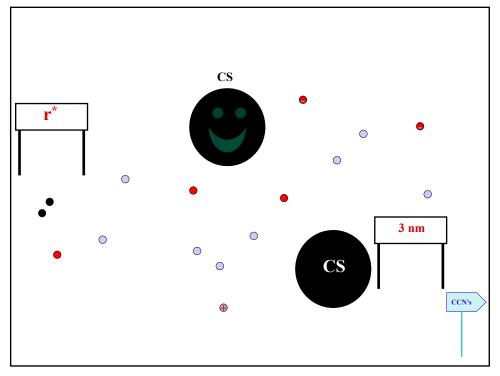
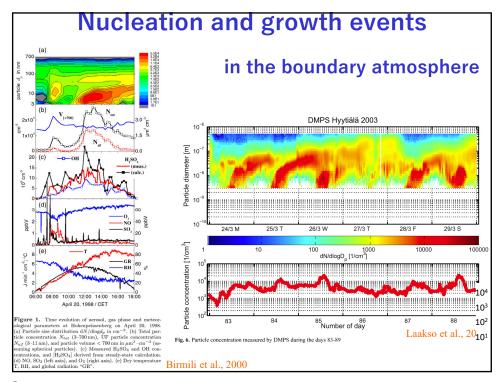
Lecture 12: Mass transport to or

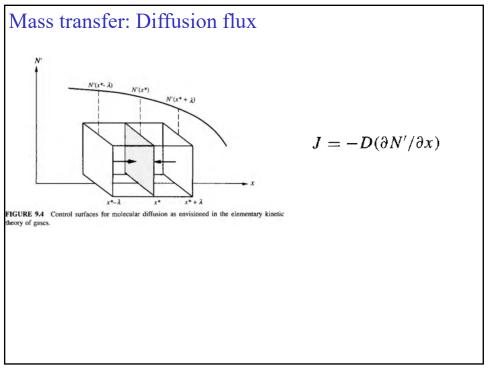
from atmospheric particles:

Condensation and Evaporation

1







Δ

Knudsen Number and three regimes of gas-particle interactions

Knudsen number:

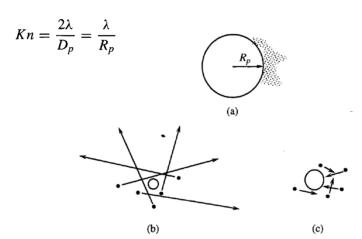
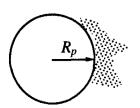


FIGURE 8.1 Schematic of the three regimes of suspending fluid-particle interactions: (a) continuum regime $(Kn \to 0)$, (b) free molecule (kinetic) regime $(Kn \to \infty)$, and (c) transition regime $(Kn \to \infty)$

5

The Continuum Regime



$$\frac{\partial c}{\partial t} = -\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \tilde{J}_{A,r}) \qquad \qquad \tilde{J}_{A,r} = -D_g \frac{\partial c}{\partial r}$$

$$\tilde{J}_{A,r} = -D_g \frac{\partial c}{\partial r}$$

c(r,t) is the concentration of A, and $\tilde{J}_{A,r}(r,t)$ is the molar flux of A (moles area -itime -1) at any radial position r.

$$\frac{\partial c}{\partial t} = D_g \left(\frac{\partial^2 c}{\partial r^2} + \frac{2}{r} \frac{\partial c}{\partial r} \right)$$

$$c(r,0)=c_{\infty}, \quad r>R_{I}$$

$$c(\infty, t) = c_{\infty}$$

$$c(R_p,t)=c_{\mathfrak{s}}$$

$$c(r) = c_{\infty} - \frac{R_p}{r}(c_{\infty} - c_s)$$

The total flow of A (moles time⁻¹) toward the particle is denoted by J_c , the subscript creferring to the continuum regime, and is given by

$$J_c = -4\pi R_p^2 (\tilde{J}_{\rm A})_{r=R_p}$$

$$J_c = 4\pi R_p D_g (c_\infty - c_s)$$

Maxwellian flux

A mass balance on the growing or evaporating particle is

$$\frac{\rho_p}{M_A} \frac{d}{dt} \left(\frac{4}{3} \pi R_p^3 \right) = J_c$$

$$\frac{dR_p}{dt} = \frac{D_g M_A}{\rho_p R_p} (c_\infty - c_s)$$

$$R_p^2 = R_{p0}^2 + \frac{2D_g M_A}{\rho_p} (c_\infty - c_s) t$$

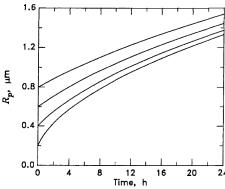
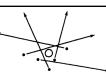


FIGURE 12.1 Growth of aerosol particles of different initial radii as a function of time for a constant concentration gradient of 1 μ g m⁻³ between the aerosol and gas phases ($D_g=0.1\,\mathrm{cm^2\,s^{-1}}$, $\rho_p=1\,\mathrm{g\,cm^{-3}}$).

7

The Kinetic Regime



For molecules in three-dimensional random motion the number of molecules Z_N striking a unit area per unit time is (Moore 1962)

$$Z_N = \frac{1}{4}N\bar{c}_A \tag{12.23}$$

where $\bar{c}_{\rm A}$ is the mean speed of the molecules:

$$\bar{c}_{\mathbf{A}} = \left(\frac{8\,kT}{\pi\,m_{\mathbf{A}}}\right)^{1/2} \tag{12.24}$$

Under these conditions the molar flow J_k (moles time⁻¹) to a particle of radius R_p is

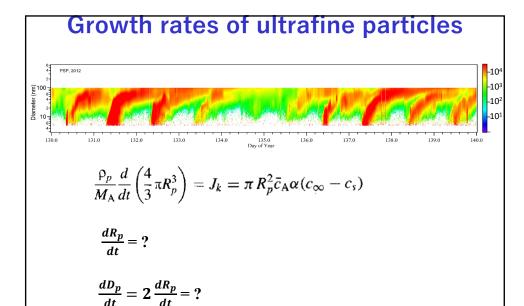
$$J_k = \pi R_p^2 \bar{c}_{\rm A} \alpha (c_{\infty} - c_{\rm s})$$

where α is the molecular accommodation coefficient

 $\alpha = \frac{\text{number of molecules entering the liquid phase}}{\text{number of molecular collisions with the surface}}$

$$\frac{J_k}{J_c} = \frac{\alpha \overline{c}_{\rm A}}{4D_g} R_p$$

 $0 \le \alpha \le$



Q: If the observed growth rate (diameter) of 5-10 nm particles is 3 nm/hr and H_2SO_4 is assumed to be the only condensing gas, what is the concentration of H_2SO_4 gas?

C

The Transition Regime

$Kn \approx 1$

Flux matching:

Flux matching assumes that the noncontinuum effects are limited to a region $R_p \le r \le \Delta + R_p$ beyond the particle surface and that continuum theory applies for $r \ge \Delta + R_p$. The distance Δ is then of the order of the mean free path λ and within this inner region the basic kinetic theory of gases is assumed to apply.

$$R_p \le r \le \Delta + R_p$$

Kinetic theory applies

$$r \geq \Delta + R_p$$
.

Continuum theory applies

Fuchs Theory

$$4\pi R_p^2 (\frac{1}{4} \overline{c}_A) [c(R_p + \Delta) - c_s] = D \left(\frac{dc}{dr}\right)_{r=R_p + \Delta} 4\pi (R_p + \Delta)^2$$

Then solving the steady-state continuum transport equation for a dilute system,

$$\frac{d^2c}{dr^2} + \frac{2}{r}\frac{dc}{dr} = 0$$

$$c(r) = c_{\infty} - \frac{R_p}{r}(c_{\infty} - c_{\mathfrak{s}})\beta_F$$

$$\beta_F = \frac{[1 + (\Delta/R_p)]\bar{c}_A R_p}{\bar{c}_A R_p + 4D[1 + (\Delta/R_p)]}$$

Fuchs Theory

$$\alpha 4\pi R_p^2 (\frac{1}{4}\overline{c}_{\rm A})[c(R_p+\Delta)-c_s] = D\left(\frac{dc}{dr}\right)_{r=R_p+\Delta} 4\pi (R_p+\Delta)^2$$

Relating the binary diffusivity and the mean free path using $D_{AB}/\lambda_{AB}\bar{c}_A=\frac{1}{3}$ and letting $Kn=\lambda_{AB}/R_\rho$, one obtains

$$\frac{J}{J_c} = 0.75\alpha \frac{1 + Kn\Delta/\lambda_{AB}}{0.75\alpha + Kn + (\Delta/\lambda_{AB})Kn^2}$$

If $\alpha = 1$

$$\frac{J}{J_c} = 0.75 \frac{1 + Kn\Delta/\lambda_{AB}}{0.75 + Kn + (\Delta/\lambda_{AB})Kn^2}$$

$$\frac{J}{J_k} = \frac{1 + Kn\Delta/\lambda_{AB}}{1 + Kn\Delta/\lambda_{AB} + 0.75 \ Kn^{-1}} \qquad \frac{J_k}{J_c} = \frac{3}{4 \ Kn}$$

11

TABLE 12.1	Transition Regime Formulas for Diffusion of Species A in a Background Gas B
to an Aerosol	

J/J_c	Mean Free Path Definition	Reference
$\frac{0.75\alpha(1+Kn\Delta/\lambda_{AB})}{0.75\alpha+Kn+(\Delta/\lambda_{AB})Kn^2}$	$\frac{3D_{AB}}{\bar{c}_A}$	Fuchs (1964)
$\frac{0.75\alpha(1+Kn)}{Kn^2+Kn+0.283Kn\alpha+0.75\alpha}$	$rac{3D_{ m AB}}{ar{c}_{ m A}}$	Fuchs and Sutugin (1971)
$\frac{1+Kn}{1+2Kn(1+Kn)/\alpha}$	$\frac{2D_{\mathrm{AB}}}{\bar{c}_{\mathrm{A}}}$	Dahneke (1983)
$\frac{1+1.333Kn}{1+1.333\overline{K}n+(1.333\sqrt{\pi}Kn+1)Kn}$	$rac{4}{\sqrt{\pi}}rac{D_{ m AB}}{ar{c}_{ m A}}$	Loyalka (1983)
$\frac{b(1+a\mathrm{Kn})}{b+c\mathrm{Kn}+d\mathrm{Kn}^2}$	$4brac{D_{ m AB}}{ar{c}_{ m A}}$	Sitarski and Nowakowski (1979)
	[see (12.39) for $a, b, c,$ and d]	

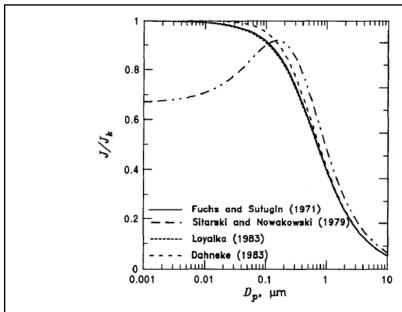


FIGURE 12.2 Mass transfer rate predictions for the transition regime by the approaches of (a) Fuchs and Sutugin (1971), (b) Dahneke (1983), (c) Loyalka (1983), and (d) Sitarski and Nowakowski (1979) (z=15) as a function of particle diameter. Accommodation coefficient $\alpha=1$.

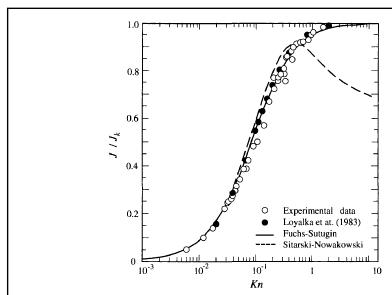


FIGURE 12.3 Comparison of experimental dibutyl phthalate evaporation data with the theories of Loyalka et al. (1989), Sitarski and Nowakowski (1979) (for z=15), and the equation of Fuchs and Sutugin (1970). (Reprinted from *Aerosol Science and Technology*, **25**, Li and Davis, 11–21. Copyright 1995, with kind permission from Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.)

