Lecture 10: Nucleation or new
particle formation in the atmosphere
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Nucleation of jet engine oil vapours is a large
source of aviation-related ultrafine particles

Florian Ungeheuer® ', Lucia Caudillo’, Florian Ditas® 2, Mario Simon', Dominik van Pinxteren,
Dogushan Kilic*5, Diana Rose?, Stefan Jacobi2, Andreas Kiirten', Joachim Curtius @ ' & Alexander L. Vogel® '™

Large airports are a major source of ultrafine particles, which spread across densely popu-
lated residential areas, affecting air quality and human health. Jet engine lubrication oils are
detectable in aviation-related ultrafine particles, however, their role in particle formation and
growth remains unclear. Here we show the volatility and new-particle-formation ability of a
common synthetic jet oil, and the quantified oil fraction in ambient ultrafine particles
downwind of Frankfurt International Airport, Germany. We find that the loil mass fraction is
largest in the smallest particles (10-18nm) with 21% on average. Combining ambient
particle-phase concentration and volatility of the jet oil compounds, we determine a lower-
limit saturation ratio larger than 1 x 10° for ultra-low volatility organic compounds. This
indicates that the oil is an efficient nucleation agent. Our results demonstrate that jet oil
nucleation is an important mechanism that can explain the abundant observations of high
number concentrations of non-refractory ultrafine particles near airports.
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Properties of contrails from aircraft with

modern engines and alternative fuels

Figure 6.
Dissertation zur Exlangung des Grades Meera

~Doktor der Naturwissenschaften™

otographs of contrails produced by the AS21 source aircraft during flight 03 on
of VOLCANZ. (a) Falcon cockpit mounted GoPro camera footage of contrails with
visually different appearance from engine 1 (ENG1) and engine 2 (ENG2) while operating in the lean-

urn combustion mode. (b-c) Photograph taken from the ice instrument operator seat onboand the
Fakcon with (b) differences visually appareni betwren the two engines while operating in the loan-

burn combustion mode and

perspe
operating in the rich-burn combustion mode. The time and date of recording is indicated in UTC in
every pancl. Image in panel (a) courtesy of Monika Scheib.
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Figure 6.16: VOLCANZ comparison of engines during near-field measurements of (a) mvPM Els
and (b) total particle Els. Courtesy of and with permission from Rebecca Dischi and Daniel Sauer.

Note that the lowest lean-burn tolal particle value for engine 2 is liely affected by large uncertainties

due to coincidence (!l\’ll and is lhr'r,’lt !mlni




Nucleation

1. Homogeneous-homomolecular: self-nucleation of a single species. No foreign nu-
clei or surfaces involved.

2. Homogeneous—heteromolecular: self-nucleation of two or more species. No for-
eign nuclei or surfaces involved.

3. Heterogeneous—homomolecular: nucleation of a single species on a foreign sub-
stance.

4. Heterogeneous—heteromolecular: nucleation of two or more species on a foreign
substance.

Classical Homogeneous Nucleation
Kinetic approach

Constrained equilibrium approach (or classical approach)

Kinetic approach Net Flux Jipis2 = BilNi = Vir1 Nig

Steady State  Jipiz=J, alli
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The Forward Rate Constant B;

Collision rate (# cm= s'!) between a monomer and an i-mer
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The Reverse Rate Constant v;

Kelvin Equation:
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FIGURE 11.3 PB; and v; as a function of ;i for various values of the saturation ratio §. The two
quantities are equal at the critical i values.

Derivation of the Nucleation Rate Net Flux Jerjz = BiNi = Vit Nia

Steady State  Jipip=J, alli
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Derivation of the Nucleation Rate
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AG; is the Gibbs free energy
change for formation of a cluster
of size i at saturation (S=1)
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How to calculate AG; —
Major assumption of classical
nucleation theory

Capillarity Approximation:
Clusters of a small number of
molecules exhibit the same
surface tension as the bulk liquid

AG, =0a;

2/3 .23
a; = (36m)\> v} ¥
dimensionless surface tension,

0 = 36m)" 2 V2 o/ kT

AG; = OkTi*?

. |
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a, is the surface area of a cluster of size i.
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Z,B sSi exp( %3}

i=

(see textbook 11.1.3 for mathematical derivation)
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Homogeneous nucleation rate calculation with excel sheet

11-Nucl-Excel-Water - Excel
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1 Water homogeneous nucleation rate calculation
2 Water saturation vapor pressure
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FIGURE 11.7 Nucleation rates measured in supersaturated n-butanol vapor as a function of
saturation ratio for various temperatures ranging from 225 to 265K (Viisanen and Strey 1994).
ifferent symbols indicate different carrier gases at 240 K. Predictions of classical nucleation
heory are shown by the lines. (Reprinted with permission from Viisanen, Y., and Strey, R., V. M.
omogeneous Nucleation Rates for n-Butanol, J. Chem. Phys. 101. Copyright 1994 American
nstitute of Physics.)
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TABLE 11.1 Critical Number and Radius for Water Droplets
T =273K° T =298 K*

S r, A it r, A i

1 o0 00 00 o0
2 17.3 726 15.1 482
3 10.9 182 9.5 121
4 8.7 87 7.6 60
5 7.5 58 6.5 39

g =75.6dyncm ', v, =299 x 10 2 em® molecule .
*g =72 dyncm

Lo = 2.99 x 1072 ¢m® molecule '
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TABLE 11.3 Critical Number and Radius for Five Organic Species at 298 K
S
Species 2 3 4 5
Acetone o 265 67 33 21
r* (A) 19.8 12.5 9.9 8.5
Benzene i . 706 177 88 56
rt(A) 29.2 18.4 14.6 12.6
Carbon tetrachloride i* 678 170 85 54
r* (A) 29.6 18.7 14.8 12.7
Ethanol I 147 37 18 12
r* (A) 15.1 9.5 7.5 6.5
Styrene i* 1646 413 206 132
r* (A) 422 26.6 211 18.2
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Constrained equilibrium approach (or classical approach)

Free Energy of i-mer Formation
AG = (i — po) i +4mor?
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Constrained Equilibrium Cluster Distribution
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obeys the usual Boltzmann distribution  n¢ - N, exp(—AG;/kT)
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[FIGURE 11.2 Constrained equilibrium and steady-state cluster distributions, Ny and N;,
respectively

Thus the unknown steady-state cluster distribution NV, disappears,
allowing the nucleation rate to be expressed in terms of the constrained
equilibrium distribution V¢
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Simple correction to the classical theory of homogeneous nucleation
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In the self-con
ation rate is

The Becker—Doring theory® expresses the nucleation

rates as
It is well known that the classical nucleation theory 0s ONT
2 e 29 ]05 ~AGY
(CNT),” which is the most common tool to analyze the JBU=UN2|[—} exr{Tﬂ}
nucleation phenomena, fails in predicting the temperature o
~ .. CNT
dependence and absolute values of the critical supersatura- _ gD exp|:7AGi ] 3
tions of a number of substances including water, alcohols, kT ’
and  high alkanes.”™ ! A large number of
. .7-9.14,15,18-23 . . . . L . .
theories to test against the experimental data Nucleation rates in the kinetically consistent version of
have been reported in the literature in the last two decades, ~ CNT are given by the following equation:
yet a major source of the discrepancies is not clearly identi- 05 L AGENT
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sistency corrected model SCC the nucle-
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