Lecture 8: Dry Deposition
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Dry Deposition

Dry deposition — removal of gases and particles by a direct transfer
from the atmosphere to the surface (in the absence of precipitation).

Three separate steps
(1) Species must be transported close to the surface

(2) Species must cross to the surface
(3) Species must be taken up on the surface.

The factors that govern the dry deposition of a gaseous species or a particle are the
level of atmospheric turbulence, the chemical properties of the depositing species, and
the nature of the surface itself. The level of turbulence in the atmosphere, especially in
the layer nearest the ground, governs the rate at which species are delivered down to
the surface. For gases, solubility and chemical reactivity may affect uptake at the
surface. For particles, size, density, and shape may determine whether capture by the
surface occurs. The surface itself is a factor in dry deposition. A nonreactive surface
may not permit absorption or adsorption of certain gases; a smooth surface may lead to
particle bounce-off. Natural surfaces, such as vegetation, whereas highly variable and
often difficult to describe theoretically, generally promote dry deposition. 2




Modeling Dry Deposition: A Resistance Approach
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Above a surface, a laminar layer will develop and fluid velocity will increase with
distance from the surface, but not indefinitely. At some point, flow will become
turbulent, with the laminar sublayer separating the turbulent layer from the surfaces In
the real world, most laminar boundary layers are extremely thin (order of 1 mm)

Vertical Mixing Processes
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Dry deposition flux is directly proportional to the local concentration C of the

depositing species, at some reference height above the surface (e.g., 10m or less)

F= fde

The process of dry deposition of gases and particles is generally represented as

consisting of three steps:

(1) aerodynamic transport down through the atmospheric surface layer to a very
thin layer of stagnant air just adjacent to the surface;

(2) molecular (for gases) or Brownian (for particles) transport across this thin
stagnant layer of air, called the quasi-laminar sublayer, to the surface itself;

(3) uptake at the surface.

Each of these steps contributes to the value of the deposition velocity v,.

RESISTANCE MODEL FOR DRY DEPOSITION OF GASES
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At steady state the overall flux of a

vapor species is related to the
concentration differences and
resistances across the layers by
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By solving the three independent

equations for the three unknowns,
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For particles, the model is identical to that for gases except that particle settling
operates in parallel with the three resistances in series. It is usually assumed that
particles adhere to the surface on contact so that the surface or canopy

resistance r_ = 0. In this case the vertical flux is
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AERODYNAMIC RESISTANCE

Turbulent transport is the mechanism that brings material from the bulk atmosphere
down to the surface and therefore determines the aerodynamic resistance. The
turbulence intensity is dependent principally on the lower atmospheric stability and the
surface roughness and can be determined from micrometeorological measurements
and surface characteristics such as wind speed, temperature, and radiation and the
surface roughness length.

Boundary layer meteorology
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where ng = (1 — 1569)"* . m, = (1 = 15,)'*. {, = /L.

L is the Monin-Obukhov length; z, is the roughness length; u. is the friction velocity.8




QUASI-LAMINAR RESISTANCE

An expression for the overall quasi-laminar resistance for particles has
been developed by Zhang et al. (2001 )
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where

Ep = collection efficiency from Browian diffusion
Epv = collection efficiency from impaction

En = collection efficiency from interception
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where R1 is a correction factor representing the fraction of particles that
stick to the surface, St is the Stokes number, Sc is the Schmidt number.

ry, =

The aerodynamic and quasi-laminar resistances are affected by wind speed, vegetation
height, leaf size, and atmospheric stability. Smaller resistances and hence higher
deposition rates are expected over tall forests than over short grass. Also, smaller
resistances are expected under unstable than under stable and neutral conditions.
Typical aerodynamic layer resistances for a 4 m s-1 wind speed are as follows:

z0=0.1m Grass ro~60sm !
=0.lm  Crop ~20sm !
= 10m Conifer forest ~10sm!

TABLE 19.1 Typical Dry Deposition Velocities for Some Atmospheric

Gases

va(cms™') over
Species Continent Ocean Ice/Snow
CcO 0.03 0 0
N,O 0 0 0
NO 0.016 0.003 0.002
NO; 0.1 0.02 0.01
HNO, 4 ] 05
0, 0.4 0.07 0.07
H,0, 0.5 1 0.32
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Source: Hauglustaine et al. (1994).
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FIGURE 19.2 Particle dry deposition velocity data for deposition on a water surface in a wind
unnel (Slinn et al. 1978).
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For a spherical particle of density p, in a fluid of density p, m), = (n/ﬁ)D;(pp —p)
where the factor (p, — p) is needed to account for both gravity and buoyancy. However,
since generally p, > p,m, = (n/é)D;pp and (9.41) can be rewritten in the more
convenient form:

1 DlpeCe
Y= ——

= 9.42
TI— (9.42)

C.o14 %[1 257 + 0‘4exp(*%)]

The viscosity of air (u) depends mostly on the temperature. At 15 °C, the
viscosity of airis 1.81 x 105 kg/(m's), 18.1 yPa's or 1.81 x 10 Pa's .
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Emerging research topics related to aerosol physics

https://www.forbes.com/sites/jamesconca/2019/09/10/solar-geoengineering-we-better-do-it-or-well-burn/?sh=1f5602b18add
Forbes: Why Solar Geoengineering May Be Our Only Hope To Reverse Global Warming

e fight against
climate change. But first scientists needitg DW 10 L3

to the public aboutit,

White, Science,
2025
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WMO 2022 Ozone Assessment Report has a
a3 - CEESSVEN RO specific chapter on Stratospheric Aerosol Injection

Ozone DepLETION : 2022 (SAI)
Executive Summary A) Peakshaving:
Aggressive mitigation and CO; removal (CDR) plus «
SAl to prevent target temperature overshoot SAIl and other
solar radiation
A . .
' . modification
Limited/no mitigation:
high-end global warming e (SRM)

approaches may
therefore be the

only option to

Global surface temperature

keep the global
‘ surface
te ture —F
~~_Temperature offset temperature
_____ R l l 1 § s, e below the limit
—Lih:er:;&, sciiand / Preakshavmq‘SAlwuh - °f1-5 C

Stra i
Its Potential Effect on the Stratospheric Ozone Layer aggressive mitigation and CDR

Time in decades

14



& Geoengineering | Harvard's Sol- X + = ] X

C @ O B & nhttpsy//gecengineering.environmentharvard.edu/gecengineering B % L oI @ @ =

STAY INTOUCH
‘ W HARVARD’S SOLAR GEOENGINEERING

RESEARCH PROGRAM

SOLAR GEOENGINEERING SOLAR GEOENGINEERING BENEFITS AND RISKS
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Solar geoengineering (solar radiation modification)
via stratospheric aerosol injection is a good
example of the application of aerosol physics

Question 1: How good do we understand the processes controlling particle
evolution in the stratosphere? Any unknown unknowns?

Question 2: To be cost effective (to achieve the needed steady state
AOD with minimum mass of aerosols to be injected), what is the ideal
size of particles we shall inject? Does it depend on altitudes?

Question 3: How to do it?
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Altitude versus monthly AEC(525nm) at 47.5°N latitude
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Quaglia, 1., et al.:Interactive Stratospheric Aerosol models response to different amount and altitude of SO, injections during the
1991 Pinatubo eruption, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-514, in review, 2022.
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Figure 4 Time evolution of monthly values of the normalised global stratospheric AOD for models (colored lines) and AVHRR and GloSSAC
observations (black lines). The dashed gray line represents the 1/e value. The experiment shown is Med-19km for ECHAM6-SALSA,
ECHAMS-HAM, SOCOL-AERY2 and ULAQ-CCM, and Low-22km for UM-UKCA. For EMAC, it refers to the only experiment provided.
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Discussion:

What are the possible reasons of the faster decay or decrease
of stratospheric aerosols after volcano eruptions predicted by
various models?

What is the implication to the proposed stratospheric aerosol
injection?
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