ATM515 Aerosol Physics

Lecture 3: Characterization of aerosols
Part I

1

How do we characterize aerosols?

- Concentrations:
 - Number concentration by counting (CN, CCN)
 - Mass concentration by weight measurement (PM2.5, PM1)
- Sizes: Size distributions (SMPS, etc)
- Compositions (AMS)
- Optical properties (sun photometers, nephelometers, etc.)

Example:

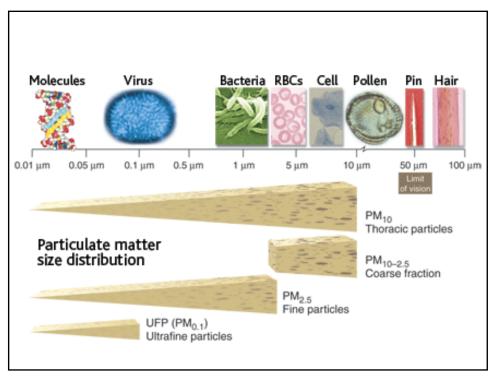
Particles in typical air in Albany, NY:

 $N = 4,000 \#/cm^3$

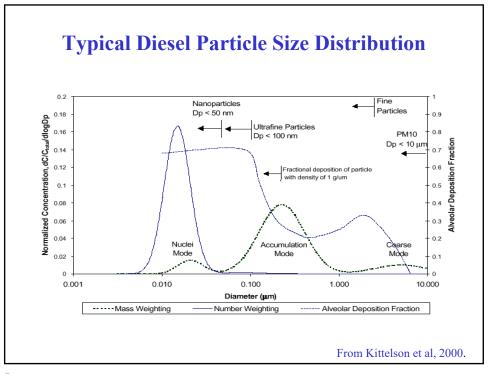
 $M = 3.14 \ \mu g/m^3$

Dp = ??? Assuming particle density = 1.5 g/cm³

Particles in typical air in New York City, NY:

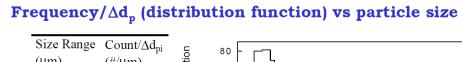

 $N = 32,000 \, \#/cm^3$

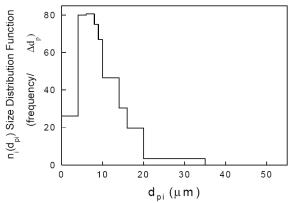
 $M = 3.14 \mu g/m^3$


Dp = ??? Assuming particle density = 1.5 g/cm³

Q: Does this mean all the particles in 1 cm³ air have the same size? How can we better describe this aerosol system?

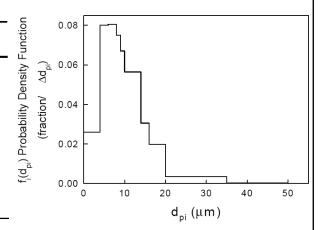
3




Δ

5

Histogram of frequency (count) versus particle size 200 Size Range Count (#) 0-4 104 150 **4-**6 160 Frequency/Count 6-8 161 8-9 75 67 9-10 10-14 186 14-16 61 50 16-20 79 20-35 103 35-50 4 > 50 0 10 50 20 Total 1000 $d_{pi} (\mu m)$ Q: Which size range has the most particles? Q: See any problem in this approach of describing particle size distributions?

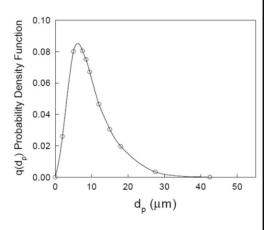

$$n_i = \frac{Count_i}{\Delta d_{pi}}$$

Q: Total # of particles?

7

Standardized frequency/ Δd_p vs particle size

Size Range	Fraction/size
(µm)	$(1/\mu m)$
0-4	0.026
4-6	0.08
6-8	0.0805
8-9	0.075
9-10	0.067
10-14	0.465
14-16	0.0305
16-20	0.0197
20-35	0.0034
35-50	0.0001
> 50	0


$$f_i = \frac{n_i}{N}$$

Q: What is the value of the total area under the line?

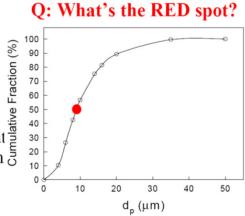
Continuous Particle Size Distribution

If the size range is very small, the discrete PSD will approach continuous PSD.

$$q(d_p) = \frac{\Delta f_i}{\Delta d_{pi}} \bigg|_{\Delta \to 0} = \frac{df}{dd_p}$$
Appendity Density Function
$$q(d_p) = \frac{\Delta f_i}{\Delta d_{pi}} \bigg|_{\Delta \to 0} = \frac{df}{dd_p}$$

Cumulative Distribution

- Definition:
 - The fraction that is less


than a specific size $F(a) = \int_0^a q(d_p) dd_p$

- · Why cumulative distribution?
- hy cumulative distribution? 50 to observe the distribution?

 Some statistical values.

 Provide another viewpoint to observe the distribution of the company of the company of the cumulative distribution of the cumulative distribution? - Can be used to determine

 $q(d_p)$: q as a function of d_p

Particle Size Distribution

- Monodisperse All the particles are of the same size
- Polydisperse Particles are of more than one size (more realistic)

Typical data from measurement

Size Range	Count	Fraction	Percent (%)	Cumulative	Fraction/size
(µm)	(#)	_		Percent (%)	(µm ⁻¹)
0-4	104	0.104	10.4	10.4	0.026
4-6	160	0.16	16.0	26.4	0.08
6-8	161	0.161	16.1	42.5	0.0805
8-9	75	0.075	7.5	50.0	0.075
9-10	67	0.067	6.7	56.7	0.067
10-14	186	0.186	18.6	75.3	0.465
14-16	61	0.61	6.1	81.4	0.0305
16-20	79	0.79	7.9	89.3	0.0197
20-35	103	0.103	10.3	99.6	0.0034
35-50	4	0.004	0.4	100.0	0.0001
> 50	0	0	0	100.0	0
Total	1000	-	100.0		

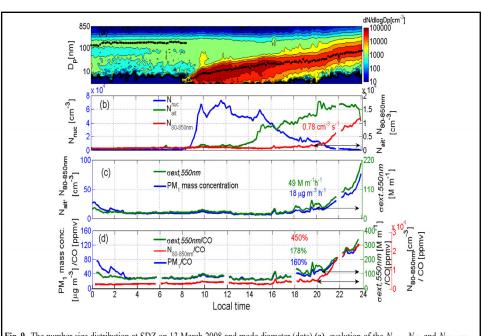


Fig. 9. The number size distribution at SDZ on 13 March 2008 and mode diameter (dots) (a), evolution of the $N_{\rm nuc}$, $N_{\rm ait}$ and $N_{80-850\,\rm nm}$ respectively (b), evolution of $\sigma_{\rm ext,550\,nm}$, extinction coefficient at 550 nm and PM $_1$ mass concentration calculated from TDMPS data (c) and the normalized $N_{80-850\,\rm nm}$, PM $_1$ mass concentration and $\sigma_{\rm ext,550\,nm}$ by the concentration of CO.

Shen et al., 2011