value
(320 km) was close to the distance threshold used by
DDW (333 km). The restriction on duration was some-
what arbitrary, but was designed to discount systems of
such different duration that they may be governed by
different dynamics. This condition differed from that
used by DDW wherein all MCSs, both observed and
forecast, were required to last at least 6 h. Such a re-
striction will be shown to limit the computed forecast
skill. The median intensity of rain systems was not used
as a matching condition because intensity was used to
define the original rain areas.

4. Statistics of rain areas

As in Part I we computed statistics of rain areas, first
without consideration of matching or time dependence
(statistics of rain systems will appear in section 5).
Herein we group rain areas by size, defined as the

square root of the number of grid cells with rainfall
greater than 5 mm h™'. Other attributes could be cho-
sen as the independent variable, but the horizontal
length scale is chosen because it often discriminates
different dynamics and predictability. The number of
rain areas depends strongly on size (Fig. 4a). Both
WREF and stage-IV rain areas exhibit a similar quasi-
exponential dependence of the number of areas as a
function of size. Both distributions peak near a size of
seven grid cells or 28 km. This peak is probably artifi-
cial, being the result of convolution of the original data.
The WRF model produces a greater number of areas
with a length scale of 80-120 km than the observations.
In Part I, an underprediction of rain areas between
roughly 150 and 250 km was noted, with an overpre-
diction of areas exceeding a size of about 350 km. Thus,
both finer and coarser applications of WRF produced
rain-area bias near the same size when measured by the
number of grid points, but not in terms of physical di-
mension.

In Fig. 4, we show the dependence of fractional area
(Fig. 4b), aspect ratio (Fig. 4c), and angle of major axis
orientation (Fig. 4d) on size. We place a minimum re-
striction on the number of objects that must occur
within a given bin (40). For larger rain areas where
fewer than 40 reside within a size bin, we group succes-
sive bins together until at least 40 areas are accumu-
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lated. The average size of these accumulated areas de-
termines the abscissa location. This grouping eliminates
noisy behavior due to small sample size.

Regarding fractional areas, we note that values near
unity occur for small rain areas. A reduction of frac-
tional area with increasing size is apparent. A qualita-
tively similar reduction was noted in Part I, but for
larger areas than considered here, and the decay was
less rapid in both forecasts and observations. For ob-
jects of nearly all sizes, WRF exhibits a positive bias in
fractional area that is statistically significant with o =
0.01 based on a Student’s ¢ test (Wilks 1995; i.e., there
is a 0.01 probability of incorrectly rejecting the null
hypothesis that the means are indistinguishable).” The
cause of this bias may be a combination of aliasing
convection onto somewhat larger scales than observed
because of resolution limitations, and also the positive
bias of rainfall in the model (see DDW).

The aspect ratio (Fig. 4c) also has a monotonic decay
with increasing size, but the decay is rapid for areas
smaller than about 50 km. For larger areas, the decay is
slow with aspect ratio values between 0.4 and 0.5 over
a wide range of scales. The dependence of aspect ratio
on size is handled well by WRF. The model has little
systematic bias except for a statistically significant posi-
tive bias for small rain areas.

The mean angle (Fig. 4d), measuring the departure of
the long axis from an east-west orientation, is positive
for all sizes. Thus, although individual areas may be
oriented in various ways, the mean maintains a south-
west-northeast orientation, and the rotation increases
with increasing size in both datasets. There is more
scatter in this plot than in others, and the standard
deviations within each size bin (not shown) are rela-
tively larger. This scatter does not allow us to attribute
high statistical significance to the result. The scatter
itself likely results from wide variations of angles in
areas that are nearly round.

The overall similarity of functional relationships
identified herein with those found in Part I, for larger
rain areas, suggests that the dependencies (perhaps
more than the values themselves) are nearly universal
properties of rain areas. Furthermore, the WRF is able
to reproduce the general functional relationships,
though not without statistically significant biases. It is
the magnitude of the biases deduced from other models
that will determine whether the WRF forecasts are
relatively skillful in these attributes. Such an evaluation
is an objective of further research.

2 Hereafter, statistical significance will be assessed using a =
0.01.
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S. Statistics of rain systems

Rain systems herein are characterized by their dura-
tion k, and all parameters are displayed as functions of
k in Fig. 5. To avoid durations with small numbers of
systems, we have performed a similar grouping as with
rain areas, herein restricting the minimum group size to
10 rain systems and assigning the duration of the group
to the nearest-integer-average duration of the members
of that group.

There tend to be similar dependences on duration for
rain systems as there were on size for rain areas. Mean
size and duration are clearly positively correlated (Fig.
5c). The WRF model has a statistically significant bias
in both size and intensity for rain systems of nearly all
durations. The bias of orientation angle, generally posi-
tive, does not attain statistical significance.

To view spatial locations of rain systems, at least sta-
tistically, we computed the number of rain systems of
duration 3 h or greater within each 25 X 25 grid box
(100 km X 100 km) portion of the domain (Fig. 6).
Overall, the WRF model captured the concentration of
rain systems in the southeast United States. However,
there was a clear bias toward too many forecast systems
in the east and too few in the west. Furthermore, the
observed minimum concentration of systems over
Oklahoma and Kansas was missed in the model. The
errors in the western part of the domain were most
likely due to the proximity of the lateral boundary, pre-
scribed from the Eta model initial and forecast condi-
tions, and the intrinsic difficulty of predicting flow fea-
tures responsible for convection initiation in the lee of
the Rocky Mountains. In Part I the diurnal cycle of the
spatial distribution of rain areas was evaluated, but
there were too few rain systems to construct analogous
maps for rain systems.

6. Matching forecast and observed systems

Partly motivated by the spatial distribution of rain
systems, we examined matching statistics for different
regions: west, central, and east. These regions each oc-
cupied one-third of the domain in the x direction, and
spanned the domain in the y direction. We restricted
attention to forecast rain areas of 3 h or greater dura-
tion. Statistics of several parameters were examined:
the critical success index (CSI), bias of x and y centroid
locations, area bias, and intensity bias (25th and 75th
percentiles; Table 1). The CSI, defined as the ratio of
hits to the sum of hits + misses + false alarms, mea-
sured the relative frequency of matched systems. A
false alarm was a forecast rain system without a match-
ing counterpart in the observations. A miss was counted
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F1G. 5. Rain system parameters as a function of duration: (a) natural log of the number of
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for each observed rain system of 3 h or greater duration
that had no forecast counterpart.

Although forecast rain systems had to last at least 3 h
to be included in regional statistics, the matching rules
stated above allowed observed systems to exist for as
little as 2 h. Therefore, CSI values are larger than would
result if only systems of 3 h or greater duration were
considered for matching. Biases, however, did not ap-
pear sensitive to the sample chosen for matching.

There were some biases common to all three regions.
The timing of rain systems was about an hour late. We
found that this timing bias extended to even shorter-
lived systems where it became comparable to the du-
ration. Thus, the temporal overlap between forecast
and observed systems was often small or zero for short-
lived systems. The 75th percentile of the intensity dis-
tribution had a positive bias in the forecasts as well.
This was a manifestation of the overprediction of con-
vection as noted in Part I, although it was also possible
that observations miss some of the higher rainfall val-
ues because of gauge spacing or gaps in radar coverage
at low altitude.

Other statistics showed substantial regional varia-
tion. The values of CSI were lowest over the western
part of the domain, mainly the High Plains. This ap-

peared to result directly from a failure to adequately
represent orographic convection over the Rockies and
its immediate downstream evolution. We suspect that
this error was due to the placement of the lateral
boundary, but further testing would be necessary to
confirm this conjecture.

Although skill over the central and eastern parts of
the domain was comparable, there were large system-
atic position errors in both regions, particularly over
the east. Based on Fig. 6, we infer that this was largely
due to a displacement of the maximum frequency of
systems over the southeast and excessive frequency
over the Tennessee and Ohio Valleys. Many of these
systems moved slowly, if at all, so spatial and temporal
errors were not strongly coupled. Furthermore, the cen-
tral region revealed no significant position errors, de-
spite an even larger timing error. Hence, the position
and timing errors seem generally unrelated.

Other notable behavior includes the fact that forecast
rain systems over the central region were too large, but
not significantly so over the west and east. Over the
east, the rainfall intensity distribution was particularly
broad relative to observations, with the tails on both the
high and low ends of the distribution extending too far.

An alternative perspective was gained by segregating
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TABLE 1. CSI, number of matched systems, biases in time (h), x
(grid lengths), y (grid lengths), area (grid cells), and rainfall in-
tensity percentiles (125 = 25th percentile; 175 = 75th percentile;
units are mm h™') for west, central, and east subregions and for
the total sample of matched rain systems (forecast duration of 3 h
or more). One grid length = 4 km; one grid cell = 16 km®. The
boldface numbers indicate statistically significant biases at 99%
confidence or greater.
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box (boxes are not overlapping).

the rain systems according to the time of day at which
they occur. We considered bins of 3 h, and assign sys-
tems based on their average time, only considering sys-
tems that last 3 h or more. Given the quasi-exponential
decay of the number of systems versus duration, this
population was dominated by systems with duration be-
tween 3 and about 5 h. Owing to limited sample sizes,
we do not present the full set of diurnal errors stratified
into regions, but will occasionally refer to regional, di-
urnal errors in some quantities.

Region CSI No. Timing dx dy Area 125 175
West 038 80 1.2 -39 94 -9 0.8 4.0
Central 0.51 175 1.2 124 -25 266 0.7 52
East 0.51 191 0.8 104 193 55 -03 39
Total 0.48 446 1.0 88 89 127 0.3 4.4

There was a large diurnal variation in the number of
matching rain systems, with the greatest number near
0000 UTC (Fig. 7a). Diurnal variation in the number of
systems was greatest in the west and smallest in the
east. There was also a diurnal variation in skill (CSI),
with lowest values (~0.45) around 1200 UTC and high-
est values (~0.6) around 0000 UTC. The lower skill
score for late-night and early morning systems has been
noted for simulations employing cumulus parameter-
ization (e.g., Dai et al. 1999; Davis et al. 2003; Part I). In
the present case there also appeared to be some diffi-
culty for fully explicit simulations to capture precipita-
tion systems initiating at night.

Timing biases (Fig. 7b) appeared largest for noctur-
nal systems and smallest for systems tied to the maxi-
mum heating. Because there were almost no systems
centered on noon in the west, and few in the central
region, the minimum in timing bias around 1500-1800
UTC was produced because of a small early bias in the
east offsetting the late bias of fewer systems elsewhere.

Spatial errors (Fig. 7c) do not show any appreciable
diurnal cycle when examined for all three regions to-
gether. However, errors in the east are particularly
large late at night and during the morning, yet small
during the afternoon. The smaller afternoon spatial bi-
ases may result from localization of convection to the
sea-breeze circulation moving northward from the Gulf
of Mexico, as well convection over the higher Appala-
chian terrain. Other regions do not show systematic
diurnal trends. Note that biases in translation speed are
not systematic and are not depicted here.

The error in area (Fig. 7d) was normalized by the
average of observed areas at a particular time, as in
Part I:

S A - A2

2 —
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2 Ao,i
i
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FiGc. 7. (a) Count of matching forecast-observed rain systems
(solid line) and the critical success index for matching (dashed
line) as a function of the time of day. Biases of WREF relative to
observations for matched rain systems appear in (b)—(e): (b) tim-
ing (h); (c) position of centroid, east-west error is solid, north—
south error is dashed; (d) area, normalized by the average area of
forecast and observed systems at each time; and (e) 75th percen-
tile (solid) and 25th percentile (dashed) of rainfall intensity. The
rainfall percentiles in (¢) have been normalized by the mean per-
centile value, averaged over all observed rain systems for that
time of day.

where subscripts f and o refer to forecast and observed
rain systems and superscript & refers to time of day. The
statistic B is simply the traditional bias minus unity. The
relative error peaked during the early morning and was
dominated by large biases in the central region, consis-
tent with Table 1 (where biases are not normalized and
therefore convey the physical magnitude of typical er-
rors). This error may have resulted from systems de-
caying more rapidly in observations than in the fore-
cast, hence less of the observed area survived the
convolution and threshold process used to define indi-
vidual rain areas.

In Fig. 7e, rainfall percentile errors have been nor-
malized by the mean percentile value, averaged over all
observed rain systems for a given time of day. Thus, as
in Part I, the normalized error of the Nth percentile is
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These averages ranged from 5.1 to 6.0 mm (25th per-
centile) and from 14.8 to 17.2 mm (75th percentile) with
the largest values occurring at night for both percen-
tiles.

The largest normalized errors were clearly in the 75th
percentile, and little diurnal signal was apparent. The
largest positive biases in the 25th percentile of rainfall
(Fig. 7e) coincided in time and space with the like-
signed errors in rain-system area. The modest overpre-
diction of light rain and positive bias in size were con-
sistent with the tendency of forecast MCSs to persist
too long in this region noted by DDW. The excessive
heavy rainfall was also consistent with the overall pre-
cipitation bias reported by DDW, manifested on many
occasions as convective cells and lines being too broad.
This was, in turn, attributed to the limitations of explicit
treatment of convection on a 4-km grid, on which deep
convection cells cannot be not fully resolved.

7. Synthesis and conclusions

We have examined rain areas and temporally con-
tiguous groups of rain areas, called rain systems, in both
numerical forecasts from the WRF model and observa-
tions. The forecasts were performed on a 4-km grid
without cumulus parameterization. Our results for rain
areas were compared with those in Part I, wherein
coarser-resolution WRF forecasts were examined. The
results for rain systems, emphasizing matched forecast—
observed rain-system pairs, were compared with the
manually generated convection system comparison by
DDW based on a subset of the same forecasts and ob-
servations.

The population of rain areas decayed exponentially
with increasing size, a property not reported before.
The 4-km WREF forecasts produced an excessive num-
ber of rain areas with a scale of about 80 km or more
(20Ax). For the 22-km forecasts examined in Part I, the
bias became pronounced around 350 km (18Ax). The
fractional area covered decreased markedly with in-
creasing size in both datasets, but WRF had a positive
bias at nearly all sizes on the 4-km grid (statistically
significant with 99% confidence beyond size = 5Ax).
For the 22-km WREF, no statistically significant bias in
fractional area was found.

The aspect ratio and angle showed similar trends
with size in both the model and observations with bi-
ases revealing only marginal statistical significance. The
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overall functional dependencies on size agreed well
with those found in Part I. However, for the same size,
the rain areas produced by the 4-km WRF were more
elongated than in the 22-km WREF. The detailed param-
eter dependencies are probably affected by the use of a
convolving disk for smaller rain areas (i.e., areas whose
size is not much larger than the disk).

The 4-km WRF model produced too many rain sys-
tems, especially those lasting more than 4 h. There were
statistically significant positive biases in size and inten-
sity. We expect some relationship between size and in-
tensity biases owing to the thresholding process used to
define rain areas. However, the 75th percentile rainfall
values far exceeded the rainfall threshold and the bias
was more systematic with greater statistical significance
than was evident in the size bias. There were notable
regional biases in the location of rain systems, with too
few over the High Plains and too many over the Mis-
sissippi and Ohio Valleys. The error over the High
Plains was likely due to proximity to the western (usu-
ally inflow) boundary. The excess of systems over the
east may result from the model’s high rainfall bias com-
bined with thresholding used to define rain areas. How-
ever, there may be errors in physical processes (e.g., soil
moisture, planetary boundary layer parameterization)
that contributed to these biases. Such factors are being
investigated.

We separated matching results into regional catego-
ries and also examined statistics as a function of the
time of day. The west region had the lowest skill, mea-
sured by the critical success index for matching. The
central and east regions exhibited similar matching
skill, but different mean errors in rain-system attrib-
utes. While the WREF intensity error for the 75th per-
centile was positive everywhere, the error for the 25th
percentile (i.e., light rain) was negative in the east and
positive in the central region. Only in the central region
was there a significant size error. This error may result
from the model failing to decay MCSs soon enough,
resulting in positive biases in longevity, x location, rain-
fall, and average size. The excessive longevity of fore-
cast MCSs was noted by DDW.

The diurnal cycle was dominated by higher matching
skill for late afternoon and evening systems, and a posi-
tive size bias for late night and morning systems. This
result contrasts with those in Part I in that the size bias
occurred several hours later for coarser-resolution fore-
casts (using a convective parameterization). Further-
more, there was no evidence that the rainfall intensity
spectrum in the higher-resolution forecasts was too nar-
row as was the case at coarser resolution. The excessive
coverage of intense rainfall, corresponding to a longer
tail on the high end of the distribution, made the overall
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distribution too broad in the 4-km WREF, especially dur-
ing the late afternoon.

To compare better with results in DDW, who found
a CSI for matching considerably lower than the overall
0.48 value herein, we restricted the sample to forecast
systems of at least 6-h duration. Using the present
matching criteria, the observed systems therefore had
to persist for at least 3 h. The overall CSI was 0.52, still
much higher than that obtained in DDW. However, the
skill in the east became the lowest and the overall at-
tribute biases in the east increased. Notably, the 25th
percentile intensity bias increased and there arose a
positive size bias, both statistically significant.

Requiring both observed and forecast systems to last
6 h or more, the overall CSI value dropped to 0.38, a
value close to the 0.3 reported by DDW. The number of
matching systems (80) in 74 forecasts is consistent with
results of DDW, who obtained 63 matches in 58 fore-
casts.

However, DDW also noted a southward propagation
bias that we did not find. Our interpretation of this
discrepancy is that DDW focused on the leading con-
vective line, whereas rain areas encompass both leading
line and stratiform precipitation regions. As systems
evolve, the motion of the two MCS components may be
different, with the stratiform region (potentially con-
taining a mesoscale potential vorticity anomaly) mov-
ing with a lower midtropospheric steering flow, and the
leading line propagating along or even to the right of
the lower-tropospheric shear vector. In many instances,
this distinction may explain the discrepancy in propa-
gation errors between the two studies.

Overall, it is clear that some of the results obtained
by manual evaluation can be reproduced through an
automated technique (that naturally requires some hu-
man intervention in how it is used). There is consider-
able overlap in the systems we define herein with those
defined by DDW, for instance, but there is almost an
equal amount of discrepancy. Part of the discrepancy is
due to the use of instantaneous reflectivity in the
manual identification versus precipitation in the auto-
mated algorithm. Nonetheless, it would be a formidable
challenge to devise a technique that truly mimics hu-
man decisions regarding the definition of organized
convection. However, different rain systems would
likely be identified by different human analysts, even
given the same general selection criteria. Given such
uncertainty, the realistic goal of object-based verifica-
tion is to produce the same overall conclusions about
model performance, and the causes for errors, obtained
by subjective evaluation. The power in the automated
approach is that a variety of stratifications of the data
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are possible, requiring far less effort than would be
required of manual evaluation.

An obvious future direction for the present type of
object-based verification approach would be to com-
pare forecasts from different models, both in their sta-
tistics of object attributes, and in their ability to match
observed objects along with systematic errors in those
forecast-observed object pairs. The other critical av-
enue of work is to relate statistics derived from the
object-based method directly to model deficiencies, po-
tentially using other data sources and variables. In ad-
dition, specific statistics that are meaningful for particu-
lar end users will be investigated to help develop con-
nections between forecast quality and value.
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