ATM515 Aerosol Physics, Fall 2025

Instructor: Dr. Fangqun Yu; ETEC-333, (518) 437-8767; fyu@albany.edu

Homework #3 (due date Oct. 8)

- 1. (15 points) Consider a 0.01 μm-diameter sulfuric acid-water droplet at 60% relative humidity. (a) What is the H₂SO₄ mass fraction in the solution? (b) What is the size of the droplet if all the water were removed? (c) What is the size of this droplet at 90% RH? (d) What is the increase in the equilibrium H₂SO₄ vapor pressure over the curved droplet surface over that for the corresponding flat surface?
- 2. (15 points) Calculate the number of molecules in the critical clusters, size of critical clusters, and nucleation rates for water under the following temperatures (T) and supersaturation ratios (S):
 - (1) T=215 K, S=2, 5, 8
 - (2) T=250 K, S=2, 5, 8
 - (3) T=285 K, S=2, 5, 8

Comment on the results with regard to the efforts of T and S on nucleation rates. Attach the hardcopy of the excel sheet to show your work.

The dependence of water vapor saturation pressure on temperature can be expressed as: $p_w = 6.1121~e^{(18.678~t~/~234.5)~t~/~(257.14~t~)}~$ where t is temperature in °C and p_w is in hpa. The values of water surface tension can be assumed to be 84, 79, 74 erg/cm² at T=215, 250, 285 K, respectively. The volume of one water molecule is $3\times10^{-23}~\text{cm}^3$.

- 3. (20 points) Based on the nucleation rate lookup tables for H₂SO₄–H₂O binary homogenous nucleation (BHN), H₂SO₄–H₂O–NH₃ ternary homogeneous nucleation (THN), H₂SO₄–H₂O-ion binary ion-mediated nucleation (BIMN), and H₂SO₄–H₂O–NH₃-ion ternary ion-mediated nucleation (TIMN) available at https://gmd.copernicus.org/articles/13/2663/2020/,
 - (1) calculate and plot the dependence of BHN and BIMN rates as a function of H₂SO₄ gas-phase concentration (suggested range: 5E5 cm⁻³ to 5E8 cm⁻³) under three typical conditions: (I) stratosphere (T=210 K, RH=0.6%, particle surface area =1 μ m²/cm³), (II) upper troposphere (T=230 K, RH=50%, particle surface area =10 μ m²/cm³), and (III) near surface (T=280 K, RH=80%, particle surface area =50 μ m²/cm³). For BIMN, assume ionization rate of 10 ion-pairs cm⁻³s⁻¹. Comment on the results regarding key parameters controlling BHN and BIMN rates in the atmosphere.
 - (2) calculate and plot the dependence of THN and TIMN rates as a function of NH₃ gas-phase concentration (suggested range: 1E8 cm⁻³ to 1E12 cm⁻³) under two typical conditions in the boundary atmosphere: (I) T=295 K, RH=80%, [H₂SO₄]=3E7 cm⁻³, and particle surface area =50 μm²/cm³; (II) T=275 K, RH=80%, [H₂SO₄]=3E7 cm⁻³, and particle surface area =50 μm²/cm³. For TIMN, assume ionization rate of 10 ion-pairs cm⁻³s⁻¹. Comment on the results regarding the effect of T and [NH₃] on THN and TIMN rates in the atmosphere.